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Abstract 
 
Reconstructing dynamic urban scenes from unmanned aerial vehicle (UAV) full-motion videos is a vital task with significant 
applications in urban planning, traffic analysis, and autonomous navigation. However, modeling these scenes is challenging due to 
their large scale and, more importantly, the ever-changing presence of dynamic objects such as vehicles and pedestrians. In recent 
years, emerging neural 3D scene representation approaches have gained popularity for their promising performance in novel view 
synthesis, and several recent works have further explored the potential of modeling large-scale and dynamic scenes. While most 
existing methods focus on indoor or street-level scenes, very little effort has been made to address the unique complexities of dynamic 
urban environments captured by UAVs. To investigate this problem, we apply a recently developed dynamic 3D Gaussian Splatting 
framework that decomposes urban scenes into static and dynamic elements, thereby achieving efficient and accurate modeling. We 
further reduce the need for auxiliary input data, thereby accommodating more general cases in which only video sequences are 
available. Specifically, we propose a pipeline for automatically tracking dynamic vehicles using trajectory optimization to model their 
natural movement, thereby eliminating the dependency on prior knowledge of vehicles — which is often unavailable in real-life 
scenarios. By integrating the dynamic 3D Gaussian Splatting framework with the photogrammetric reconstruction pipeline, our 
pipeline offers scalable and reliable 3D dynamic scene reconstruction. Our pipeline is evaluated on multiple UAV datasets, and the 
results demonstrate the promising quality of scene reconstruction and view synthesis. 
 
 

1. Introduction 

In recent decades, the development of unmanned aerial vehicles 
(UAVs) has facilitated various photogrammetry applications, 
including 3D modelling (Remondino et al., 2011; Xu et al., 2024)  
change detection (Andresen & Schultz-Fellenz, 2023; Xu et al., 
2021), disaster monitoring (Erdelj & Natalizio, 2016), navigation 
(Han et al., 2022, 2024), and urban planning (Erenoglu et al., 
2018; Lu et al., 2024; Muhmad Kamarulzaman et al., 2023), etc. 
Thanks to their high-resolution imaging, low cost, and flexible 
data acquisition capabilities, UAVs are particularly favored for 
constructing large-scale digital twins of urban scenes. The 
conventional photogrammetric reconstruction pipeline starts by 
sampling image frames from a video sequence, followed by 
Structure-from-Motion (SfM) to estimate the camera intrinsic 
and extrinsic parameters. Next, Multi-view Stereo (MVS) is 
performed to generate dense 3D point clouds. Often, the dense 
point cloud is subjected to additional post-processing, such as 
converting the point data into a continuous surface by generating 
a 3D mesh. Finally, the resulting mesh is textured using the 
original image data, thereby enhancing the visual fidelity and 
realism of the reconstructed scene. This traditional pipeline 
yields explicit representations — either point clouds or meshes 
— that are directly applicable to downstream applications. In 
recent years, neural radiance fields (NeRF) (Mildenhall et al., 
2021) have gained popularity due to their promising performance 
in novel view synthesis by implicitly modeling the scene. 
Subsequent studies have extended these approaches to large-
scale urban scenes (Tancik et al., 2022; Turki et al., 2022; Xu et 
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al., 2024). Meanwhile, 3D Gaussian Splatting (3DGS) (Kerbl et 
al., 2023) represents another approach that explicitly models 
scenes as collections of 3D Gaussians, enabling efficient 
rendering. 
 
While most existing efforts have concentrated on modeling static 
scenes, relatively few studies have tackled the challenges of 
dynamic scene modeling. Full-motion videos captured by UAVs 
not only include static objects, such as buildings and roads, but 
also record the movement of dynamic objects, such as vehicles 
and pedestrians. The traditional photogrammetric reconstruction 
pipeline inherently fails to model dynamic objects because they 
do not produce consistent feature correspondences between 
frames, which leads to errors in camera pose estimation and 
ultimately in 3D reconstruction. In the context of NeRF and 
3DGS, several studies have attempted to model dynamic scenes 
by decomposing complex scenes into distinct dynamic and static 
components. However, these approaches are typically tailored to 
indoor and object-level scenes (G. Wu et al., 2024) or street view 
ground sequences (Fischer et al., 2024), while studies on UAV 
datasets remain underexplored. Unlike ground-level data 
collection (Geiger et al., 2012; Han & Yilmaz, 2021, 2022; Liao 
et al., 2023), the perspective and resolution of UAV data present 
additional challenges for modeling moving vehicles, as their 
accurate representation largely depends on the quality of the 
reconstruction of the static environment. The absence of oblique 
views also hinders the rendering of ground scenes, as these 
perspectives typically fall outside the distribution of views 
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encountered during model training. In addition, most existing 
works assume prior knowledge of camera calibration and poses, 
the 3D point clouds of dynamic objects (typically provided by 
LiDAR), and the 3D bounding boxes of these objects. Although 
the availability of auxiliary data can facilitate network training 
and yield realistic novel view synthesis, such prior information is 
often unavailable in real-life scenarios. 
 
In this work, we aim to assess the recently emerged dynamic 
3DGS framework for its feasibility in modeling dynamic urban 
scenes from UAV full-motion videos. We integrate the 
conventional photogrammetric reconstruction pipeline with the 
recent dynamic 3DGS framework to effectively address the 
challenges of dynamic urban scene modeling. We adapt a recent 
approach (Fischer et al., 2024) and propose modifications based 
on it to further enhance dynamic scene modeling on UAV 
datasets without auxiliary data. Specifically, we implement an 
automated pipeline that integrates photogrammetric 
reconstruction for initializing the static scene, monocular depth 
estimation for initializing dynamic objects, object tracking to 
obtain the 3D bounding boxes of dynamic objects across 
consecutive frames, and a dynamic 3DGS framework that takes 
the processed data as input to model the dynamic urban scene. 
The remainder of this paper is structured as follows: Section 2 
presents a comprehensive review of recent works on dynamic 
scene modeling; Section 3 details our proposed pipeline, which 
combines photogrammetric reconstruction with a dynamic 3DGS 
framework; Section 4 presents the experimental results along 
with their analysis; and Section 5 concludes the paper by offering 
our insights into future work. 
 

2. Related Work 

2.1 Scene Representations  

Scene representations lie at the crossroads of computer vision and 
graphics, providing powerful tools for numerous downstream 
tasks including view synthesis (Gao et al., 2024; Mildenhall et 

al., 2021; Müller et al., 2022), SfM (Huang et al., 2022, 2024; 
Moulon et al., 2017; Schonberger & Frahm, 2016; Suh & Ouimet, 
2023), dense matching (Huang & Qin, 2023), and 3D registration 
(Tao et al., 2023; Xu et al., 2023; Xu & Qin, 2024). For decades, 
researchers have tackled this challenge across diverse settings—
including forward-looking scenes (Mildenhall et al., 2021; 
Müller et al., 2022), indoor scenes, street scenes (Tancik et al., 
2022; Xie et al., 2023), UAV scenes (Turki et al., 2022; J. Wu et 
al., 2023; Xu et al., 2024; F. Zhou et al., 2024), and satellite 
scenes (Derksen & Izzo, 2021; Fu et al., 2023; Sariturk et al., 
2023; Wang et al., 2024). Broadly, scene modeling techniques 
fall into two categories: implicit and explicit representations. For 
example, NeRF (Mildenhall et al., 2021) employs an implicit 
approach by using a multilayer perceptron (MLP) that takes a 3D 
location and viewing direction as input to produce appearance 
and opacity values. This method has achieved remarkable 
photorealism on small-scale, indoor datasets. In contrast, the 
recently proposed Gaussian Splatting (Kerbl et al., 2023) adopts 
an explicit strategy by representing scenes as a collection of 3D 
Gaussians, which enables not only faster rendering but also 
superior performance on large-scale outdoor datasets. 
 
2.2 Dynamic Scene Modeling  

Dynamic scene modeling has recently garnered significant 
attention. In implicit approaches, the parametric function is 
augmented to incorporate a temporal dimension (Liu et al., 2023; 
Park et al., 2021; Pumarola et al., 2021). However, achieving 
satisfactory results with these methods typically requires datasets 
that provide multi-view data for each time frame—a requirement 
that is often met only in indoor scenes (Pumarola et al., 2021). 
Conversely, explicit methods capture dynamics by modeling 
particle-level motions, such as scene flow (Li et al., 2021; Xian 
et al., 2021) and by representing the rigid transformations of local 
geometric primitives (Luiten et al., 2024). Traditional methods, 
in contrast, focus on decomposing scenes into high-level 
elements and representing entities along with their spatial 

 
Figure 1. Overview of the proposed pipeline. Beginning with the full-motion aerial video (top-left), the framework performs 2D 

vehicle detection and tracking (top-center) and monocular depth estimation (bottom-center). Their outputs are combined to 
derive refined 3D trajectories (top-right). Meanwhile, structure-from-motion and multi-view stereo (bottom-left) are used to 

generate a dense reconstruction of the static environment. Finally, the static and dynamic components are integrated into a 4D 
dynamic Gaussian representation (bottom-right). 
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relationships through directed graphs (Salas-Moreno et al., 2013; 
Tulsiani et al., 2018). 
 
2.3 Dynamic Urban Scene Modeling  

The modeling of dynamic urban scene presents significant 
challenges due to the large scale of scenes, frequent occlusions, 
and the complex nature of dynamic objects. Some approaches 
require additional depth priors—such as LiDAR—to provide 
supplementary information like camera exposure (Martin-
Brualla et al., 2021; Rematas et al., 2022; Xie et al., 2023). Other 
studies have tackled the problem in ground-level settings by 
decomposing scenes into dynamic and static components and 
modeling each separately (Fischer et al., 2024; X. Zhou et al., 
2024). However, most existing methods rely on datasets from 
autonomous driving, leaving the modeling of dynamic scenes 
from UAV full-motion videos relatively unexplored. Moreover, 
the reliance on auxiliary data such as LiDAR point clouds can be 
burdensome for general users. 
 

3. Methodology 

We present a complete pipeline for reconstructing urban 3D 
environments from a single full-motion video while accurately 
modeling moving objects. As shown in Figure 1, our approach 
integrates scene reconstruction, vehicle tracking, refined depth 
estimation, and 4D Gaussian splatting to deliver a dynamic 
representation of the urban landscape. 
 
3.1 Photogrammetric Reconstruction 

To accurately capture the urban environment, we extract frames 
from the full-motion video at a rate of one frame per second. This 
rate is chosen to balance computational efficiency with the need 
for robust vehicle tracking. The selected frames serve as inputs 
for structure-from-motion (SfM) (Schonberger & Frahm, 2016) 
which estimates camera poses and generates a sparse point cloud 
that captures the essential geometry of the scene. Building on this, 
multi-view stereo (MVS) (Schönberger et al., 2016) is employed 
to create a dense reconstruction, producing a detailed point cloud 
that reflects the intricate structure of the urban landscape. This 
dense point cloud forms the foundational model for the static 
components of the scene and is subsequently used to initialize the 
Gaussian field representation. 
 
3.2 Dynamic Vehicle Tracking 

To reconstruct dynamic vehicles, it is necessary to determine 
each vehicle’s position for every video frame. We begin by 
detecting the two-dimensional trajectory of each vehicle in the 
frames. Next, we back-project these 2D trajectories into three-
dimensional space to obtain their precise spatial locations. 
 
2D Tracking. We first detect vehicles in each video frame using 
a YOLOv8 object detection network (Varghese & M., 2024) 
trained on the VisDrone2018 dataset (Zhu et al., 2022). Then 
DeepSORT is used to link these detections into continuous 2D 
trajectories, filling in any missing data through linear 
interpolation. 
 
3D Tracking. To extend these trajectories into three dimensions, 
we estimate the depth of moving vehicles. Given dense 
reconstruction fails to capture the depth of moving objects, we 
use a monocular depth estimation method, Depth Pro 
(Bochkovskii et al., 2024) to generate approximate depth maps. 
We then refine these estimates by aligning them with depth data 
from the dense reconstruction. RANSAC is used to filter out 

outliers in the process. Finally, we project the 2D trajectories into 
3D space. 
 
Trajectory optimization. Errors in detection, interpolation, and 
depth estimation can lead to inaccuracies in the 3D tracks. To 
address this, we impose a smoothness constraint that reflects the 
natural movement of vehicles. We adjust the vehicle’s 2D centers 
and depths, re-project them into 3D space, and apply cubic spline 
interpolation to produce smooth trajectories. The deviation 
between these refined paths and the original estimates is 
minimized during optimization based on Equation 1: 
 
ℒ = ‖𝑃𝑃(𝑝𝑝2𝐷𝐷 + ∆𝑝𝑝,𝑑𝑑 +  ∆ℎ) − 𝑆𝑆(𝑃𝑃(𝑝𝑝2𝐷𝐷 + ∆𝑝𝑝,𝑑𝑑) + ∆ℎ)‖2 (1) 

 
In the formulation, 𝑝𝑝2𝐷𝐷 and d represent the original 2D center and 
depth, respectively; ∆p and ∆h are the adjustments applied to 
correct detection and depth errors; P(·) re-projects these adjusted 
values into 3D space; and S(·) generates the smoothed trajectory 
via cubic spline interpolation. 
 
3.3 Urban Dynamic Reconstruction 

We deploy a modified 4DGF model to represent the static urban 
scene and dynamic vehicles separately. 
 
Static scene representation. Instead of relying on lidar scans as 
in the original 4DGF, we use the dense point cloud from the 
photogrammetry stage to initialize the Gaussians. Each Gaussian 
is parameterized by its position, scale, and spherical harmonics. 
A neural network is used to predict spherical harmonics instead 

Dataset PSNR SSIM LPIPS 
Campus region 25.93 0.84 0.13 
Night crossroad 24.62 0.71 0.21 
Viaduct region 27.88 0.90 0.11 

Table 1. Statistical results of reconstruction quality for the 
three datasets. 

 

 
Figure 2. Overview of the dataset. Left: Sample image. 

Right: Sparse reconstruction results. 
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of storing them explicitly, thereby reducing memory usage for 
large-scale reconstructions. 
 
Dynamic vehicle representation. Each vehicle is modeled in a 
canonical space defined by its length, width, and height. We 
reconstruct the 3D shape of each vehicle by projecting its 2D 
pixels into 3D space, and then PCA is used to determine its 
dimensions. The resulting 3D points serve as the initial positions 
for the Gaussians representing the vehicles. 
 
Rendering. Each vehicle is transformed from its canonical space 
back into the original 3D scene based on the center position 
estimated in each frame. The vehicle’s orientation is computed 
using its 3D tracking forward direction and further refined with a 
learnable adjustment. Finally, the static scene and dynamic 
vehicles are merged, and the Gaussians are optimized by 
minimizing the difference between the rendered image and the 
corresponding video frame as shown in Equation 2: 
 

ℒ = 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟ℒ𝑟𝑟𝑟𝑟𝑟𝑟�𝐼𝐼, 𝐼𝐼� + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐼𝐼, 𝐼𝐼� (2) 
 

where ℒ𝑟𝑟𝑟𝑟𝑟𝑟  is the 𝐿𝐿1  norm measuring pixel-wise differences 
between the rendered image 𝐼𝐼 and the ground truth image I, and 
𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the structural similarity index measure. 
 

4. Experimental Results 

4.1 Datasets and Metrics 

We evaluate our pipeline using three distinct UAV full-motion 
videos, as shown in Figure 2. The first video shows a campus area 

from a top-down perspective (Ground Sample Distance = 0.04 
m), the second captures a viaduct region transitioning from top-
down to a side view (GSD = 0.05m), and the third depicts a night-
time crossroad from a similar vantage (GSD = 0.07m). We assess 
the quality of our rendered images using standard metrics PSNR, 
SSIM (Hore & Ziou, 2010) and LPIPS (Zhang et al., 2018), 
following the protocol of (Fischer et al., 2024).  
 
4.2 Implementation Details 

Sparse and dense reconstructions are performed using COLMAP 
(Schonberger & Frahm, 2016) to generate the camera pose and 

 
Figure 3. Visual comparison between original views and 

rendered views using the same camera poses. The 
rendering quality is promising for both static scenes 

(buildings) and dynamic scenes (moving vehicles) outlined 
in red rectangles. 

 
Figure 4. Novel oblique viewpoint synthesized from the 
top-down campus dataset, highlighting structural details 
such as building facades and vehicle contours that are 

difficult to observe from the original perspective. 

 
Figure 5. A stationary and global viewpoint synthesized 

from the viaduct footage, revealing moving vehicles more 
clearly and showcasing the effectiveness of the proposed 

pipeline. 
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dense point cloud as the initial of the Gaussians. For 2D vehicle 
tracking, we employ a pre-trained DeepSORT model. In the 
dynamic reconstruction rendering stage, λrgb and λssim are set 
to 0.8 and 0.2, respectively.  
 
4.3 Results 

To evaluate our pipeline, we render the same viewpoints as those 
in the original UAV videos and compare the reconstructed 
images with the ground-truth frames. As summarized in Table 1, 
our pipeline performs consistently well across the three datasets, 
achieving high PSNR and SSIM values alongside low LPIPS 
scores, consistent with the original performance of 4DGF on the 
street scenes. Figure 3 presents a visual comparison of the 
campus dataset, showcasing the strong alignment between 
rendered images and real-world views. Notably, dynamic objects 
are well-aligned with the original images, highlighting the 
accuracy of our vehicle tracking in detecting vehicle locations in 
each frame. These observations prove the quantitative metrics 
reported in Table 1. 
 
To demonstrate the flexibility of our approach, we generate novel 
view videos in which the angles were not part of the original input. 
Figure 4 shows a tilted viewpoint of the campus region, exposing 
side details of buildings and vehicles that remain hidden in the 
original top-down shots. However, the rendered image exhibits 
slightly lower quality than the original view due to the Gaussian 
color being predicted based on the viewpoint angle. Since the 
original view lacks this perspective data, rendering from a new 
angle results in moderate quality degradation. Figure 5 compares 
the original viaduct footage — which captures only partial views 
of the scene — to frames rendered from a stationary, global 
perspective that provides a broader field of view and a clearer 
depiction of overall dynamic changes. This vantage may prove 
advantageous for transportation analyses by enabling a more 
comprehensive understanding of vehicle motion. Notably, some 
noisy Gaussians appear along the edges of the rendered videos, 
arising from missing data in regions beyond the coverage of the 
original full-motion video. Lastly, Figure 6 highlights our 
pipeline’s robustness in a nighttime crossroad scenario, where it 
accurately depicts multiple vehicles—including turning ones—

even in low-light conditions. This demonstrates the adaptability 
and reliability of our pipeline across diverse urban environments. 
 

5. Conclusion 

In this work, we assess the feasibility of the recently developed 
dynamic 3DGS framework for modeling dynamic urban scenes 
from UAV full-motion videos. We apply a pipeline that 
incorporates both a photogrammetric reconstruction framework 
and a recent dynamic 3DGS framework to model dynamic urban 
scenes from UAV full-motion videos. We propose several 
modules that derive the necessary information for the dynamic 
3DGS framework directly from video data, thereby eliminating 
the need for auxiliary data, which is often unavailable to typical 
users. Our proposed pipeline is evaluated on multiple UAV 
datasets, and the qualitative and quantitative results demonstrate 
its effectiveness. This indicates the potential of our pipeline for 
broader applications by scaling up scene sizes and 
accommodating more complex scenarios. Future work could 
focus on improving the tracking of moving objects across frames 
to achieve smoother and more realistic rendering in synthetic 
videos. In addition, improving the rendering quality of different 
angles by incorporating the recent diffusion models is also worth 
exploring.  
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