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Abstract: 

The ICESat-2, the satellite-borne photon-counting laser altimeter, has a wide range of applications. However, the data collected by 

ICESat-2 are often affected by high levels of noise photons. Therefore, the removal of this noise is a crucial step in processing the 

ICESat-2 data further. This paper proposes a novel noise removal method based on adaptive terrain slope calculation to address this 

issue. The method takes advantage of the distinct density distribution differences between signal and noise photons in the vertical 

dimension. By analyzing filtering windows, the algorithm identifies areas with high-density, low-elevation photons and creates a 

50-meter elevation buffer around these points to filter out noise photons that are far from the signal clusters. The Douglas-Peucker

algorithm is then used to merge data segments with similar slopes, enabling the adaptive calculation of terrain slopes within local

photon regions. Furthermore, clustering based on elliptical density along the primary terrain slope direction is applied to remove

discrete noise photons that are in close proximity to signal photons. Lastly, the Local Outlier Factor algorithm is utilized to eliminate

residual noise photons located below ground level, in aerial regions, and near tree canopies, effectively separating noise photons from

signal photons. To evaluate the effectiveness of the proposed method, experimental data sets from two regions with different

geographical characteristics in the United States are selected for testing. The results show an average improvement in F1-score of

about 4.6% in gentle terrains and 9.5% in rugged terrains, highlighting the method's superior accuracy and efficiency compared to

traditional denoising algorithms.

* Corresponding author 

1. Introduction

The Advanced Topographic Laser Altimeter System (ATLAS), 

which is installed on ICESat-2, is known for its low energy 

consumption, high detection sensitivity, and high repetition 

rates. The data collected by ATLAS has been extensively used 

in various ecological research fields, such as monitoring polar 

ice sheets, tracking lake water levels, mapping bathymetry in 

shallow waters, estimating forest canopy heights, and assessing 

biomass carbon stocks (Narine et al., 2019; Yuan et al., 2020; 

Hsu et al., 2021). However, due to the weak signals transmitted 

and received by the system, factors like atmospheric scattering, 

solar radiation, and instrumental interferences introduce 

significant background noise into the recorded point clouds. 

This noise complicates the accurate identification of signal 

photons, making effective denoising of photon point clouds 

essential in processing photon-counting LiDAR data (Zhu et al., 

2020). 

Current research on denoising photon point clouds can be 

broadly categorized into three groups: denoising algorithms 

based on grid image processing, where methods like those used 

by Magruder et al. (2012) convert profile photon points into 

two-dimensional images and apply image processing techniques 

to filter out noise points. Chen et al. (2015) employs the classic 

active contours method to grid image and applies the 

Chan-Vese segmentation model to detect potential signal 

photons. 

Denoising algorithms that rely on local statistical parameters, 

such as the approach by Wang et al. (2016) that uses K-nearest 

neighbors' probability distribution function to calculate 

distances for each photon point. Hereafter, he employs Bayesian 

decision-making for denoising. Xia et al. (2014a) introduces a 

denoising algorithm based on local distance statistics and 

applies least squares fitting to determine local curve parameters, 

achieving satisfied overall accuracy. Zhu et al. (2018) devises a 

noise photons filtering algorithm based on local statistics with 

adaptive threshold determination. 

Denoising methods based on density-based spatial clustering 

like the one by Zhang and Kerekes(2014) improves the 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm by transitioning from a circular search 

shape to an elliptical one. Similarly, Zhu et al. (2021) use 

OPTICS for clustering and sorting to identify structures and 

remove noisy photons. He et al. (2023) revise a density 

clustering algorithm with an adaptive mountain slope, achieving 

better adaptation in forested areas with complex topography. 
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Additionally, with the increasing use of machine learning in 

data processing, scholars like Lu et al. (2021) have utilized 

convolutional neural networks for point cloud denoising and 

classification. Chen et al. (2020) propose a machine 

learning-based method for detecting potential signal photons 

from photon-counting LiDAR data. 

 

While these denoising algorithms are effective in removing 

noise, there are still unresolved issues. For instance, grid-based 

image processing algorithms may result in information loss; 

algorithms based on local statistical parameters rely heavily on 

threshold selection; density-based spatial clustering algorithms 

are sensitive to terrain variations and parameter settings; and 

machine learning-based algorithms are influenced by training 

samples. 

 

To address these challenges related to terrain slope variations, 

point cloud density, and parameter sensitivities, this paper 

proposes a novel terrain slope adaptive denoising algorithm for 

ICESat-2 LiDAR point clouds. This method involves adapting 

the primary slope direction to determine optimal clustering 

parameters for denoising and subsequently conducting precision 

validation. 

 

2. Methodology 

In this methodology, to streamline subsequent data processing, 

we capitalize on the significant disparity in density distribution 

between signal and noise photon points along the vertical axis. 

Initially, small windows are established to identify photon 

points with high density and low elevation. An elevation buffer 

zone extending 50 meters above and below the identified 

photon points is then created to eliminate obvious noise points. 

Figure 1 showcases the original photon point cloud profile and 

the results of the initial denoising process. Subsequently, the 

Douglas-Peucker algorithm is utilized to merge data segments 

with comparable slopes, facilitating the adaptive calculation of 

photon point slopes. Next, employing the predominant slope 

direction, we conduct density-based clustering within elliptical 

neighborhoods to remove a majority of noise points. Finally, the 

Local Outlier Factor (LOF) algorithm is employed to eliminate 

residual noise below ground level, in aerial regions, and near 

canopy surfaces, effectively segregating noise photons from 

signal photons. This methodology encompasses three primary 

steps: slope adaptive calculation based on the Douglas-Peucker 

algorithm, density-based clustering with adaptive determination 

of the dominant slope direction, and residual noise removal 

using the LOF algorithm. 

 

 
(a) 

 
(b) 

Figure 1. Initial denoising with elevation buffer. (a) the original 

photon point cloud profile. (b) the results of the initial denoising 

process. 

 

2.1 Adaptive Terrain Slope Calculation Based on the 

Douglas-Peucker Algorithm 

Considering the impact of terrain conditions on signal photon 

points, the initial phase involves computing terrain slope angles 

for each segment based on coarse terrain point slopes over 

consistent along-track distance intervals. This computation is 

carried out using Equation (1). 
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where  i = i-th terrain slope of each interval 

 ( , )i ix y , 1 1( , )i ix y   = the coordinates of two adjacent 

terrain points 

 

Subsequently, the Douglas-Peucker algorithm is applied to 

consolidate similar terrain slopes (Vučetić et al., 2007). The 

rough terrain points within each interval are linked into a curve, 

with a virtual straight line drawn between the curve's initial and 

final points. The residual distance from each remaining point to 

this straight line is determined using Equations (2-3). A 

predefined distance threshold H is set, and the maximum 

distance Dmax is compared against this threshold. If Dmax 

surpasses H, the point furthest from the straight line is retained; 

otherwise, all points between the two endpoints of the straight 

line are discarded. The retained points lead to division of the 

known curve into two segments for further processing through 

an iterative selection and discarding process until no more 

points can be discarded. Ultimately, coordinates of curve points 

meeting specified accuracy criteria are obtained, completing the 

line simplification process as illustrated in Figure 2. 
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where  iD = residual distance from point ip  
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Figure 2. Schematic diagram of Douglas-Peucker algorithm 

 

After curve simplification, the intervals are reassigned based on 

the simplified points, and the slope angles are recalculated using 

Equation (1), completing the merging of slope angles. As shown 

in Figure 3(b), the merged small data segments in Figure 3(a) 

have the same slope angle. 

 

 
(a) 

 
(b) 

Figure 3. Data segments and merged results. (a) terrain 

segments with an interval of 50m. (b) Merged terrain segments 

using the Douglas-Peucker Algorithm 

 

2.2 Adaptive Density Clustering Based on the Calculation 

of Dominant Slope Direction 

Due to the higher density of signal photons along the track 

direction and the presence of regions with significant surface 

slopes, we utilize an elliptical neighborhood based on the 

dominant slope direction for calculating the number of 

neighboring photon points and performing clustering. The 

specific steps are outlined below: 

 

(1) Select a point pk randomly from the point set {
ip } that has 

not been visited, and flag it as visited by setting VisitedFlag( pk ) 

= 1. 

(2) Determine the number of neighboring points ( pkD ) within 

the ellipse in the principal axis direction of pk , store this 

information in dataset E , and record the indices of neighboring 

photon points in dataset I . The principal axis direction aligns 

with the terrain slope, and the calculation formula is provided in 

Equation (4). 

(3) Define a threshold minpts. If pkN  > minpts, classify pk  

as a signal point and include the indices of pk 's neighboring 

points in the point set {p_neighbors} based on their indices. 

(4) Iterate through all points in {p_neighbors}, repeating steps 2 

and 3 until all points in {p_neighbors} have been processed. 

(5) Stop if all points in {
ip } have been visited; otherwise, 

return to step 1 and continue until clustering is finished. 
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where  a  = half of the major axis of the ellipse 

 b  = half of the minor axis of the ellipse 

 q  = one neighboring point 

   = the angle of the major axis direction 

 ,p qx x  = the x-coordinates of points p and q 

 ,p qy y  = the y-coordinates of points p and q 

 

Figure 4(a) illustrates the clustering outcomes, while Figure 4(b) 

presents a close-up view of the signal points derived from the 

clustering results. These figures illustrate that this clustering 

approach effectively eliminates noise points. 
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(a) 

 
(b) 

Figure 4. Adaptive density clustering based on the main 

direction of terrain slope. (a) and (b) are photons before and 

after noise removal using the adaptive density clustering 

method.  

 

2.3 Removal of Residual Noise Based on the Local Outlier 

Factor (LOF) Algorithm 

Following the above steps, most noise points have been 

successfully eliminated. However, despite these efforts, a few 

noise points may persist below ground level, in the air, or near 

canopy surfaces within some point clouds due to the application 

of a uniform global criterion for all data. To address these 

remaining noise points, this study employs the Local Outlier 

Factor (LOF) algorithm for further noise removal (Zou et al., 

2017). 

 

Initially, for each data point, its reachable distance from other 

points is computed and arranged from nearest to farthest. The 

K-nearest neighbors are identified for each data point, and their 

local reachability density is calculated. Subsequently, the LOF 

score is evaluated. A higher LOF value indicates increased 

abnormality while a lower value signifies normality. Finally, a 

threshold is established where values exceeding it are 

considered noise and those below it are deemed signals, 

ultimately leading to denoising results. 

 

Figure 5(a) shows a small number of noise points remaining 

near the ground, in the air, and on the canopy surface in a 

portion of the point cloud. Figure 5(b) displays the signal points 

after removing the residual noise. 

 
(a) 

 
(b) 

Figure 5. Residual noise removal using the LOF algorithm. (a) 

and (b) are the results before and after LOF denoising. 

 

3. Experimental results and analysis 

3.1 Experimental Datasets 

This paper conducts experiments using eight sets of data from 

two distinct regions in the United States to test a denoising 

algorithm.Study Area 1, situated at 44.2°N to 45.0°N and 

110°W to 111°W within Yellowstone National Park, features 

elevations ranging from 1847 to 2244 meters and an average 

canopy height of 14 meters. This area primarily consists of 

evergreen forests dominated by pine trees, with flat terrain and 

minimal topographic variations. On the other hand, Study Area 

2, located at 35.5°N to 36.0°N and 83°W to 84°W in Great 

Smoky Mountains National Park, exhibits elevations spanning 

from 426 to 1978 meters and an average canopy height of 30 

meters. The selected region is mainly composed of coniferous 

forests dominated by fir and hemlock trees, characterized by 

rugged terrain and significant topographic fluctuations. 

 

3.2 Accuracy Metrics 

To quantitatively evaluate the denoising algorithm's accuracy, 

this study employs four statistical metrics - Recall ( R ), 

Precision ( P ), Accuracy ( A ), and F1-score ( F )- to assess the 

algorithm's denoising effectiveness as per Equations (5) to (8). 
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The evaluation criteria for denoising accuracy are based on 

Digital Terrain Model (DTM) and Digital Surface Model (DSM) 

data products derived from NEON airborne LiDAR data. Points 

falling within defined boundaries are classified as signal 

photons, while those outside are categorized as noise photons 

(Huang et al., 2022). 
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where  TP  = the number of correctly detected signal 

photons 

 TN  = the number of correctly detected noise photons 

 FP  = the number of noise photons misclassified as 

signal photons 

 FN  = the number of signal photons misclassified as 

noise photons 

 

3.3 Experimental Results and Analysis 

Three traditional denoising techniques have been selected for 

comparison: the classic DBSCAN-based denoising method 

(DBSCAN) (Liu et al., 2024), the approach based on local 

distance statistics (LDS) (Xia et al., 2014b), and the method of 

Differential, Regressive, and Gaussian Adaptive Nearest 

Neighbor filtering (DRAGANN) (Cao et al., 2020).  

 

The DBSCAN-based technique identifies outliers by primarily 

utilizing density-reachability concepts to group closely 

positioned points and recognizes outliers as points located in 

low-density regions. The main idea behind DBSCAN revolves 

around two key parameters: eps (epsilon) and minpts (minimum 

points). Eps determines the radius of the neighborhood 

surrounding a point, while minpts specifies the minimum 

number of points required within this neighborhood to classify 

an area as dense. Points with a limited number of neighboring 

points below the minpts threshold are classified as outliers. 

 

The LDS technique identifies noisy photons based on 

histograms of local distance statistics. Initially, this technique 

calculates distances between each pair of photons. Then, it 

computes the sum of neighboring distances for n nearest points 

for each photon to create a frequency histogram. Generally, 

signal photons exhibit lower sum values while noisy ones show 

higher values due to signal photons being closely clustered 

compared to noisy ones. By setting a threshold at the mean 

value plus t times the standard deviation from this frequency 

histogram, noisy photon points can be identified.  

 

DRAGANN is a classical denoising method used in producing 

ATL08 products and is an official denoising approach for 

processing ICESat-2 photon data. The fundamental principle 

behind DRAGANN lies in differences in local point density 

between noisy and signal photons. A bimodal distribution is 

observed in histograms of local density distribution due to noise 

photons being sparsely distributed and signal photons densely 

distributed, with noise on one end and signal on the other. 

Gaussian curves are employed to fit histograms associated with 

noise and signal respectively. The density at the point of 

intersection of these curves serves as a threshold; categorizing 

photons with local densities below this threshold as noise 

photons that are subsequently eliminated. 

 

In Table 1, the statistical evaluation metrics for each algorithm 

in flat terrains are presented. While all algorithms can correctly 

identify noise photon points, the DBSCAN algorithm shows a 

slightly lower recall rate. Notably, although the LDS algorithm 

demonstrates higher recall and precision rates, its overall 

accuracy decreases significantly, leading to decreased F1-scores 

for all algorithms due to challenges posed by noise points 

closely resembling signal points within vegetation cover or 

ground surfaces. 

 

 DBSCAN algorithm LDS algorithm DRAGANN algorithm The proposed method 

 
R P A F R P A F R P A F R P A F 

data1 0.982 0.873 0.958 0.923 0.983 0.908 0.969 0.944 0.992 0.941 0.981 0.966 0.984 0.978 0.989 0.981 

data2 0.837 0.991 0.950 0.907 0.845 0.950 0.945 0.895 0.893 0.986 0.968 0.938 0.872 0.998 0.963 0.930 

data3 0.935 0.979 0.963 0.957 0.914 0.997 0.960 0.954 0.953 0.906 0.942 0.929 0.942 0.991 0.971 0.966 

data4 0.925 0.998 0.938 0.960 1.000 0.500 0.500 0.667 0.957 0.921 0.909 0.938 0.935 1.000 0.948 0.966 

average 0.920 0.960 0.952 0.937 0.936 0.839 0.844 0.865 0.949 0.939 0.950 0.943 0.933 0.992 0.968 0.961 

Table 1. Comparison of accuracy indicators for different denoising algorithms in flat areas 

 

The proposed denoising algorithm achieves superior F1-scores 

in flat terrains compared to other methods, with an average 

F1-score of 96.1%, outperforming the DBSCAN-based 

denoising algorithm at 93.7%, the LDS algorithm at 86.5%, and 

the DRAGANN algorithm at 94.3%. This represents an average 

improvement of approximately 4.6% in F1-score.  

 

Table 2 displays the statistical evaluation metrics for each 

algorithm in rugged terrains where F1-scores decrease 

compared to flat areas, particularly for the DRAGANN 

algorithm. However, our denoising algorithm excels with an 

average F1-score of 93.9%, surpassing the DBSCAN-based 

denoising algorithm at 88.4%, the LDS algorithm at 91.7%, and 

the DRAGANN algorithm at 72.9%. This signifies an average 

improvement of around 9.5% in F1-score, highlighting the 

superiority of our proposed denoising method in rugged terrains 

compared to traditional approaches. 

 DBSCAN algorithm LDS algorithm DRAGANN algorithm The proposed method 

 
R P A F R P A F R P A F R P A F 

data5 0.891 0.945 0.949 0.917 0.834 0.999 0.940 0.909 0.882 0.522 0.835 0.656 0.883 0.991 0.958 0.934 

data6 0.903 0.884 0.948 0.894 0.853 0.979 0.954 0.912 0.887 0.504 0.863 0.643 0.895 0.960 0.962 0.926 
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data7 0.965 0.909 0.974 0.936 0.843 0.998 0.961 0.914 0.948 0.725 0.934 0.822 0.938 0.968 0.980 0.953 

data8 0.980 0.662 0.936 0.789 0.894 0.974 0.974 0.933 0.927 0.693 0.934 0.793 0.933 0.949 0.978 0.941 

average 0.935 0.850 0.952 0.884 0.856 0.988 0.957 0.917 0.911 0.611 0.892 0.729 0.912 0.967 0.970 0.939 

Table 2. Comparison of accuracy indicators for different denoising algorithms in rugged areas 

Overall, based on the results presented in Tables 1 and 2, it can 

be concluded that our proposed method yields more accurate 

denoising outcomes than traditional methods in both flat and 

rugged terrains. 

 

4. Conclusion 

This paper introduces a spaceborne LiDAR point cloud noise 

removal algorithm based on adaptive terrain slope calculation 

using ICESat-2 data. By considering terrain slope influence and 

employing the Douglas-Peucker algorithm for segment merging 

based on similar slopes followed by clustering using elliptical 

neighborhood densities along dominant slope directions, this 

approach effectively distinguishes signal photons from noise 

photons. Experimental findings demonstrate an improved 

average F1-score by approximately 4.6% in flat areas and by 

about 9.5% in rugged terrains compared to traditional methods 

like LDS, DBSCAN-based algorithms, and DRAGANN 

algorithms. This novel algorithm showcases enhanced 

performance in removing noise photons near canopy levels and 

ground surfaces while improving signal point extraction 

capabilities across different terrains and conditions, affirming its 

potential for robust point cloud classification and parameter 

inversion applications. 
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