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Abstract 

This research presents an innovative system framework, and a multi-sensor integration algorithm aimed at improving the navigation 
accuracy of autonomous vehicle (AV). This study addresses the shortcomings of the LiDAR-centric approach used in Autoware, a 
popular open-source platform for self-driving cars. This article presents FalcoNav.AI, a novel INS-centric method, integrating inertial 
navigation, satellite positioning, Light Detection and Ranging (LiDAR), and High-Definition (HD) maps to enhance navigational 
performance. An Extended Kalman Filter (EKF) is employed for efficient data fusion and processing of Inertial Navigation System 
(INS). The performance of system is evaluated in various environments, including open sky, Global Navigation Satellite System 
(GNSS) challenge and GNSS denied areas, showing significant improvements in navigation accuracy and reliability. The key 
components of the system include affordable Velodyne VLP-16 and a custom-built Embedded GNSS/INS (EGI) Inertial Navigation 
System (EGI-370). Experiments demonstrate that the system achieves "Where-in-Lane" level accuracy, highlighting its potential for 
wide application in autonomous vehicle. This innovation represents a significant advance towards more dependable and precise 
navigation in a wide range of driving conditions. 

1. Introduction

1.1 Overview of Autonomous Vehicles 

The global technological landscape has undergone a profound 
transformation with the emergence of Autonomous Vehicle (AV) 
technology, marking a paradigm shift in human-transportation 
interaction. This transformative evolution began in earnest 
during the 1980s and 1990s, laying the foundation for one of the 
most significant advancements in modern technology. The 
Society of Automotive Engineers (SAE) International's standards 
classify autonomous driving into six levels, ranging from no 
automation (Level 0) to full automation (Level 5), as illustrated 
in Figure 1. Level 1 involves basic driver assistance features, 
such as adaptive cruise control, while Level 3 allows for 
conditional automation, where the vehicle can handle most of the 
driving tasks but requires human intervention in complex 
scenarios. Level 5 represents full automation, where no human 
intervention is required under any conditions. This classification 
underscores the escalating complexity and sophistication 
required in AV design and development to achieve higher levels 
of automation. 

Figure 1. Level of autonomous driving. 

As illustrated in Figure 2, navigational accuracy in AV can be 
categorized into four distinct levels: "which road level" (accuracy 

above 5 meters), "which lane level" (1.5 meters), "where in lane 
level" (0.5 meters), and "active control level" (0.1 meters). These 
levels of accuracy are essential for enabling AV to operate safely 
in complex environments, such as urban areas with dense traffic 
or GNSS-denied zones like tunnels and underground parking lots. 
As AV technology progresses toward and beyond Level 3 
automation, the demand for robust positioning systems with 
centimetre-level accuracy becomes increasingly critical. Such 
precision is vital for ensuring reliable vehicle operation, 
particularly in scenarios requiring hazard avoidance or lane-
keeping in dynamic environments.  

Figure 2. Navigation accuracy classification. 

In recent years, the demand for advanced navigation technology 
has grown significantly across various industries. The Global 
Navigation Satellite System (GNSS) has become a cornerstone 
of modern navigation, satisfying the needs of most users. 
However, GNSS relies on signal transmission and reception, 
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which can be easily disrupted by obstacles such as buildings, 
trees, and tunnels. In urban environments, GNSS signals are often 
affected by multipath effects, where signals reflect off surfaces, 
leading to inaccuracies in positioning. Additionally, atmospheric 
conditions, such as ionospheric delays, can further degrade 
GNSS performance. These limitations mean that GNSS-based 
navigation systems may experience interruptions in challenging 
environments, particularly in GNSS-denied areas like tunnels or 
urban canyons, where satellite signals are completely blocked. 
To address these challenges, the Inertial Navigation System (INS) 
is often integrated with GNSS, providing continuous and reliable 
navigation in environments where GNSS signals are unavailable 
or degraded. 
 
The Inertial Measurement Unit (IMU), a core component of INS, 
is typically classified into three performance categories: 
navigation-grade, tactical-grade, and consumer-grade. 
Navigation-grade IMU, often used in aerospace and military 
applications, offering the highest accuracy but comes at a 
significant cost. Tactical-grade IMU strikes a balance between 
performance and affordability, making it suitable for commercial 
applications like autonomous vehicles. Consumer-grade IMU, 
while cost-effective, is limited by higher error rates and is 
typically used in low-precision applications such as consumer 
electronics. Lower-performance IMU, such as consumer-grade 
MEMS (Micro-Electro-Mechanical Systems) gyroscopes, is 
more prone to accumulating errors, leading to rapid drifts in 
position and orientation. For example, consumer-grade MEMS 
gyroscopes often exhibit a bias instability of approximately 70 
degrees per hour. In contrast, navigation-grade IMU offers 
significantly higher accuracy but is often prohibitively expensive 
for widespread use. 
 
The integration of GNSS and IMU begins with the hardware 
setup, that precise time synchronization between the GNSS 
receiver and IMU samples is a critical challenge. Precise time 
alignment is essential because even minor timing discrepancies 
can lead to significant errors in the estimation of position and 
velocity, compromising the overall accuracy of the navigation 
system. Additionally, correcting bias and scale factor errors in 
IMU data through rigorous calibration is crucial for improving 
overall navigation performance. In this study, precise parameter 
estimation in error models is emphasized, with the Allan variance 
test serving as an efficient tool for estimating INS error model 
parameters. The Extended Kalman Filter (EKF) is widely used to 
merge GNSS and IMU data, and this study adopts a loosely 
coupled (LC) framework to enhance the robustness and accuracy 
of the integrated navigation solution. The EKF effectively 
combines the high-frequency, short-term accuracy of IMU data 
with the long-term stability of GNSS measurements, resulting in 
a robust and reliable navigation system. 
 
1.2 Autonomous Vehicle Platform 

AV systems are designed to operate without human intervention, 
utilizing an array of sensors, cameras, LiDAR, RADAR, and 
Artificial Intelligence (AI) to perceive their environment and 
make decisions. These systems manage vast amounts of data to 
navigate roads, recognize traffic signals, and adapt to various 
driving conditions, providing a level of precision and response 
time that surpasses human abilities. The architecture of an AV 
system is built on four key components: perception, localization, 
planning, and control, as illustrated in Figure 3. 
 
The perception component relies on sensors such as LiDAR, 
cameras, and RADAR to detect and classify objects in the 
environment. Localization ensures the vehicle knows its precise 

position on the road, often using a combination of GNSS, INS, 
and HD maps. The planning component uses this information to 
generate safe and efficient routes, while the control component 
translates these plans into physical actions, such as steering and 
braking, to navigate the vehicle. These components work 
together to create a robust and reliable autonomous driving 
system. 

 
Figure 3. Four pillars AV architecture. 

 
Sensor fusion is a critical aspect of AV systems, as it combines 
data from multiple sensors to create a more accurate and reliable 
understanding of the environment. For example, while LiDAR 
provides high-resolution 3D maps, cameras offer rich visual 
information, and GNSS/INS systems ensure precise positioning. 
By integrating these data sources, the system can compensate for 
the limitations of individual sensors, such as LiDAR's 
susceptibility to adverse weather or GNSS's vulnerability to 
signal blockages. 
 
AI plays a pivotal role in AV systems, enabling tasks such as 
object detection, path planning, and decision-making. Machine 
learning algorithms, trained on vast datasets, allow the system to 
recognize and classify objects in real-time, predict the behaviour 
of other road users, and make safe driving decisions in complex 
scenarios. 
 
This robust architectural design has driven numerous car 
manufacturers and tech companies to develop various AV 
platforms. Current open-source AV platforms, such as Autoware 
and Apollo, employ a multi-sensor fusion approach, integrating 
different sensors, including GNSS, IMU, LiDAR, RADAR, 
cameras, and ultrasonic sensors, to achieve higher levels of 
autonomous driving. For this study, Autoware was selected due 
to its open-source nature, regular updates, and user-friendly 
features, making it an ideal platform for research and 
development. Its modular architecture allows for seamless 
integration of custom sensors and algorithms, enabling 
researchers to test and refine new approaches in a flexible and 
scalable environment. 
 
1.3 Motivation, Objectives and Contribution 

While Autoware strives to meet high standards in autonomous 
driving, its current design has specific limitations, especially in 
achieving advanced autonomous navigation levels. Autoware 
faces challenges due to its heavy reliance on LiDAR and the 
integration of other sensors like GNSS and IMU, which diminish 
its effectiveness in environments with signal obstructions. 
Additionally, the initialization method in Autoware, particularly 
during point cloud matching, can lead to inefficiencies within its 
LiDAR-centric framework. The overall cost of the current AV 
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system sensors is also high, limiting its scalability for widespread 
adoption. 
 
To address these challenges, this study proposes a multi-sensor 
fusion strategy that integrates INS, GNSS, LiDAR, and HD maps 
with cost-effective sensors Velodyne VLP-16 and a custom-built 
EGI Inertial Navigation System EGI-370. The primary focus is 
on INS, which provides continuous, high-frequency data in any 
environment, ensuring the AV consistently receives reliable 
information. FalcoNav.AI approach aims to enhance the real-
world application performance, particularly in challenging 
environments where existing systems struggle. The contributions 
of this study as following: 
 
1.3.1 Custom Low-Cost EGI and LiDAR Integration: This 
study integrates a custom-built EGI system and low-cost LiDAR 
to create a cost-effective hardware framework. The EGI system 
ensures accurate positioning, while LiDAR provides precise 
environmental perception. Together, they deliver a robust, 
affordable solution for autonomous navigation, compatible with 
FalcoNav.AI and suitable for real-world deployment. 
 
1.3.2 Refinement of Multi-Sensor Fusion Algorithm: This 
study develops an LC algorithm that integrates INS, GNSS, 
LiDAR, and HD maps. FalcoNav.AI employs an INS-centric 
structure to address the limitations of LiDAR-centric approach in 
Autoware, improving navigation accuracy and reliability in 
challenging environments. 
 
1.3.3 Realistic Test Field Design: This study creates a 
carefully designed test field that simulates real-world conditions, 
including varying GNSS signal strengths and HD maps 
availability. This setup enables comprehensive and realistic 
testing, ensuring the navigation system performs reliably in 
diverse scenarios for autonomous vehicles. 
 

2. Hardware Framework 

2.1 Hardware Integration 

The hardware integration is meticulously designed to meet the 
advanced navigation requirements of FalcoNav.AI. The AV 
platform operates within a Robot Operating System (ROS) 
environment on a portable Industrial Personal Computer (IPC). 
Central to this setup is the EGI-370 module, which merges 
accurate GNSS receiver data with dynamic IMU inputs, ensuring 
continuous and reliable positioning even in environments with 
poor GNSS signal quality, such as urban canyons or tunnels. 
 
The EGI-370, embedded within the IPC, serves as the system's 
computational hub. It processes raw data using a sophisticated 
encoder-decoder, controlled by a Microcontroller Unit (MCU) 
and a Real-Time Clock (RTC), and communicates via the EGI 
ROS driver. This integration with ROS enables seamless data 
flow and real-time processing, essential for AV navigation. 
Additionally, the ROS driver for the Velodyne VLP-16 integrates 
detailed environmental point cloud data, enhancing the system's 
perception capabilities. 
 
The system employs standard interfaces, including SMA, RS232-
USB, and RJ45, to ensure efficient data transmission and 
synchronization between the EGI-370, LiDAR, and other 
components. These interfaces enable seamless communication, 
critical for real-time navigation and control. Figure 4 illustrates 
the hardware integration architecture, highlighting the 
connections between the EGI-370, LiDAR, and other 
components. 

 
Figure 4. Hardware integration architecture. 

 
2.2 Time Synchronization Module 

In precision-critical industrial environments, the Precision Time 
Protocol (PTP) is essential for synchronization. This protocol is 
particularly vital for portable Industrial Personal Computer (IPC), 
which play a key role in data acquisition and processing. IPC 
depends on precise timing to synchronize various networked 
devices and sensors, and PTP provides a solution that meets 
industrial standards for accuracy and reliability. In the proposed 
system, the core function of PTP is to accurately measure time 
differences between the master clock and slave clock, as well as 
to evaluate communication delays. 
 
Operating over an Ethernet framework, the PTP protocol 
integrates timestamp messages within network packets. 
Synchronization among peripheral devices is achieved through a 
systematic exchange of these messages, following a master-slave 
hierarchy. The protocol ensures time alignment between the 
master time source, the time synchronization module, and 
subordinate slave clocks. This precision is critical for 
maintaining consistency across the network, as illustrated in 
Figure 5. 

 
Figure 5. PTP master-slave hierarchy. 

 

The master clock sends a 𝑆𝑦𝑛𝑐 message and records the time 𝑡! 
when the message is sent. After the 𝑆𝑦𝑛𝑐 message arrives, the 
slave clock records the time 𝑡". The master clock then sends 
a 𝐹𝑜𝑙𝑙𝑜𝑤_𝑈𝑝 message containing the precise time 𝑡!, allowing 
the slave clock to record both 𝑡! and 𝑡". Next, the slave clock 
sends a 𝐷𝑒𝑙𝑎𝑦_𝑅𝑒𝑞 message and records the time 𝑡# when the 
message is sent. The master clock receives the 
𝐷𝑒𝑙𝑎𝑦_𝑅𝑒𝑞  message at time 𝑡$ and responds with 
a 𝐷𝑒𝑙𝑎𝑦_𝑅𝑒𝑠𝑝 message containing the timestamp 𝑡$. Using the 
timestamps 𝑡!, 𝑡", 𝑡#, and 𝑡$, the slave clock calculates the offset 

Antenna

EGI System EGI-370

GNSS
Receiver IMU

MCU RTC

Embedded IPC

Portable IPC

Core Algorithm

Autoware

LiDAR 
VLP-16

Time Sync 
Module

SMA

SMA

RS232-USB

RJ45
RJ45Micro-USB

EGI ROS Driver

Velodyne
ROS DriverPTP Protocol NovAtel

ROS Driver

Master Slave Slave Time Stamp

!!

!"

!#

!$

!"
!#, !"

!#, !", !!

!#, !", !!, !$

Sync

Follow_Up

Delay_Resp

Delay_R
eq

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-633-2025 | © Author(s) 2025. CC BY 4.0 License.

 
635



 

between the master and slave clocks, as well as the network 
transmission delay. 
 

3
𝑑𝑒𝑙𝑎𝑦 + 𝑜𝑓𝑓𝑠𝑒𝑡 = 	 𝑡" − 𝑡!
𝑑𝑒𝑙𝑎𝑦 − 𝑜𝑓𝑓𝑠𝑒𝑡 = 	 𝑡$ − 𝑡#

 (1) 

 
The objective is to minimize time discrepancies between the 
master and slave clocks to within tens of nanoseconds, ensuring 
precise synchronization. By calculating delay and offset, the 
system can maintain long-term consistency between the master 
and slave clocks. 
 

𝑑𝑒𝑙𝑎𝑦 =
(𝑡" − 𝑡!) + (𝑡$ − 𝑡#)

2  (2) 

𝑜𝑓𝑓𝑠𝑒𝑡 =
(𝑡" − 𝑡!) − (𝑡$ − 𝑡#)

2  (3) 

 
3. Methodology 

3.1 Integrated Algorithm 

The proposed core algorithm employs an LC-based fusion 
approach to integrate INS, GNSS, LiDAR, and HD maps, 
specifically designed for FalcoNav.AI. The process begins with 
GNSS, which provides position and velocity data to initialize the 
IMU in both static and dynamic modes. The INS/GNSS 
integration is then refined using an EKF and motion constraints 
to enhance accuracy. Direct Georeferencing (DG) further 
improves precision by transforming IMU data from the body 
frame (b-frame) to the LiDAR frame (l-frame), refining the initial 
estimate for Normal Distribution Transform (NDT) matching and 
improving localization accuracy, as shown in Figure 6. 

 
Figure 6. Flowchart of FalcoNav.AI. 

 
To optimize NDT matching, LiDAR-scanned point clouds 
undergo preprocessing to remove data points that may degrade 
performance. The HD maps is downsampled to meet ROS 
environment constraints, ensuring efficient NDT processing. An 
advanced solution selector then finalizes the filtered solution, 
generating accurate navigation information. 
 
The flowchart outlines the core fusion algorithm, structured into 
two main steps. First, it estimates the filter solution through LC-
INS/GNSS integration within the EGI system, incorporating 
motion constraints. Second, it applies this filtered solution for 
LiDAR-NDT matching using HD maps. The flowchart visually 
represents different components with green for sensing, flesh for 
maps, and blue for localization, highlighting the algorithm’s 
seamless integration into the architecture of FalcoNav and its 
compatibility with advanced autonomous vehicle systems. 
 

3.2 LC-GNSS/INS Integration 

Using an EKF model for INS/GNSS integration generally 
ensures stable results and delivers robust performance across 
various conditions. The EKF state vector consists of 21 states, 
enabling precise estimation of the navigation solution, which is 
expressed as follows: 
 

𝑥% = >𝛿𝑟			𝛿𝑣			𝛿𝜑			𝛿𝑏&			𝛿𝑏'			𝛿𝑠&			𝛿𝑠'D"!×!
)  (4) 

 
where  𝑥% = error state vector at time k 
 𝛿𝑟 = position error state vector 
 𝛿𝑣 = velocity error state vector 
 𝛿𝜑 = altitude error state vector 
 𝛿𝑏& = bias error state vector of accelerometer 
 𝛿𝑏' = bias error state vector of gyroscope 
 𝛿𝑠& = scale factor error state vector of accelerometer 
 𝛿𝑠' = scale factor error state vector of gyroscope 
 
In an integrated navigation system, inertial data integration is 
highly nonlinear, with current states derived from IMU 
observations using mechanization equations. To implement 
INS/GNSS navigation, the system model must be linearized to 
satisfy KF assumptions. The EKF represents this system in a 
discrete-time form, estimating error states 𝛿𝑥  as they evolve 
rather than directly computing navigation states: 
 

𝛿𝑥% =	Φ%*!,%𝛿𝑥%*! +𝑤%*! (5) 
 
where 𝛿𝑥% = estimate errors state at time k 
 Φ%,%*! = state transition matrix from time k-1 to k 
 𝑤% = process noise at time k-1 
 
Most measurement equations in the integrated navigation system 
are nonlinear, such as GNSS and vehicle velocity measurement 
models; thus, it is necessary to linearize the equation, which can 
be expressed as: 
 

𝛿𝑧% = 𝐻%𝛿𝑥% + 𝑣% (6) 
 
where: 𝛿𝑧% = measurements error state vector at time k 
 𝐻% = design matrix of measurements at time k 
 𝑣% = measurements noise at time k 
 
3.3 Motion Constrains 

Motion constraints are essential in navigation systems, 
particularly for ground vehicles where precision and stability 
matter. By leveraging predictable motion patterns governed by 
physical laws, these constraints enhance state estimation 
accuracy. They establish movement rules that serve as reference 
points for correction algorithms, helping to reduce drift in inertial 
navigation systems. 
 
Key motion constraints include Zero Velocity Update (ZUPT), 
which corrects velocity errors during stationary periods; Zero 
Integrated Heading Rate (ZIHR), which mitigates heading drift 
when no rotational motion occurs; and the Non-Holonomic 
Constraint (NHC), which improves path estimation by enforcing 
a vehicle’s non-lateral movement characteristics. These 
constraints enhance accuracy and stability in navigation systems. 
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3.3.1 Zero Velocity Update: ZUPT operates on the principle 
that vehicles undergo stationary periods, such as stopping at 
traffic signals in urban environments. By detecting these 
moments, ZUPT corrects velocity errors by resetting velocity 
estimates to zero, which can reduce error accumulation and 
improving the overall accuracy of the navigation system over 
time effectively. 
 
3.3.2 Zero Integrated Heading Rate: ZIHR leverages 
periods of no rotational movement to minimize heading drift 
which is a common error that accumulates over time. By 
assuming that the heading remains constant during stationary 
phases, ZIHR updates the heading angle using the INS's recorded 
value at the beginning of the static period, which enhance 
navigation accuracy effectively. 
 
3.3.3 Non-Holonomic Constraint: NHC is essential in 
vehicular navigation, reflecting movement limits due to vehicle 
dynamics. Unless airborne or slipping, a vehicle’s lateral velocity 
remains minimal. This constraint is especially relevant for four-
wheeled vehicles which maintain stable attitude angles and 
conservative turning rates.  
 
3.4 Point Cloud Preprocess 

In point cloud preprocessing, LiDAR sensors generate data 
representing object surfaces, but real-world point clouds often 
contain errors. Preprocessing enhances accuracy by filtering out 
noise, aligning the data, and optimizing its structure for more 
effective analysis. 
 
This step enhances data reliability for techniques like NDT and 
other computational tasks. The next sections will explore key 
preprocessing methods, such as error removal, alignment, and 
optimization for diverse applications. Figure 7 illustrates the 
results of point cloud preprocessing. 

 
Figure 7. Point cloud preprocess. (a) Outlier filter; 

(b) ROI filter; (c) Ground point filter; (d) Downsampled filter. 
 

3.4.1 Outlier filter: Outlier filtering in point cloud 
preprocessing removes anomalous points caused by sensor 
inaccuracies, environmental factors, or reflections. These outliers 
introduce noise and errors that affect data quality. By eliminating 
them, preprocessing enhances the accuracy and reliability of the 
point cloud for further analysis and applications. 
 
3.4.2 ROI filter: In LiDAR systems, defining a precise ROI 
mitigates issues like inaccurate laser pulse reflections. Setting 
minimum and maximum range thresholds removes distant, 
sparse, and unreliable points, as well as excessively close ones 
that may cause distortions. This ensures that only relevant and 
reliable points are processed. 
 

3.4.3 Ground point filter: Ground point filtering removes 
ground points from point cloud data to improve obstacle 
detection and clustering accuracy. By focusing on obstacles 
rather than the road surface, it provides a clearer environmental 
representation. This process reduces unnecessary data, simplifies 
analysis, and enhances the detection of critical objects like 
pedestrians and vehicles while improving computational 
efficiency. 
 
3.4.4 Downsampled filer: In ROS environments, where point 
cloud data size is limited, downsampling slightly reduces HD 
maps accuracy but ensures efficient real-time localization. Using 
the float data type helps manage storage while maintaining 
sufficient precision for tasks like NDT matching. The adoption 
of downsampling filtering in this research, applied to both HD 
maps and LiDAR-scanned point cloud data, addresses the 
challenge of managing large datasets in robotics and autonomous 
systems. 
 
3.5 Direct Georeferencing for LiDAR-IMU Calibration 

DG is a mapping and surveying technique that determines a 
sensor’s precise position and orientation relative to the Earth's 
surface. DG integrates GNSS and INS to establish the sensor's 
location and orientation within a uniform reference frame. Figure 
8 illustrates the geometric relationship between navigational 
sensors in this land vehicle system. 

 
Figure 8. HD maps-based calibration architecture. 

 
In LiDAR applications, DG transforms point cloud data from its 
native coordinate system to a mapping coordinate system, 
typically aligned with East-North-Up or North-East-Down 
orientations. Accurate navigation state estimation depends on 
converting LiDAR scan coordinates from the LiDAR frame (l-
frame) to the navigation frame (n-frame). 
 

𝑟,- = 𝑟.- +	𝑅.-𝑟,. (7) 
𝑟/!
- = 𝑟,- + 𝑅.-(𝑅,. × 𝑟/!

, ) (8) 
 
where: 𝑟,- = translation vector from n-frame to l-frame 
 𝑟.- = translation vector from n-frame to b-frame 
 𝑟,. = translation vector from b-frame to l-frame 
 𝑟/!

- = translation vector from n-frame to HD maps 
 𝑟/!

,  = translation vector from l-frame to HD maps 
 𝑅.-= rotation matrix from n-frame to b-frame 
 𝑅,.= rotation matrix from b-frame to l-frame 
 
This process determines lever arms 𝑟,. and boresight angles 𝑅,.. 
Calibration uses a high-definition point cloud map, integrating 
mounting parameters into the georeferencing equation at each 
epoch. 
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3.6 3D-Normal Distribution Transform 

NDT matching methods are divided into Point-to-Distribution 
(P2D-NDT) and Distribution-to-Distribution (D2D-NDT). P2D-
NDT, the more common method, was developed for 2D scans 
and later adapted to 3D. It aligns scan data by matching points 
from the current frame to a reference distribution, enabling 
efficient registration through numerical optimization. 
 
In P2D-NDT, the scanned area is divided into uniform cells. For 
cells containing enough points, the average position and 
covariance matrix are calculated to create a probabilistic model 
that estimates the likelihood of a point’s position. 
 

𝜇 =
1
𝑚M𝑥%

1

%2!

 (9) 

Σ =
1

𝑚 − 1M(�⃑�%

1

%2!

− �⃑�)(�⃑�% − 𝜇)) (10) 

 
where: �⃑�% = scan points contained in the cell 
 𝜇 = mean vector of specific cell 
 Σ = covariance matrix of specific cell 
 
The process creates a Probability Density Function (PDF) for 
each cell to represent the distribution of points within it. This 
PDF models how surface points are generated in the cell. 
Assuming the reference scan points follow a normal distribution, 
the probability of observing a point at a specific position is 
calculated as follows: 
 

𝑝(�⃑�) = expR−
(�⃑� − �⃑�%))Σ*!(�⃑� − 𝜇%)

2 S (11) 

 
where: 𝑝(�⃑�) = �⃑�%’s distribution probability within specific cell 
 
The likelihood of a point belonging to the 𝑘34 cell is determined 
using a Gaussian-based scoring function, contributing to the 
NDT score. The source point cloud is transformed with a pose 
vector �⃑�, and alignment is evaluated by summing the scores of 
all transformed points. Newton's method then optimizes �⃑� 
through an iterative update formula. 
 

𝐻Δ𝑝 = −�⃑�	 (12) 
 
where: 𝐻 = Hessian matrix 
 Δ�⃑� = increment of 𝑝 
 �⃑� = gradient vector of the function 
 

4. Field Testing 

4.1 Experiment Setup 

This study utilizes a ground vehicle to test FalcoNav.AI in 
various scenarios. The equipment setup includes a NovAtel 
PwrPak 7D-E2, iMAR iNAV-RQH-10018, EGI-370, NovAtel 
GPS-703-GGG, and a Velodyne VLP-16, as shown in  Figure 9. 

 
Figure 9. Experiment setup. 

This research compares the LiDAR-centric Autoware algorithm 
with the proposed INS-centric FalcoNav.AI approach, as shows 
in Table 1. By leveraging the characteristics of inertial navigation, 
which is less affected by environment and supports high-
frequency sampling, the proposed method achieves more stable 
localization results across various environments. The equipment 
specifications are provided in Table 2 and Table 3. 
 

 Reference Autoware FalcoNav.AI 
GNSS NovAtel EGI-370 EGI-370 
IMU iMAR EGI-370 EGI-370 

LiDAR  Velodyne Velodyne 
HD maps X V V 

Software Inertial 
Explorer 

Autoware 
Localization 

Module 

Proposed 
Algorithm 

Table 1. Comparison of difference algorithm. 
 

iMAR iNAV-RQH-10018 
Gyroscopes 

Bias instability < 0.002	(𝑑𝑒𝑔/ℎ𝑜𝑢𝑟) 
Angular random walk < 0.0015	(𝑑𝑒𝑔/√ℎ𝑜𝑢𝑟) 

Accelerometers 
Bias instability < 10	(𝜇𝑔) 

Velocity random walk < 8	(𝜇𝑔/√𝐻𝑧) 
Table 2. Specification of iMAR iNAV-RQH-10018. 

 

EGI-370 
Gyroscopes 

Bias instability < 0.8	(𝑑𝑒𝑔/ℎ𝑜𝑢𝑟) 
Angular random walk < 0.06	(𝑑𝑒𝑔/√ℎ𝑜𝑢𝑟) 

Accelerometers 
Bias instability 10	(𝜇𝑔) 

Velocity random walk < 0.25	(𝑠/√ℎ𝑜𝑢𝑟) 
Table 3. Specification of EGI-370. 

 
4.2 Scenario Description 

This study presents two evaluation scenarios, as shown in Figure 
10. The first scenario is located around National Cheng Kung 
University (NCKU) campus in Tainan, Taiwan, where the route 
passes through an underground parking lot which is a GNSS-
denied area. The second scenario is at in Tainan Shalun, where 
GNSS signals are influenced by multipath effects caused by 
roadside trees and buildings. Both scenarios include open sky 
environments and GNSS challenging conditions, assessing the 
feasibility and stability of the proposed algorithm and hardware 
structure. 

 
Figure 10. Experiment routes. 

(a) Around NCKU campus; (b) Tainan Shalun. 

(a) (b)

Open Sky Area

GNSS Challenge

GNSS Denied Area Open Sky Area

GNSS Challenge
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5. Result and Discussion 

5.1 Scenario 1: Around NCKU Campus 

In the analysis of NCKU campus, Autoware algorithm 
experiences a blunder when entering the underground parking lot. 
In contrast, FalcoNav.AI algorithm remains close to the reference 
trajectory. Figure 11 illustrates a trajectory comparison around 
NCKU, which the red trajectory represents the reference, the blue 
trajectory represents Autoware algorithm, and the purple 
trajectory represents FalcoNav.AI algorithm. 

 
Figure 11. Trajectory Comparison around NCKU campus. 

 
Although both the Autoware and proposed algorithms use the 
same point cloud matching method, they differ in how they 
provide the initial guess. Figure 12 focuses on areas of successful 
and failed NDT matching. (a) shows the open sky area around 
NCKU campus, where correct matching occurs due to excellent 
GNSS reception. (b) displays an irregular and unstable trajectory 
caused by GNSS multipath effects from trees and buildings along 
the roadside. (c), Autoware algorithm shows significant error as 
the route enters an underground parking lot, where GNSS 
reception is unavailable. This leads to NDT matching failure due 
to a poor initial guess, with errors ranging from tens to hundreds 
of meters. 

 
Figure 12. Comparison of NDT matching around NCKU 

campus. (a) Matching successfully; (b) (c) Matching failed. 
 

Table 4 presents a comparative analysis of the positioning 
accuracy between Autoware algorithm and FalcoNav.AI, 
especially with the integration of the EGI-370, demonstrates high 
performance. It offers a more accurate initial guess for point 
cloud matching compared to Autoware algorithm, which relies 
on GNSS assistance. FalcoNav.AI achieves high accuracy with 

RMSE of 0.495 meters in horizontal and RMSE of 0.555 meters 
in 3D. 
 

Methods RMSE (m) 
U 2D 3D 

Autoware 7.844 48.399 49.031 
FalcoNav.AI 0.240 0.495 0.550 

Table 4. Localization results around NCKU campus. 
 

5.2 Scenario 2: Tainan Shalun 

In the analysis of the Tainan Shalun area, Autoware algorithm 
experiences noticeable deviations when navigating through many 
roadside trees or buildings area. In contrast, the proposed core 
algorithm maintains a trajectory closely aligned with the 
reference path, demonstrating better localization accuracy. 
Figure 13 illustrates a trajectory comparison around Tainan 
Shalun, with the red trajectory represents the reference, the blue 
trajectory represents Autoware algorithm, and the purple 
trajectory represents FalcoNav.AI algorithm. 

 
Figure 13. Trajectory comparison in Tainan Shalun. 

 
Figure 14 focuses on the performance of NDT matching in both 
successful and challenging areas. In (a), the open sky area in 
Tainan Shalun allows for successful matching due to strong 
GNSS reception, resulting in accurate trajectories for both 
algorithms. In contrast, (b) depicts a route that passes through 
areas with dense roadside trees and surrounding buildings, 
causing GNSS multipath effects that lead to irregular trajectories 
for Autoware algorithm. However, FalcoNav.AI still 
demonstrates a smoother and more stable trajectory, closely 
following the reference path despite the challenging environment. 

 
Figure 14. Comparison of NDT matching in Tainan Shalun. 

(a) Matching successfully; (b) Matching failed. 

l Reference 
l Autoware Localization Module Algorithm
l Proposed Core Algorithm

l Reference 
l Autoware Localization Module Algorithm
l Proposed Core Algorithm

(a) (b) (c)

l Reference 
l Autoware Localization Module Algorithm
l Proposed Core Algorithm

(a) (b)

l Reference 
l Autoware Localization Module Algorithm
l Proposed Core Algorithm
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Table 5 provides a comparative evaluation of the positioning 
accuracy between Autoware and FalcoNav.AI algorithm. The 
results clearly indicate that FalcoNav.AI outperforms Autoware 
algorithm, delivering significantly improved localization 
accuracy. While Autoware algorithm exhibits higher RMSE 
values, particularly in the 2D and 3D dimensions, FalcoNav.AI 
maintains superior performance with minimal errors. Eventually, 
FalcoNav.AI achieves an RMSE of 0.475 meters in 2D, and 
0.501 meters in 3D. 
 

Methods RMSE (m) 
U 2D 3D 

Autoware 4.134 94.783 94.873 
FalcoNav.AI 0.161 0.475 0.501 

Table 5. Localization results in Tainan Shalun. 
 

6. Conclusions 

This study develops FalcoNav.AI, a robust multi-sensor 
navigation system based on INS, integrating GNSS, LiDAR, and 
HD maps to improve accuracy. Unlike the LiDAR-centric 
approach in Autoware, the proposed system uses INS as the core 
sensor, providing high-frequency data unaffected by external 
conditions. This reduces errors common in LiDAR-unfriendly or 
poor GNSS environments. 
 
Testing includes open-sky, GNSS-challenged, and GNSS-denied 
scenarios to evaluate the real-time performance of the custom-
built EGI-370 and the LC-GNSS/INS algorithm. The proposed 
algorithm delivers better accuracy, especially in challenging 
environments like underground parking lots and GNSS multipath 
areas. By using the EGI-370 as the core sensor, it addresses NDT 
matching issues in Autoware and minimizes the impact of weak 
GNSS signals. Test results confirm the system achieves "Where-
in-Lane" level accuracy, demonstrating its reliability and 
robustness in real-world conditions. 
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