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Abstract 

 

Accurate and efficient 3D building reconstruction from airborne point clouds is crucial for a wide range of applications, from urban 

planning to navigation and microscale simulations. This paper review and evaluate model- and data-driven approaches for building 

modeling, using two baselines’ methods and introducing two new implementations: an augmented, data‐driven variant of Kinetic Shape 

Reconstruction (KSR) and a model‐driven approach under development named RoofGenerator. Experiments use a dataset available 

among the open-data of SwissTopo, featuring diverse building types and varying slopes, with manually reconstructed reference 3D 

building models providing a reliable ground truth for evaluation. The results show that data-driven methods offer greater flexibility 

and capture finer details but require careful parameter tuning and are sensitive to point density and segmentation accuracy. In contrast, 

model-driven approaches are computationally efficient and robust but constrained by predefined shape libraries, limiting their ability 

to model specific roof structures. Additional challenges include reconstruction consistency, footprint dependency and the lack of 

standardized evaluation metrics. The choice of the evaluation method depends on specific application needs, data quality and scalability 

requirements. 

 

 

1. INTRODUCTION 

Digital reconstruction of urban environments has become a 

cornerstone in various scientific and practical fields, including 

photogrammetry, computer vision and remote sensing. An 

increasing number of decision-makers recognize that three-

dimensional (3D) city models are set to become indispensable as 

central information hubs accessible to everyone. They play a 

crucial role in diverse range of uses including urban and 

development planning, microscale simulations, city marketing, 

navigation and facility management (Toschi et al., 2017; Stoter 

et al., 2020; Widl et al., 2021; Pađen et al., 2024).  

Due to the broad exploitation of building models and the 

large effort required for their manual reconstruction, numerous 

methods have been developed in recent years to automate the 

modeling process (Haala and Kada, 2010; Wang, 2013; Gui and 

Qin, 2021). Existing approaches are generally categorized as 

model-driven (top-down) and data-driven (bottom-up), although 

hybrid bottom-up, top-down approaches (Mehranfar et al., 2022) 

and learning-based methods (Pan et al., 2023) were recently 

proposed.  

Model-driven top-down methods rely on predefined 

parametric shapes that are assembled and optimized based on 

estimated parameters (Xiong et al., 2015; Buyukdemircioglu and 

Kocaman, 2020; Zhang et al., 2021; Župan et al., 2023). These 

approaches often employ rule-based generation, shape grammars 

or template matching, making them well-suited for structured 

environments with repetitive architectural patterns. Their 

reliance on fixed templates, however, limits adaptability to urban 

landscapes with complex, irregular or non-Manhattan 

geometries. Consequently, they struggle to generalize to urban 

environments with diverse architectural styles or dense historical 

districts where predefined shapes fail to capture unique building 

structures.  

In contrast, data-driven approaches reconstruct building 

geometries directly from LiDAR or photogrammetric point 

clouds (Xiong et al., 2013; Li et al., 2016). These methods 

prioritize geometric fidelity and adaptability, allowing for greater 

flexibility in modeling diverse architectural styles. A widely used 

data-driven strategy involves detecting planar segments 

corresponding to building roofs and facades from the input point 

cloud. These planes are identified using spatial geometric 

analysis (Rabbani et al., 2006; Schnabel et al., 2007) or by 

applying neural architectures (Jiang et al., 2020; Zhang and Fan, 

2022). Once detected, planes are assembled into structured 

building meshes using either connectivity graphs that capture the 

topological relationships between elements (Jarzabek-Rychard 

and Borkowski, 2016; Wang et al., 2020; Xu et al., 2021), or 

space decomposition techniques (Bauchet and Lafarge, 2020; 

Nan and Wonka, 2017). While these methods ensure high 

accuracy, they often fail to enforce geometric regularity, leading 

to small, redundant facets and irregular connectivity at roof 

intersections. Another branch of data-driven methods focuses on 

simplifying an initially reconstructed dense mesh derived from 

the input point cloud (Kazhdan and Hoppe, 2013; Li and Nan, 

2021; Wang et al., 2021). These methods aim to reduce 

computational complexity while preserving essential building 

structures. Excessive simplification may however result in loss 

of structural accuracy and violation of key planarity constraints, 

reducing the usability of these models in high precision 

applications. 

Finally, learning-based methods (Park and Guldmann, 2019; 

Li et al., 2022; Liu et al., 2024) have recently shown promising 

results by addressing the limitations of both model- and data-

driven methods. These methods learn implicit building priors 

from large-scale datasets, enabling automatic feature extraction, 

robustness to noise, and adaptability to diverse urban 

environments. However, their effectiveness depends on the 

availability of high-quality training data, and they often face 

challenges in generalization across different geographic regions 

and scanning conditions. 

Despite advancements in 3D building reconstruction, the lack 

of standardized evaluation frameworks remains a critical 

challenge. Many proposed methods are tested on small-scale 
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datasets or specific urban environments, often lacking 

comprehensive reference models. This inconsistency leads to 

subjective performance assessments, making it difficult to fairly 

compare methods and to determine which approaches are most 

suitable for particular applications. While some methods perform 

well in structured environments with regularized building 

layouts, their effectiveness diminishes in historic city centers or 

heterogeneous urban landscapes. Standardized benchmarks, such 

as the ISPRS benchmark for 3D building reconstruction 

(Rottensteiner et al., 2014), played a crucial role in ensuring fair 

and reproducible evaluations by providing consistent datasets 

and standardized assessment metrics. As urban modeling 

applications evolve, there is an increasing need for more 

comprehensive and large-scale evaluation frameworks that 

assess not only geometric accuracy of the results but also 

consider efficiency and scalability of methods, robustness of their 

employment from user perspective, and the practical usability of 

reconstructed models in real-world applications. 

   Recognizing these gaps, this study aims to bridge the divide 

between existing methodologies and real-world applicability. 

The objective of the presented work is multi-fold and focuses on:  

• Evaluating and comparing 3D building reconstruction methods 

representing both data- and model-driven approaches; 

• Developing two new reconstruction algorithms; 

• Stepping into a preparation of a new benchmark dataset for 

assessing the performance of 3D building reconstruction 

methods; 

• Exploring the generalization and scalability potential of 

building modeling methods. 

 

 

2. BUILDING MODELING METHODS 

The study primarily investigates the automatic generation of 

polygonal building models from airborne point clouds in large-

scale urban environments. We analyze both model- and data-

driven approaches, using two in-house implementations: Roof 

Generator and Augmented KSR, and comparing them against 

two baselines’ methods representing each category, respectively: 

City3D by Huang et al. (2022) and BREC by Virtual City 

Systems (2025). A key aspect of this evaluation is capturing the 

precise geometry of roof structures, which plays a crucial role in 

Level of Detail 2 (LoD2) modeling. 

City3D is a data-driven approach based on the hypothesis-

and-selection framework of PolyFit (Nan and Wonka, 2017). It 

generates a set of potential building faces by intersecting planar 

segments detected from the point cloud and additional vertical 

planes inferred from the input data. The final model is generated 

by selecting the optimal subset of building faces through binary 

integer linear programming optimization, considering criteria 

such as simplicity, compactness, regularity, and fit to the input 

data. Although City3D is also available as an open-source 

software, for this study we used its core algorithmic code, 

allowing for greater control over processing parameters, input 

data handling and output storage. 

BREC: Building Reconstruction (Virtual City Systems, 

2025) is a model-driven approach, released as a commercial 

software, that reconstructs buildings using a predefined library of 

parametric roof shapes. Roof types are automatically classified in 

airborne point clouds based on extracted geometric features and 

the most suitable template is selected and fitted to the data. The 

method enforces planarity and topological consistency, ensuring 

that reconstructed models adhere to well-defined geometric rules. 

The software also supports manual post-processing of the 

reconstructed models and direct export into CityGML 2.0 with 

flexible attribute mapping. 

RoofGenerator is an in-house model-driven approach that 

reconstructs 3D building models as a combination of predefined 

standard roof shapes (flat, pyramid, gabled, hip) available in an 

internal library of geometric structures. The method consists of 

two main stages: (i) roof type identification in orthophotos by 

means of machine learning techniques; (ii) roof model 

generation, according to the identified shape, supported by the 

airborne point cloud.  

Augmented KSR is an in-house data-driven implementation 

builds upon Kinetic Shape Reconstruction (KSR) (Bauchet and 

Lafarge, 2020), which uses planes detected in the input point 

clouds to compute a polyhedral decomposition by leveraging a 

kinetic data structure. Instead of performing exhaustive planar 

slicing, the method allows detected planes to expand at a uniform 

rate until they intersect, forming meaningful polyhedral 

partitions. The cells are classified as either inside or outside based 

on the orientation of point normals. Kinetic space partition 

enhances shape assembly efficiency by reducing both processing 

time and the number of generated shapes. 

A general major challenge in airborne (LiDAR-based) 3D 

building reconstruction is the often incompleteness of vertical 

walls due to limited scanning or imaging angles or occlusions 

from surrounding structures. Since airborne LiDAR primarily 

captures roof geometries, in data driven-approaches these gaps 

cause severe topological inconsistencies, preventing proper 

model closure, leading to unreliable structural representations, or 

in some cases, make reconstruction entirely impossible - as 

frequently observed in KSR. To mitigate these limitations, we 

apply a data augmentation strategy that enhances building 

representation by generating synthetic 3D points to compensate 

for missing walls (Figure 1). The key steps in this process 

include: (i) detecting vertical discontinuities in 3D point clouds; 

(ii) extracting line segments using Hough Transform on the 

rasterized data; (iii) projecting 3D roof edges into 3D space and 

extruding vertical planes. 

 
Figure 1. Data augmentation in the proposed augmented KSR. 

 

 

3. EXPERIMENTS AND COMPARISONS 

 

3.1 Data and setup 

The comparative analysis is conducted using a dataset 

obtained from the open data of the Swiss Federal Office of 

Topography (SwissTopo, 2025). In the experiments, we use 

aerial LiDAR point cloud (with a declared minimum density of 5 

pts/m2), along with orthophotos, building footprints and 

manually reconstructed vector-based building models. The 3D 

models feature simplified facades but realistic roof geometries, 

conforming to Level of Detail (LoD) 2.3, as defined by Biljecki 
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et al. (2016). These models serve as high-quality ground truth for 

evaluating reconstruction accuracy. The study area, located in 

Pfäffikon, Switzerland, spans 1 km × 1.5 km and includes 

buildings of diverse shapes and sizes, situated on terrain with 

varying slopes (Figure 2).  

 
Figure 2. Benchmark dataset: manually generated reference 3D 

building models. 

 

To facilitate the reconstruction process of data-driven 

approaches, we preprocess input data using vectorized building 

footprints to partition the airborne point cloud into subsets 

corresponding to individual buildings. On the other hand, model-

driven methods are directly applied to the point cloud of the 

whole area.  

 

3.2 Results and evaluation  

 

The comparative analysis highlights the strengths and 

limitations of data- and model-driven approaches. The evaluation 

is structured into three key components: 

• Key aspects of the evaluated methods performance are 

summarized in Table 1; 

• A selection of representative building samples from the dataset 

is used for visual comparison, allowing for a qualitative 

assessment of the reconstruction results (Table 2); 

• Deviation analyses, comparing reconstructed models to 

manually reconstructed ground truth, are presented in Figure 3. 

 

Parameter sensitivity: data-driven methods (City3D and 

Augmented KSR) are highly sensitive to the chosen values of the 

reconstruction parameters. Their performance depends heavily 

on the results of point cloud segmentation into planes, which 

influence reconstruction accuracy and structural completeness. 

Minor parameter adjustments can lead to significant differences 

in results, requiring careful tuning, which might be challenging 

for non-expert users. Moreover, there is no single optimal 

parameter set for the whole data. In Table 2, we compare 

Augmented KSR under two scenarios: (i) balanced parameter 

configuration applied to the entire dataset and (ii) individually 

tuned parameter settings for each presented building. The 

balanced configuration often limit reconstruction detail but yields 

plausible results for the entire benchmark area. Customizing 

parameters for a specific building can significantly improve its 

reconstruction results, but at the same time it degrades or even 

prevents successful reconstruction of other buildings. 

Footprint dependency: except for City3D, all methods rely 

on predefined building footprints used for building detection. 

While this ensures structured inputs and controlled boundaries, it 

also limits method autonomy. The potential integration of 

automated contouring algorithms (Jarzabek-Rychard, 2012; 

Bauchet and Lafarge, 2019) could reduce dependencies but 

would introduce additional computational complexity. Another 

key challenge arises when footprints belonging to a single 

building are subdivided according to roof segments. While such 

partitions benefit model-driven methods by isolating simpler, 

well-defined structures, they can complicate data-driven 

approaches by imposing unnecessary subdivisions in the 

reconstructed mesh.   

Density sensitivity: model-driven approaches (BREC and 

RoofGenerator) demonstrate higher resilience to lower-density 

point clouds as they rely on predefined geometric primitives 

rather than dense, detailed point data. By contrast, data-driven 

methods (City3D and Augmented KSR) require higher point 

densities to accurately capture structural details, particularly in 

complex roof geometries. At lower densities - around 5 pts/m² - 

reconstructions often show missing elements and structural 

ambiguities. While the precise density threshold varies 

depending on the complexity of the scene and the chosen 

parameters, higher densities consistently give more reliable 

outcomes for data-driven techniques. 

Roof type variety: data-driven approaches theoretically 

offer unlimited roof shape variety, adapting flexibly to diverse 

architectures. However, this flexibility introduces irregularities, 

particularly in unconstrained scenarios. In contrast, model-driven 

methods enforce predefined templates, ensuring standardized and 

consistent outputs. While this templating can restrict the range of 

possible roof shapes, it can be well-suited for regions where local 

roof types are well-defined and incorporated into the template 

library. 

Mesh simplicity: while dense, detailed meshes are beneficial 

for applications such as visualization and immersive 

environments, many large-scale applications, such as urban 

simulations, physical modeling, and real-time navigation, require 

lightweight, structured 3D representations. In these scenarios, 

buildings should be represented by low-polygon surface meshes, 

maintaining geometric fidelity while ensuring computational 

efficiency. Model-driven approaches inherently address this 

 

 

Method Type Footprints Param Density 

sensitiv. 

Roof 

type 

variety 

Mesh 

simplicity 

Efficiency Details 

reconstr. 

Repeatibility 

City3D data-

driven 

optional #### ## ##### # # #### ## 

BREC model-

driven 

required # # ### #### #### ## ###### 

Augmented 

KSR 

data-

driven 

required ### ## ##### ### ### #### ## 

RoofGenerator model-

driven 

required # # # #### #### # ##### 

 

Table 1. Comparative score from the lowest (#) to the highest (#####) values. 
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challenge by generating simplified, predefined polygonal 

structures. Data-driven City3D tends to produce overly complex 

polygonal structures, breaking roof surfaces into numerous 

smaller facets. In contrast, Augmented KSR generates low-

polygon meshes closely resemble model-driven reconstructions, 

significantly improving efficiency while maintaining structural 

integrity.    

Efficiency: model-driven BREC and RoofGenerator exhibit 

the highest computational efficiency among the tested methods. 

By contrast, City3D’s optimization-based strategy can 

significantly extend processing time, sometimes requiring 

several hours for a single complex building. Second data-driven 

method, Augmented KSR, proves substantially faster - often by 

an order of magnitude. 

Details reconstruction: model-driven approaches rely on 

predefined shape libraries, which naturally restrict the level of 

detail by focusing on the template shapes provided. In contrast, 

data-driven methods can capture and preserve finer geometric 

nuances - although this comes at the cost of sensitivity to point 

density and segmentation quality. Considering that depending on 

the application additional complexity is not always beneficial, 

simpler meshes may be also preferable in some practical 

scenarios. 

       Repeatability: an important limitation of data-driven 

methods based on hypothesis-selection and space partitioning, is 

their general inconsistency across multiple runs. Even when 

using identical parameters, reconstructions may vary due to 

stochastic processes. This issue manifests in two forms: (i) 

inconsistency within a single run, when despite identical building 

geometries indicated by segmentation results, the reconstructed 

models differ significantly, revealing a lack of stability in 

processing similar structures; (ii) inconsistency across multiple 

runs - where the same input data leads to slightly different outputs 

across multiple executions, highlighting algorithmic randomness. 

Such variability poses challenges for large-scale, repeatable city 

modeling workflows and multi-temporal applications. 

       Reconstruction accuracy: considering the geometric 

properties of the reconstructed models, we perform a mesh-to-

mesh comparison by evaluating the reconstruction outputs of 

each method against manually created reference 3D buildings. 

- 

      Reference                    City3D                       BREC                Augmented KSR       Augmented KSR          RoofGenerator 

                                                                                                                                             indiv. tuned param. 

  

- 

Table 2. Comparative evaluation of 3D reconstruction methods on selected building samples. 
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   -1m         1m 

(a) City3D results 

  

   -1m         1m 

   -1m         1m 

(b)    BREC results 

  

(c)    Augmented KSR results 
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Metrics are computed as signed distances between the two 

meshes (Fig.3). The accuracy distribution varies significantly 

across methods. While data-driven methods reconstruct intricate 

roof details, they may introduce noise or minor misalignments. 

Conversely, model-driven methods prioritize structural 

correctness but lack flexibility in irregular roof formations. 

Consequently, City3D and Augmented KSR demonstrate higher 

fidelity in capturing complex roof structures but exhibit localized 

deviations in areas with insufficient point density. BREC and 

RoofGenerator enforce strong geometric regularization, leading 

to larger deviation between the reconstructed models and 

reference objects. 

 

4. CONCLUSIONS 

In this work, we reviewed the task of automatic 3D building 

reconstruction from airborne point clouds and proposed two new 

implementation - one data‐ and one model‐driven - which we 

compared against established baselines. Our results confirm that 

3D building modeling remains an active field with no universal 

solution. Data‐driven methods can capture rich details but require 

careful parameter tuning and accurate plane segmentation - any 

errors here can yield incomplete or overly complex models. By 

contrast, model‐driven approaches are generally faster and more 

robust, yet rely on predefined shape libraries that limit 

adaptability and upscaling. The final choice of method should be 

driven by application needs (e.g., high-detail heritage 

documentation vs. large-scale urban simulation), data quality 

(point density, sensor type, and alignment with footprints), and 

practical requirements like runtime and ease of parameter tuning. 

As future work, we aim to enhance our modeling methods by 

integrating a semantic layer to the mesh, based on classification 

information from the input 3D points.  We also plan to evaluate 

reconstruction performance under varying point-cloud densities, 

to employ validation tools to ensure defect-free meshes, and to 

refine evaluation metrics - particularly those computed in 3D 

space - to provide a more comprehensive assessment of 

reconstruction accuracy and reliability. The created benchmark / 

dataset will be also released. 
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