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Abstract 
 
Nowadays, unmanned aerial vehicles (UAVs) are widely used in various photogrammetric applications to collect high-resolution 
images for 3D reconstruction. Modern photogrammetric reconstruction often employs Structure-from-Motion (SfM) and Multi-View 
Stereo (MVS) to generate dense 3D point clouds from unordered image sets. Estimating the uncertainty of 3D point clouds is crucial, 
as it predicts error covariance matrices and indicates the reliability of the reconstructed point clouds. Despite its importance, little effort 
has been made to model uncertainty, particularly during the MVS stage, and to rigorously propagate uncertainties through the 
photogrammetric reconstruction process to the final 3D point clouds, leading to improper interpretation of their quality. Recent works 
on disparity uncertainty estimation also focus solely on stereo matching, ignoring the rich information provided by the MVS framework.  
In this work, we propose a novel method for estimating metric uncertainty in UAV imagery-derived 3D point clouds using error 
propagation. Specifically, we leverage multi-ray points from the MVS framework to map dense matching costs to metric disparity 
uncertainty. Our method requires no training data, making it generalizable to various UAV datasets. We evaluate our method on public 
and self-collected UAV datasets, and the results demonstrate that it outperforms existing approaches in terms of bounding rate. 
 
 

1. Introduction 

With the rapid advancement of unmanned aerial vehicles (UAVs) 
over the past decades, an increasing number of photogrammetry 
applications now utilize UAVs for tasks such as 3D modeling 
(Remondino et al., 2011; Xu et al.; Zhou et al., 2021), change 
detection (Andresen and Schultz-Fellenz, 2023; Xu et al., 2021), 
navigation (Han et al., 2024; Han et al., 2022; Lu et al., 2018), 
urban planning (Erenoglu et al., 2018; Kaya et al., 2023; Lu et al., 
2023; Muhmad Kamarulzaman et al., 2023), agricultural 
monitoring (Liu et al., 2024; Marwah et al., 2023; Sahoo et al., 
2023; Su et al., 2023), disaster monitoring (Erdelj and Natalizio, 
2016; Wang et al., 2023), resource allocation (Lu et al., 2024; Xu 
et al., 2018), etc. UAVs are particularly favored in 
photogrammetric reconstruction due to their low cost, flexibility, 
and ability to capture high-resolution images. As shown in Figure 
1, UAVs typically follow grid-like patterns when capturing 
images for 3D reconstruction. This approach ensures sufficient 
overlap for tie-point generation and provides greater redundancy 
in Bundle Adjustment (BA), which is crucial for achieving high 
reconstruction accuracy (Huang et al., 2022a; Huang et al., 2024). 
However, unlike other 3D reconstruction methods, such as 
airborne LiDAR (Chang et al., 2023; Elaksher et al., 2023), the 
accuracy of photogrammetric reconstruction is highly dependent 
on the scene. The accuracy of photogrammetric reconstruction 
can typically be assessed if ground truth (GT) reference data is 
available, such as ground control points (GCPs) (Martínez-
Carricondo et al., 2018) or LiDAR-derived point clouds (Huang 
et al., 2022b; Wallace et al., 2016). In the research community, 
such GT data is often provided for evaluation. However, in real-
world scenarios, data collection typically does not include a 
ground truthing step. Regardless of the availability of GT data, it 
is essential to understand the reliability of 3D point clouds, as it 
affects downstream data exploitation and analysis (Dolloff et al., 
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2024). Uncertainty estimation offers a comprehensive 
assessment of the quality and reliability of 3D point clouds by 
estimating and propagating uncertainty through each stage of the 
reconstruction process. The result of uncertainty estimation is a 
3×3 covariance matrix for each 3D point in the final 
reconstruction, representing a general-shaped ellipsoid that 
indicates the potential error range in the 3D space, as shown in 
Figure 1. Two major sources of error arise from photogrammetric 
reconstruction, contributing to the uncertainty of 3D point clouds 
derived from images, particularly in the SfM and MVS stages. 
SfM estimates camera calibration, poses, and sparse point clouds, 
while MVS performs pairwise dense image matching and fuses 
the results to generate the final dense point clouds. Uncertainty 
estimation in the SfM stage has been well studied and 
standardized through BA using the Gauss-Markov Theorem 

 
Figure 1 Data collection using UAVs and the resulting 3D 
point clouds. The uncertainty of each 3D point via error 
propagation is represented as a general-shaped ellipsoid. 
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(Thompson et al., 1966). However, the modeling of uncertainty 
in the MVS stage, as well as the rigorous propagation of these 
two error sources, remains underexplored. Previous works either 
omit modeling the uncertainty of the MVS stage or simply assign 
a fixed value, leading to unreasonable results and hindering the 
accurate interpretation of 3D point cloud quality. In recent years, 
a few efforts have been made to model disparity uncertainty. 
However, these approaches are primarily within the context of 
stereo matching, completely neglecting the valuable information 
provided by the MVS framework. Given that UAV datasets 
produce sufficient image overlap, this information could offer 
deeper insights into disparity uncertainty and, consequently, the 
uncertainty of the MVS stage. Thus, current approaches do not 
fully reflect the true quality of 3D point clouds, hindering the 
development of downstream data exploitation and analysis. 
 
In this work, we present a novel method for estimating the 
uncertainty of UAV imagery-derived 3D point clouds through 
rigorous error propagation. The uncertainties of the SfM and 
MVS stages are estimated separately and propagated to the 3×3 
covariance matrix of each 3D point in the final product. 
Specifically, we leverage multi-ray points from the MVS 
framework to estimate disparity uncertainty by mapping the 
matching cost (energy). Our method does not rely on training 
data, making it generalizable to various UAV datasets with 
sufficient overlap. We evaluate our method on both public and 
self-collected UAV datasets, comparing it with existing 
approaches. The results demonstrate that our method 
outperforms existing approaches in terms of bounding rates. The 
remainder of this paper is organized as follows: Section 2 reviews 
recent efforts in the research community, Section 3 presents our 
method for uncertainty estimation via error propagation, Section 
4 provides a comprehensive evaluation, and Section 5 concludes 
with insights for future work. 
 

2.  Related Work 

2.1 Structure-from-Motion 

SfM is the process of recovering the 3D scene structure from a 
set of 2D images captured from different viewpoints of the scene. 
Most SfM approaches begin with feature extraction and 
matching, which can be either hand-crafted (Bay et al., 2008; 
Lowe, 2004) or learning-based (DeTone et al., 2018; 
Lindenberger et al., 2023; Sarlin et al., 2020). Geometric 
verification is then performed to filter out mismatched 
correspondences (Hartley and Zisserman, 2003). In incremental 
SfM approaches, which are widely used in photogrammetry 
applications, the 3D model is initialized with a two-view 
reconstruction from a carefully selected image pair (Beder and 
Steffen, 2006) and is gradually expanded by registering new 
cameras using PnP algorithms (Fischler and Bolles, 1981) and 
triangulating additional 3D points. BA is performed throughout 
the process to refine the reconstruction. Despite the critical role 
of camera calibration in SfM accuracy, most users only have 
access to manufacturer-provided calibration parameters or may 
even lack knowledge of these parameters altogether, while 
resources for rigorous camera calibration under laboratory 
conditions are scarce. Therefore, in recent SfM systems (Huang 
et al., 2024; Schonberger and Frahm, 2016), camera calibration 
is heuristically initialized if prior information is unavailable, and 
the camera’s intrinsic parameters are updated during BA through 
self-calibration. 
 

2.2 Multi-View Stereo 

Given a set of oriented images with overlaps from SfM, MVS 
performs stereo matching for each image pair and fuses the 
pairwise dense depth maps while enforcing multi-view 
consistency to generate the final dense 3D point cloud (Hartley 
and Zisserman, 2003). The work in (Seitz et al., 2006) introduces 
a taxonomy of multi-view stereo algorithms, categorizing them 
into four types: voxel-based methods, surface evolution-based 
methods, feature point growing-based methods, and depth-map 
fusion-based methods. Recent MVS frameworks and software 
(Cernea, 2020; Huang et al., 2022b; Remondino et al., 2022; Xu 
and Qin, 2024) predominantly adopt depth-map fusion-based 
methods due to their advantages in achieving finer geometry and 
better scalability. This type of approach typically employs either 
patch-based stereo matching (Barnes et al., 2009; Shen, 2013) or 
semi-global matching (SGM) (Hirschmuller, 2005, 2007) 
algorithms. Regardless of the differences in implementation, they 
all produce similar intermediate results, such as disparity maps 
and matching cost (energy) maps.  
 
2.3 Uncertainty of Point Clouds 

The National Geospatial-Intelligence Agency (NGA) proposed a 
community framework to model and store the uncertainty of each 
3D point using the first-order statistics, called the Generic Point-
cloud Model (GPM) (NGA, 2015). According to the official 
document, the sources of error primarily include sensor model 
errors, measurement errors, and unmodeled errors, as shown in 
Figure 2. Sensor model errors refer to the uncertainty in camera 
calibration and pose, which is carried out by BA in SfM. 
Measurement errors originally arise from an analyst’s ability to 
manually pick a point of interest. However, in the context of 
modern photogrammetry, where the reconstruction is automated 
through computer programs, measurement errors refer to errors 
in the dense image matching algorithm. Unmodeled errors 
consist of errors that cannot be practically characterized and are 
thus outside the scope of existing works. 
 
While sensor model errors are well-studied and standardized in 
the literature through BA (Thompson et al., 1966), measurement 
errors remain largely underexplored. The process of stereo 
matching involves finding corresponding image points between 
two stereo images, which mimics the manual human 
measurement process. As a result, the disparity uncertainty can 
be propagated to the uncertainty of the final 3D point clouds. 

 
Figure 2 Overview of error propagation. In this work, we 
focus on the error propagation of sensor model errors and 

measurement errors. 
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Most existing works estimate the disparity uncertainty as a scalar 
between 0 and 1 (Hu and Mordohai, 2012; Veld et al., 2018), 
which lacks any actual unit and is not applicable for error 
propagation. In practice, it is typically assigned a fixed value, 
e.g., 2 pixels, which cannot comprehensively capture the varying 
uncertainty caused by different scenes. The series of works 
(Kuhn, 2014; Kuhn et al., 2017; Kuhn et al., 2014) introduce a 
novel perspective on disparity uncertainty estimation by 
leveraging the inherent properties so-called ”total variation” 
(TV) of disparity maps. TV characterizes the local frequency 
around a pixel and assigns each pixel a class, which is then 
mapped to different disparity uncertainties in pixel units. It offers 
the advantages of being metric-based and applicable for error 
propagation. However, mapping TV classes to disparity 
uncertainties requires training data, which may exhibit 
significant domain differences from the actual processed data, 
leading to performance degradation. The derivation of TV is 
designed specifically for stereo matching, while valuable 
information from the MVS framework is overlooked even if 
UAV data typically has sufficient overlaps. On the contrary, our 
method eliminates the need for training data and utilizes multi-
ray points from the MVS framework to self-calibrate disparity 
uncertainty. 
 

3. Methodology 

Figure 3 illustrates the pipeline for uncertainty estimation of 
UAV imagery-derived point clouds through error propagation. 
Specifically, we propose a novel method for estimating disparity 
uncertainty, built upon our preliminary study of reliable 
indicators of point cloud accuracy from the MVS framework 
(Huang and Qin, 2023). The results of preliminary study provide 
two key insights into the estimation of disparity uncertainty: 1) 
multi-ray (n ≥ 6) points are more robust and stable in terms of 
accuracy. 2) dense image matching cost (or energy) is highly 
correlated with the accuracy of the final 3D points. 
 
Our pipeline begins with the computation of sensor model errors, 
which are calculated using the Gauss-Markov theorem through 
BA in the SfM stage. Next, we perform a depth-map fusion-based 
MVS algorithm, which applies SGM to find dense 
correspondences between each stereo pair, resulting in disparity 
maps and, subsequently, depth maps. The dense image matching 
cost (energy) maps are retained as intermediate results, where the 
cost is formulated as the following equation:  
 

𝐸𝐸 = ��𝐶𝐶�𝑝𝑝,𝐷𝐷𝑝𝑝� + 𝜆𝜆 � 𝑆𝑆�𝐷𝐷𝑝𝑝,𝐷𝐷𝑞𝑞�
𝑞𝑞∈𝑁𝑁𝑝𝑝

�
𝑝𝑝

 (1) 

 
where 𝐶𝐶 is the matching cost (energy) for pixel 𝑝𝑝 associated with 
disparity value 𝐷𝐷𝑝𝑝 , and 𝑆𝑆()  computes the smoothness of the 
neighborhood 𝑁𝑁𝑝𝑝  surrounding pixel 𝑝𝑝. The ratio between the cost 
term and the smoothness term is controlled by the coefficient 𝜆𝜆. 
For the reference view, each stereo pair formed by the reference 
image and one of the source images produces a depth map, which 
is then fed into the multi-view fusion process. A 3D point is 
generated only if it has a depth value in at least two depth maps, 
meaning it is visible from at least three views. The coordinates of 
the 3D point are the result of median filtering applied to all the 
available depth maps. As a result, when reprojecting the final 3D 
point back to each stereo pair, the reprojected pixel may differ 
from the dense correspondences found by the SGM algorithm. 
 
Based on our previous findings (Huang and Qin, 2023), we select 
a subset of 3D points that are visible in at least six views and 
compute the reprojection errors of these points for each stereo 
pair. For each stereo pair, the joint distribution of dense image 
matching cost (energy) and reprojection errors of these multi-ray 
points is then established. These pixels are categorized into 
groups based on matching cost ranges, within which the standard 
deviation of projection errors is calculated to determine the 
disparity uncertainty for each group of pixels: 
 

𝑓𝑓:𝐸𝐸𝚤𝚤� ⟼ 𝜎𝜎𝑖𝑖 (2) 
 

where 𝐸𝐸𝚤𝚤�   represents the mean matching cost of the pixels in 
group 𝑖𝑖. 𝜎𝜎𝑖𝑖  denotes the standard deviation of reprojection errors 
for the pixels in group 𝑖𝑖 , which is equivalent to disparity 
uncertainty. 𝑓𝑓 defines the mapping between matching cost and 
disparity uncertainty. To estimate the disparity uncertainty for the 
entire disparity map, each pixel is iterated through, and its 
matching cost is used to map to the disparity uncertainty using 
the closest group.  
 
Once the disparity uncertainty is obtained for each stereo pair, 
constituting the measurement errors in the MVS stage, our 
pipeline proceeds with propagating both sensor model errors and 
measurement errors to the final 3D point clouds. We follow the 
protocol in GPM to estimate the uncertainty of the 3D point 
clouds: 

 
Figure 3 Overview of the pipeline. Our method leverages multi-ray points within the MVS framework to calibrate the magnitude 

of disparity uncertainty. The final results of error propagation can then be visualized as general-shaped ellipsoids. 
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Σ𝑔𝑔 = (𝐵𝐵𝑋𝑋𝑇𝑇(Σ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + Σ𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚)−1𝐵𝐵𝑋𝑋)−1 (3) 

 
where Σ𝑔𝑔 is a 3 ∗ 3 covariance matrix of a 3D point, 𝐵𝐵𝑋𝑋  is a 2N ∗ 
3 Jacobian matrix of 2D pixels w.r.t 3D point modeled by the 
projection function, Σ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and Σ𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚  are 2N ∗ 2N 
covariance matrices from sensor model errors and measurement 
errors. Eq. 3 propagates the uncertainty from SfM and MVS in 
pixel unit to the uncertainty of 3D point clouds in meter unit.  
 

4.  Experimental Results 

In this section, we present the details of the experiments and 
provide an analysis of the results. 
 
4.1 Dataset 

We conduct experiments to evaluate the performance of our 
uncertainty estimation method using two UAV datasets: the 
publicly available UseGeo datasets (Nex et al., 2024; Nex et al., 
2023) and the self-collected OSU campus datasets. Figure 4 
shows the overview of the two datasets. The UseGeo dataset 
contains approximately 200–300 images for each testing site, 
with LiDAR point clouds available as reference data. All images 
are captured at nadir angles. We select a subset of images from 
one site for our evaluation. The OSU campus dataset consists of 
approximately 100 images captured at both nadir and oblique 
angles. A subset of images capturing the main building is selected 
for evaluation. 
 

4.2 Evaluation Setup 

We select the confidence-based method (Veld et al., 2018) and 
the TV-based method (Kuhn et al., 2017) as baselines for 
comparison. The former is a representative method of confidence 
based approaches, leveraging the properties of the cost curve to 
predict the quality of stereo matching as a scalar between 0 and 
1. The latter is a representative metric-based approach, as 
discussed in Section 2.3. 
 
The experiments are conducted by running the photogrammetric 
reconstruction pipeline, as shown in Figure 3. The dense 3D point 
clouds are aligned to the LiDAR point clouds using the iterative 
closest point (ICP) algorithm (Besl and McKay, 1992; Xu et al., 
2023). The actual error of each 3D point is measured as the 
distance between the point and a plane fitted to its six nearest 
neighbors in the LiDAR point cloud. To evaluate the 
performance of error propagation, we use the bounding rate as 
the evaluation metric, as depicted in Figure 5. Since the 
correspondences between the dense 3D point clouds and LiDAR 
point clouds are unknown, the bounding rate is defined as the 
percentage of 3D points whose actual error is smaller than the 
predicted uncertainty, which is represented by the norm of the 
covariance matrix. It is formulated as the following equation: 
 

𝜌𝜌 =
𝑁𝑁𝑏𝑏𝑠𝑠𝑚𝑚𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏
𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎

(4) 

 
where 𝑁𝑁𝑏𝑏𝑠𝑠𝑚𝑚𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏  is the number of 3D points which are bounded 
by the predicted uncertainty, 𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎  is the total number of 3D points. 
 
4.3 Results and Analysis 

UseGeo. Table 1 presents the statistical results of the evaluation 
on the UseGeo datasets. It can be seen that the confidence based 
method is not applicable for error propagation, as it produces a 
non-metric scalar. Our proposed method achieves a higher 
bounding rate than the TV-based method, thanks to its self-
supervised nature and ability to leverage valuable information 
from the MVS framework. The UseGeo dataset features a high 
overlap during data collection (approximately 80%), providing 
sufficient multi-ray points to establish the mapping between 

 
Figure 4 Overview of datasets. Left: Sample image. Right: Sparse reconstruction results. 

 

 

 
Figure 5 Illustration of the bounding rate. A point is 

considered bounded if its ground truth counterpart lies 
within the ellipsoid defined by the predicted covariance 

matrix.  
 

 

Method Bounding rate ↑ 
Confidence-based N/A 

TV-based 61% 
Ours 67% 

Table 1 Quantitative evaluation of uncertainty estimation 
for 3D point clouds.  

 
 

 1x 2x 3x 
Bounding rate ↑ 67% 83% 91% 
Table 2 Bounding rates with respect to different scaling 

factors of the predicted uncertainty. 
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dense image matching cost (energy) and disparity uncertainty. 
On the contrary, the TV-based method is largely constrained by 
the domain gap between its training dataset and the UseGeo 
dataset. The training dataset consists of a single indoor dataset 
collected in a lab setting, whereas the UseGeo dataset comprises 
outdoor UAV imagery. 
 
We further scale the predicted uncertainty obtained using our 
proposed method by factors of 2 and 3. As shown in Table 2, this 
significantly enhances the bounding rate performance. It should 
be noted that there is a trade-off between the bounding rate and 
the meaningfulness of uncertainty estimation. A high bounding 
rate can be achieved by scaling up the predicted uncertainty; 
however, this leads to overestimation, making the values less 
informative about the actual quality of the 3D points. 
 
The qualitative results of our method are depicted in Figure 6. It 
can be seen that facade regions and trees exhibit significantly 
higher uncertainty due to limited coverage in nadir images, 
occlusions, and the presence of thin structures, which are 
represented by larger (red) ellipsoids in the visualization. On the 
contrary, the roofs and ground regions exhibit lower uncertainty 
due to the presence of more distinct textures, which facilitate 
dense image matching and consequently result in lower 
measurement errors. In the visualization, this is represented by 
smaller (Cyan) ellipsoids.  
 
OSU Campus. Additionally, we perform error propagation using 
our method on a self-collected UAV dataset of the OSU campus. 
Figure 7 presents the visualization results for the building facades 
and skybridge. The ellipsoids in these regions are significantly 
larger than those on the ground, indicating higher uncertainty due 
to the camera angle. Even though oblique images were captured 
during data collection, the lower half of the building facade 
remains farther from the UAV camera, while occlusions occur 

beneath the skybridge. We also observe that the dominant 
orientation of the ellipsoids aligns with the camera viewing 
angles: in the UseGeo dataset, where all images are captured at 
nadir angles, the ellipsoids are predominantly vertical, whereas 
in the OSU campus dataset, they tilt to coincide with the camera 
angles of the oblique images.  
 
The experimental results demonstrate that our proposed method 
outperforms existing approaches in terms of bounding rate. It is 
also effective at capturing regions that potentially exhibit higher 
uncertainty. Additionally, our method accurately reflects the 
dominant direction of uncertainty, as the ellipsoids align with the 
direction of ray intersection.  
 

5.  Conclusion 

In this paper, we introduce a novel method for estimating 
uncertainty that leverages the rich information available from the 
MVS setup in UAV imagery. Our proposed method offers the 
advantages of predicting metric uncertainty and being self-
supervised, making it adaptable to existing MVS algorithms and 
various UAV datasets. The evaluation results on both public and 
self-collected UAV datasets demonstrate that our method 
achieves better performance in bounding rates and accurately 
reflects the uncertainty based on the scene and camera setup. The 
proposed uncertainty estimation method can facilitate various 
downstream applications in photogrammetry, such as weighted 
point cloud fusion and salient point detection. Future work could 
focus on evaluating disparity uncertainty using suitable datasets. 
Additionally, the full covariance matrix could be assessed if a 
ground truth dataset with known correspondences is available. 

 
Figure 6 Visualization of the estimated uncertainty in 3D 

point clouds from the UseGeo dataset. First row: 
photogrammetric point clouds. Second row: estimated 
uncertainty of 3D point clouds. Third row: uncertainty 

visualization in ellipsoids. 
 

 

 
Figure 7 Visualization of the estimated uncertainty in 3D 
point clouds from the OSU campus dataset. First row: 

photogrammetric point clouds. Second row: uncertainty 
visualization in ellipsoids. 
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