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Abstract

This paper explores the generation of “realistic” 3D representations of individual trees to enhance visualizations of forest simulation 
tool outcomes. By leveraging remote sensing data, we aim to capture individual tree features and characteristics accurately, linking 
them to dynamic simulations of forest structures and composition. Employing a deep learning approach, we train models on existing 
3D scanned data to produce diverse and realistic visual representations of specific tree species. Our method addresses the limitations 
of existing synthetic tree generation techniques, which often overlook species-specific characteristics. Our approach emphasizes 
the generation of diverse tree forms, accounting for differences in trunk shape, canopy size, and branching structures. The resulting 
3D data offers potential applications for realistic future forest visualizations and improved data augmentation in tree classification 
models, ultimately contributing to the creation of virtual forests that represent rich species diversity.

1. Introduction

The sustainable management of forest ecosystems requires an
intricate understanding of their current state and potential fu-
ture development. The advancement of remote sensing tech-
nologies, such as Terrestrial Laser Scanning (TLS) and Mo-
bile Laser Scanning (MLS), have revolutionized the analysis of
forest structures through high-resolution point clouds (Küken-
brink et al., 2022, Liang et al., 2016). Complementing these
technologies, photogrammetry offers a cost-effective method
for reconstructing and visualizing complex forest environments.
These approaches facilitate the analysis of critical features like
Diameter at Breast Height (DBH) and tree position (Küken-
brink et al., 2022, Hristova et al., 2024, Mokroš et al., 2018), as
well as tree species (Puliti et al., 2024b), and volume (Bornand
et al., 2023). While these methods provide invaluable insights
into the present conditions of forests, they do not directly relate
to future forest dynamics.

Advancements in Deep Learning (DL) and computer graph-
ics introduce opportunities to enhance our understanding of
the forest’s future. Utilizing these technologies, virtual forest
stands that realistically simulate the appearance and behavior
of real-world forests can be produced. Recent approaches in
generating virtual forests, such as (Holm and Schweier, 2024),
have made strides by creating a virtual forest in the Unity game
engine. Such tools allow for the visualization of long-term
forest simulation outcomes using predefined tree characterist-
ics. These visualizations may assist practitioners and foresters
in understanding the potential development of future forests,
which helps select appropriate management strategies.

In this context, studies exploring the integration of forest simu-
lations with high-resolution data would be the next evolutionary
step in visualizing the outcomes of various management scen-
arios (Neudam et al., 2023). By leveraging point cloud data
filtered by tree features, like DBH and height, such visualiza-
tions provide a comprehensive framework for evaluating forest
dynamics and their possible effects on forest structure and com-

position. Remote sensing data provides accurate information
about current forest conditions and tree features, which could
serve as inputs for simulations. Additionally, such data could
be linked to the output of these simulations, supporting forest
practitioners in their long-term decision-making.

Forest simulation tools often provide simplistic output in the
form of modeled forest parameter values (i.e., a list of trees
comprising their dimension and species). To create a founda-
tion for visualizing these parameters and possible future states
of forest ecosystems, our work investigates the potential of gen-
erating 3D data for individual trees that accurately represent
their real-world counterparts. To achieve this, we employ a DL
approach and train models to produce meaningful 3D repres-
entations of specific tree species and their characteristics. Our
model learns from existing 3D data of scanned individual trees,
enabling the generation of a variety of tree representations for
a given species from a latent space. To make the latent space
more compact and avoid any gaps, we train our generator model
to sample from a prior distribution.

Our results indicate that the proposed generation method is a
step toward effectively learning the geometric characteristics of
tree species to produce new point cloud data that closely re-
sembles real-world trees. While state-of-the-art methods also
focus on generating synthetic tree data (Bryson et al., 2023,
Dobbs et al., 2023), they create synthetic trees without con-
centrating on specific tree species. Bryson et al. (Bryson et al.,
2023) focused on building an artificial dataset for training deep
learning models aimed at stem and crown classification rather
than generating virtual trees for visualization purposes. Thus,
they do not compare the synthetic trees their model produced
with real trees.

Furthermore, Dobbs et al. (Dobbs et al., 2023) propose a super-
vised method for tree skeletonization, which aims to learn and
produce the skeleton of an input tree. Our approach, however,
significantly differs from these reference methods. We focus on
creating diverse representations of various tree species that ex-
hibit distinct shapes, canopy sizes, and branch structures. Our
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(a) Picea abies

(b) Fagus sylvatica

(c) Eucalyptus miniata

Figure 1. Each sub-figure a), b), and c) represents a pair of
generated tree point clouds using our model (right
tree) and corresponding real-world tree point
clouds (left tree). The generated trees were pro-
duced by sampling from a prior latent distribution.

primary objective is to produce new 3D data for a given tree
species without prior knowledge, making it appear as realistic
as possible. This capability may enhance the realism of forest
stand visualizations and assist in data augmentation for tree spe-
cies classification models, ultimately facilitating the creation of
virtual forests that showcase species diversity.

We summarize our main contributions as follows:

• An unsupervised model that creates life-like 3D represent-
ations of specific tree species using a DL approach, which
learns from existing scanned tree data.

• Novel generative models that produce various visualiza-
tions of Europe’s most common tree species.

• A performance evaluation showcasing the benefits of our
method for simulating real-world tree data. Figure 1 hints
about the potential of our model.

The paper is organized as follows. First, we introduce our un-
supervised method for generating 3D data of single trees and
present the dataset of tree species that we use to train and test

our model. This is followed by results and evaluation. Finally,
we conclude the paper by discussing future work.

2. Our Method

2.1 Dataset

We used the recently published FOR-species20K dataset (Pu-
liti et al., 2024a), which contains single-tree point clouds of 33
species obtained using TLS, MLS, and Unmanned Laser Scan-
ning (ULS). We organized the point clouds by tree species and
incorporated data from all three types of sensors. It is important
to highlight that trees of a particular species can vary in appear-
ance based on their growth stage and age. The FOR-species20K
dataset offers diverse representations of Europe’s most common
tree species, making it an appropriate training dataset for our
model.

2.2 Input Data Preparation

The single-tree point clouds in the FOR-species20K dataset
contain high-resolution data that would be too computationally
demanding for our DL model. To prepare the data for input to
our method, we decreased the density of the point clouds by
randomly sub-sampling each point cloud to extract 4098 points
using the Farthest Point Sampling (Eldar et al., 1997). This
way, we preserved the overall shape of the 3D tree while de-
creasing the point cloud density. Furthermore, we normalized
each sub-sampled tree point cloud to fit within the unit cube.
The input for the DL model consists of a set of 3D points from
the sub-sampled and normalized point clouds of a given tree
species. Finally, we divided the dataset into training, valida-
tion, and test sets, selecting respectively 85%/5%/10% num-
ber of trees from each tree species group. The train set was
used for training, the validation set was used for selecting the
best training epoch, and the test set was used for computing
the evaluation metrics. The FOR-species20K dataset contains
species-imbalanced data, with varying quantities of samples for
each tree species group. Therefore, the number of trees in the
training, validation, and test sets varied across the tree species
groups.

2.3 DL Model

We propose to train a model for generating the 3D shape
of a given tree species in an unsupervised adversarial man-
ner. Our model is based on 3D Adversarial Autoencoders
(AAE) (Zamorski et al., 2020). However, as Zamorski et al.
have trained their model for generating highly structured ob-
jects, such as chairs, tables, and cars, we aim to tackle the more
complex problem of generating unstructured and diverse tree
species data.

2.3.1 Adversarial Autoencoders AAE utilizes adversarial
training to impose a specific prior distribution on the latent
space. The encoder, denoted as E, encodes data into compact
latent representations. The primary objective of AAE is to en-
sure that the encoder E outputs latent space values that follow
a predetermined prior distribution, such as Gaussian, Beta, or
Gamma distributions. The discriminator, referred to as D, learns
to align these latent representations with the prior distribution.

This process enables the generation of new samples that are
similar to the input data based on the prior distribution. By
imposing a prior distribution on the latent space, we achieve
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a more compact and continuous latent distribution from which
new data can be generated through sampling. The role of D is to
differentiate between samples generated from the defined latent
distribution and “fake” samples produced by the encoder E.

The encoder E is responsible for transforming the input 3D data
into latent space representations while simultaneously learning
to “fool” the discriminator D. The generator, denoted as G, uses
samples drawn from the latent space distribution to create new
data. By modeling the latent space and sampling from it, we
aim to generate trees with diverse characteristics that resemble
a specific tree species.

2.3.2 Loss Function The training process is guided by a
loss function that consists of two main components: 1) recon-
struction error, measured by the Chamfer distance between the
input 3D data and the reconstructed point cloud, and 2) ad-
versarial error, representing the negative log-likelihood of the
generated encodings with respect to the discriminator. To bal-
ance these two components, we use a coefficient denoted by λ,
which we have set to 10.

2.3.3 Validation After training, we selected the best train-
ing epoch using our validation set. For each epoch, we drew
random samples from the prior distribution, each with sample
size matching that of the latent space. We then used the gen-
erator G to create trees based on these random samples. The
Jensen-Shannon Divergence (JSD) metric (Achlioptas et al.,
2018), quantifying the similarity distance between two prob-
ability distributions, was employed to calculate the distance
between the generated trees and the trees in our validation set.
For each epoch, we computed the JSD three times using three
different sets of random samples, drawn from the prior distribu-
tion. The epoch that produced the lowest mean JSD value was
selected as the best epoch for the model.

2.3.4 Network Architecture The network architecture for
the encoder E is based on PointNet++ (Qi et al., 2017). Our
encoder consists of seven 1D convolution layers, one fully con-
nected layer, and two separate fully connected layers for re-
parametrization. ReLU activations are applied in all layers ex-
cept for the last layer used for parametrization. The generator
G and the discriminator D are fully connected networks with six
layers, utilizing ReLU activations in all layers except for the
final one.

2.3.5 Implementation Details The network was imple-
mented in PyTorch and is based on Zamorski et al.’s soft-
ware (Zamorski et al., 2020). We trained E, G, and D of the AAE
using the Gaussian distribution as the prior latent distribution.
The model was trained for 3000 epochs with learning rates set
at 0.0005 for both E and G and 0.00005 for D. We used a batch
size of 16. The size of the latent space was 64. The training was
conducted separately for each tree species in the FOR-species
dataset, resulting in 33 trained models. Each model took ap-
proximately 23 hours to train on an NVIDIA TITAN V GPU
with 32 GB of RAM.

2.4 Evaluation Metrics

2.4.1 Reconstruction Ability We evaluated the effective-
ness of our method in reconstructing real-life trees by using
the JSD metric (Achlioptas et al., 2018, Zamorski et al., 2020).
This metric measures the distance between two distributions
and ranges from 0 to 1. We calculated the JSD metric for
the reconstructed 3D data in relation to the corresponding point

(a) Picea abies

(b) Fagus sylvatica

(c) Eucalyptus miniata

Figure 2. Variety of single trees belonging to three different
tree species, generated using our model by randomly
sampling the latent distribution.

clouds in our test set, aiming to assess the reconstruction cap-
ability of our models quantitatively. We also computed the JSD
metric on our validation set for the best training epoch.

2.4.2 Point Cloud-to-Point Cloud Metric To further eval-
uated the efficiency of the tree generation model, we employed
the Multiscale Model-to-Model Cloud Comparison (M3C2)
cloud-to-cloud metric (Lague et al., 2013). This metric meas-
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Figure 3. The figure represents a tuple of tree point clouds. The third tree shows the Multiscale Model- to-Model Cloud Comparison
(M3C2) metric, computed between the real 3D data (first tree) and the generated 3D data using our method (second tree).
The green and yellow colors indicate a high correlation between the generated points and the real data, while the red
points highlight significant structural dissimilarities in a small portion of the canopy. The M3C2 distance demonstrates
that, overall, our method effectively generates trees closely resembling the 3D tree data.

ures the structural similarities between two point clouds, fo-
cusing on local distance variations detected at reference core
points. In our analysis, core points were calculated from the 3D
data of real trees. We computed the distance between each core
point and its corresponding neighboring points found within the
generated point clouds, enabling us to evaluate the accuracy of
the generated models in relation to the original data.

Moreover, we excluded core points without neighboring points,
as these would not provide meaningful comparisons in our
structural analysis. By focusing on valid core points with neigh-
boring data, we ensured that our evaluation accurately reflected
the model’s performance in representing the tree structures.

3. Results and Discussion

3.0.1 Qualitative Assessment Figure 1 illustrates examples
of trees from three tree species generated by our model along-
side their real-world counterparts. To produce these trees, we
encoded trees from our test set into their corresponding latent
representations, which, by design, correspond to samples of our
prior distribution. Then, our generator G transformed the latent
representations into the generated trees in Figure 1. Visually,
the generated trees closely resemble the real ones, demonstrat-
ing that our model effectively captures intricate branch struc-
tures. Nevertheless, the generated trees appear to contain fewer
points than the original point clouds despite both having the
same number of points. This discrepancy occurs because many
points are clustered in specific areas, particularly in the crowns

Tree species JSD validation JSD test

Picea abies 0.176 0.189
Fagus sylvatica 0.146 0.137

Eucalyptus miniata 0.206 0.178

Table 1. The Jensen- Shannon Divergence (JSD) metric for
our model, computed for three tree species groups
using the validation and test sets.

of the trees. To address this reconstruction issue, a differ-
ent reconstruction loss, such as the Earth Mover’s Distance
(EMD) (Zamorski et al., 2020), could be adopted. However,
employing the EMD may introduce a trade-off between com-
putational efficiency and reconstruction accuracy.

By random sampling from the learned latent space, we can ob-
tain diverse shapes of individual tree species. The input to the
generator G is a vector sampled from the prior distribution. Spe-
cifically, Figure 2 shows trees generated for Picea abies, Fagus
sylvatica, and Eucalyptus miniata, each corresponding to a dif-
ferent sampled vector from the prior distribution. Each recon-
structed tree point cloud consists of 4098 points, as determined
by the design of the generator G.

Quantitative Assessment Table 1 presents the JSD metric,
evaluated across three tree species groups. The second column
shows the JSD values computed on the validation set for the
best training epoch. The third column displays the JSD values
calculated on the test set. A smaller JSD value indicates bet-
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Figure 4. A tuple of tree point clouds. The third tree shows the Multiscale Model- to-Model Cloud Comparison (M3C2) metric,
computed between the real 3D data (first tree) and the generated 3D data using our method (second tree). Most M3C2
points are green and yellow, revealing an overall successful reconstruction. Some red points appear close to the base of
the third tree, signifying difficulties in reconstructing some of the branch structure.

Figure 5. A tuple of tree point clouds. The third tree shows the Multiscale Model- to-Model Cloud Comparison (M3C2) metric,
which is calculated between the real 3D data (represented by the first tree) and the generated 3D data produced by our
method (represented by the second tree). In this visualization, green and yellow points signify a strong correlation between
the generated points and the real data. Conversely, red and blue points are scarce in this particular example, indicating few
significant structural differences.
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ter model performance. Overall, the JSD metric, computed for
the validation and test sets, is consistently low for the three tree
species included in our evaluation.

Next, we calculated the M3C2 metric for each tree in our test
set, comparing it to its corresponding generated counterpart
produced by our model. Figures 3, 4 and 5 illustrate several ex-
amples of this metric. The first column in each figure presents
the real tree, whereas the second column shows the generated
tree. The third column displays the M3C2 metric for each
point of the real tree. Insignificant M3C2 errors are marked
in green and yellow, while significant deviations from the refer-
ence point cloud are indicated in red and blue.

Our analysis reveals that the M3C2 error is normally distributed
around 0 for all tree species in our test set. This suggests that
our model is capable of generating point clouds that capture the
specific shape of individual trees from a given species.

4. Conclusion and Future Work

In this paper, we presented a novel unsupervised DL model for
generating life-like 3D representations of specific tree species.
By leveraging existing scanned data, our approach learned to
produce diverse 3D data of trees with distinct shapes and struc-
tures. The intersection of DL and forest visualization presents a
promising avenue for advancing the creation of virtual forests,
which may aid the generation of digital forest twins of real
forest landscapes. Digital twins provide manifold insights for
scientific research as well as for decision support in forest man-
agement.

As a future work, we intend to enhance the density of the gener-
ated 3D data and further increase the network depth to improve
the visualization of single trees and virtual forests. To enhance
realism, the tree generator model presented in this paper can be
adapted to and trained with new and bigger single-tree datasets.
Finally, our current model lacks color representation for dif-
ferent tree species, so integrating it with photogrammetric data
is a promising direction to explore. The long-term perspective
would be to link the new 3D tree generator with the outcomes
of forest simulation models for more realistic forest ecosystem
visualizations.
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Kükenbrink, D., Marty, M., Bösch, R., Ginzler, C., 2022.
Benchmarking laser scanning and terrestrial photogrammetry
to extract forest inventory parameters in a complex temperate
forest. International Journal of Applied Earth Observation and
Geoinformation, 113, 102999.

Lague, D., Brodu, N., Leroux, J., 2013. Accurate 3D compar-
ison of complex topography with terrestrial laser scanner: Ap-
plication to the Rangitikei canyon (NZ). ISPRS Journal of Pho-
togrammetry and Remote Sensing, 82, 10–26.

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A.,
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