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Abstract 

 

Food security assessments in conflict-affected regions face significant methodological challenges due to restricted ground access, data 

scarcity, and disruptions to agricultural production and food distribution networks. This study employs a multi-dimensional approach 

to assess food security in Gaza from 2018 to 2024, integrating Sentinel-2 satellite imagery, a Random Forest-derived land cover map, 

food price inflation data, and import statistics to construct a composite food security index. The findings reveal a substantial decline in 

agricultural productivity, evidenced by decreasing NDVI values from 0.25 to 0.16 in 2024 and increasing food imports. Furthermore, 

a marked rise in food prices of 180% post-October 2023 highlights the economic volatility exacerbated by conflict.  

  

1. Introduction 

The most recognised definition of food security originates from 

the 1996 World Food Summit, where it is described as “a state in 

which all people, at all times, have physical and economic access 

to sufficient, safe and nutritious food to meet their dietary needs 

and food preferences for an active and healthy life” (Coates, 

2013, pg.9). This condition is viewed as ex ante, with hunger and 

undernourishment being the resulting ex post outcomes (Barrett, 

2002). The complex nature of food security has been 

acknowledged in the literature, leading to its categorization into 

several key pillars: availability, access, utilization, and stability 

(Kannan, Dev and Sharma, 2000; Coates, 2013). 

Severe food insecurity is often triggered by disasters such as 

floods, earthquakes and war, whereas chronic food insecurity is 

closely linked to enduring poverty (Barrett, 2010). Displacement, 

destruction of agricultural infrastructure and disruption of market 

systems following disasters can in turn impact all aspects of food 

security (Holleman et al., 2017). Armed conflict has been found 

to severely impact food security by reducing food output through 

cropland abandonment and access due to the damage of physical 

infrastructure (Konandreas, 2012; Martin-Shields and Stojetz, 

2017).  

Food aid has contributed to alleviating some of these 

shortcomings, though with varying degrees of effectiveness (Del 

Ninno, Dorosh and Subbarao, 2007). While social safety nets, 

including remittances may offer increased relief in the short-

term, prolonged conflict can diminish their effectiveness, as 

observed in Pakistan (Yang and Choi, 2007; Ghorpade, 2017). 

To counteract this, conditional cash transfers are often used by 

humanitarian actors including in Palestine by UNRWA (Crost, 

Felter and Johnston, 2016). Understanding food security in 

conflict situation therefore requires focusing on two key 

dimensions: food availability and accessibility. 

An ideal measurement should holistically address the four pillars: 

availability, access, utilisation and stability. However, indicators 

that fully capture these dimensions are scarce (Petrikova, 2016). 

Earlier approaches, like the average national food availability, 

have become outdated (Porkka et al., 2013). In response, 

indicators like undernourishment, malnutrition and 

anthropometric measures (e.g. weight-for-age) have gained 

traction, but they still fall short in capturing food security (Leroy 

et al., 2015). Alternative correlates including income, poverty, 

and food prices have been proposed. Frankenberger (1992) 

encouraged composite food security indices, incorporating these 

dimensions alongside fears of food insufficiency and coping 

mechanisms. Although the best indicators are still debated, cross-

referencing multiple indicators is widely accepted to enhance 

validity (Barrett, 2002). 

Food security assessments in developing countries frequently 

depend on early warning systems using remote sensing (EWS) 

(Baruth et al., 2008). While these systems provide medium 

spatial resolution alerts, they often lack the granularity needed to 

identify local food insecurity and tend to use remote sensing 

qualitatively (Baruth et al., 2008). The failure of EWS to detect 

localized famines in Ethiopia (1999–2000), Malawi (2001–

2002), and Niger (2005) highlight the challenges in accurately 

assessing local food insecurity, particularly regarding data 

accuracy and disaggregation (Devereux, 2009; Genesio et al., 

2011). Other types of assessment include evaluating famine at the 

household level using surveys or monitoring food prices through 

machine learning-driven systems such as the World Food 

Programme’s real-time price monitoring (Lentz et al., 2019). 

These assessments face limitations in terms of 

representativeness, reliability and timeliness. However, no 

existing approach integrates multiple methodologies for 

assessing food security, highlighting a critical research gap that 

is addressed in this study. 

The recent escalation in conflict has made on-the-ground access 

in Gaza exceedingly difficult, complicating efforts by 

government and non-governmental organizations to assess food 

security (Saad and Dergaa, 2023). This underscores the need for 

alternative approaches, such as remote sensing and secondary 

research, to fill the gap. Machine learning has gained prominence 

in agricultural economics, particularly in farm risk analysis and 

disaster risk management (Athey, 2018). It enables automated 

risk assessment and is widely used for regression and 

classification tasks (Ghaffarian et al., 2022). Most studies focus 

on production risk, typically measured in crop yield or vegetation 

change, to enhance productivity and mitigate losses (Ghaffarian 

et al., 2022). These use machine learning and random forest 

models with simple regressions with vegetation indices, 

achieving an R2 over 0.70 to predict yields (Toscano et al., 2019).   

The Normalised Difference Vegetation Index (NDVI) is one of 

the most used indices to study vegetation change, as it offers 

insights into crop growth, photosynthetic activity and vigour 

(Primicerio et al., 2015). Since, alternative indices have been 

developed to better address external factors including solar 

geometry, soil background, and atmospheric effects (Rondeaux, 

Steven and Baret, 1996). These include the soil adjusted 
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vegetation index (SAVI), and green NDVI exploit plant 

reflectance properties, with low reflectance in red and blue 

regions and high reflectance in near-infrared (NIR) regions 

(Yuan and Niu, 2007). A combination of these indices is 

employed to best capture changes in the land cover. 

   

2. Study area 

In Gaza, the dynamics of food security are influenced by various 

factors. The coastal plain encompassing 360km2 between the 

Mediterranean Sea and Israel has been impacted by repeated 

cycles of instability and violence (Roy, 1991). Past and current 

conflict, economic blockades and limitations in border areas have 

limited the agricultural sector’s capabilities (Abdelnour, Tartir 

and Zurayk, 2012). Historically, the agricultural sector was a key 

driver of economic growth. While agriculture approximately 

occupies 50 percent of the land within Gaza, approximately 29-

35 percent of the agricultural land is within border or buffer areas, 

where there is highly restricted access, often leading to the 

abandonment of those fields (Premiere Urgence International, 

2015; UNDP, 2017; Lipkind, 2024). These restrictions have a 

direct impact on local food production, exacerbating the 

dependency on imports and international aid (Reskallah, 2021). 

Almost 70 percent of households received humanitarian 

assistance in 2019 and are food insecure (UN OCHA, 2018, 

pg.1). 

In 2022, nearly half (44 percent) of the Gaza Strip’s food 

consumption was derived from local production, with the 

remainder imported from abroad (Palestine Economic Policy 

Research Institute, 2023). This reliance on imports, coupled with 

the agricultural restrictions, leaves the region highly vulnerable 

to external disruptions and price fluctuations. Estimates suggest 

that between 50% and 66% of the population in Gaza depends on 

food assistance to meet their daily nutritional needs, highlighting 

the precariousness of the local food security situation (Palestine 

Economic Policy Research Institute, 2023). 

There is a notable scarcity of academic literature specifically 

focused on food security in Palestine, with most existing studies 

being limited to small-scale surveys (Lin et al., 2021; El Bilbeisi 

et al., 2022). While there is some grey literature available on 

Palestine's food security situation, these reports are often 

restricted to isolated points in time. These studies, as conducted 

by Hassoun et al. (2024), for example, have failed to capture 

sources of food other than locally produced crops. When almost 

half of the food is imported, this presents a lack of comprehensive 

understanding of the situation, and the need to include food 

imports in the analysis is highlighted. 

 

3. Methodology 

The research adopts a multi-dimensional approach to theorise 

food security, recognising the key pillars needed to achieve food 

security: availability, access, utilisation and stability.  This is 

achieved by integrating the Normalized Difference Vegetation 

Index data (Availability), a Random Forest land classifier model 

(Availability), with food price inflation (Accessibility) and food 

import data (Availability) to develop the normalized food 

security index. The stability pillar is achieved by creating a 

monthly time series analysis from 2018 to 2024. Utilisation is not 

captured in this analysis due the lack of frequent data and the 

need to measure utilisation on the ground. The methodology is 

summarised in Figure 1. 

 
Figure 1. Methodology Summary 

 

3.1 Data  

Sentinel 2 satellite imagery from the Copernicus/S2 collection on 

Google Earth Engine (GEE) are used for the analysis. Temporal 

filtering is applied to the data collection to include images each 

month from 2018 to 2024. 

UN OCHA provides the truck data prior to October 2023 until 

March 2024 together with UNRWA (UN OCHA, 2024; 

UNRWA, 2024). UNRWA then continues the data collection. 

UNRWA’s commercial truck data reporting continues through 

April 2024. Starting in May 2024, UNRWA data is no longer 

complete due to access issues, leaving Coordination of 

Government Activities in the Territories (COGAT) to be the only 

available dataset with commercial figures (COGAT, 2024), 

which is used for May.  

Food prices have a crucial impact on consumer access to food in 

poorer countries and domestic food price volatility provides 

information on economic access (Naidu, Zuva and Sibanda, 

2023). The study analyses the impact of food price inflation on 

food security, comparing local data from the Palestinian Central 

Bureau of Statistics (PCBS) with global data from the FAO Food 

Price Index (FPI) to reflect macroeconomic factors affecting all 

countries (FAO, 2024; PCBS, 2024). Adjustments are made to 

normalize the data to a common base year for comparability. The 

base year for the Palestinian Central Bureau of Statistics (PCBS) 

FPI index is 2018. The FAO FPI is adjusted to have the same 

base year of 2018, because it uses the years 2014-2016 as a base. 

The calculation to convert into 2018 as a base year are as follows.  

1. Find the average index value for 2018  

2. Recalculate the index value using the following 

formula:  

 

𝑁𝑒𝑤 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒

𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑁𝑒𝑤 𝐵𝑎𝑠𝑒 𝑌𝑒𝑎𝑟 (2018)
  (1) 

 

3.2 Landcover analysis 

The imagery is split into five classes: buildings, fields, water 

bodies, dry areas, and greenhouses. These classes are selected to 

best reflect the classification task identifying vegetated versus 

dry cropland and other building types present in the Gaza Strip. 

The study involves defining regions of interest (ROIs) 

corresponding to different land cover classes within the Gaza 

Strip. Samples of these defined categories are displayed in Figure 

2. The following classes are defined, each assigned a unique 

`ClassID`, as shown in Table 1. 
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Class 

ID 

Name of 

Class 

Description of Class Number 

of 

Polygons  

0 Greenhouses Areas covered by greenhouse 

structures 

39 

1 Buildings Built-up and urban areas, 

including commercial, 

industrial and residential 

structures 

36 

2 Vegetated 
Fields 

Agricultural fields and tree 
plantations which were later 

merged into one category 

68 

3 Water Water bodies including 

rivers, the sea and reservoirs 

27 

4 Dry Fields Barren or sparely vegetated 
land, often characterised by 

dry soil or sand 

32 

Table 1. Class descriptions and number of samples. 

 
Water Vegetated Fields Dry Fields 

   
Figure 2. Sample images of classes. 

 

3.3 Spectral Indices 

Vegetation and surface indices (NDVI, NDTI, EVI, NDBAI2, 

RPGI) are computed to enhance the classification accuracy by 

providing additional spectral information beyond the raw bands. 

A composite stack is created by combining the Sentinel-2 bands 

with the calculated indices. 

 
Index Equation Reference 

NDVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Genovese et 

al., 2001.   

LSWI 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Chandrasekar 

et al., 2010 

NDTI 𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 

Liu and Huete, 

1995 

EVI 
2.5 ×

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6.0 ×  𝑅𝑒𝑑 −  7.5 ×  𝐵𝑙𝑢𝑒 + 1.0
 

Liu and Huete, 

1995 

NDBAI2 𝐵11 − 𝐵12

𝐵11 + 𝐵12
 

Balcik, Senel 

and Goksel, 

2019 

RGGI 𝐵𝑙𝑢𝑒

(1 − 𝑚𝑒𝑎𝑛(𝐵𝑙𝑢𝑒 + 𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅)
 

Balcik, Senel 

and Goksel, 

2019 

Table 2. Spectral indices used in the study. 

 

3.4 Machine Learning 

This stack provides a dataset for classification, with each pixel 

containing information from the original spectral bands and 

derived indices. The Random Forest algorithm is trained using 

the sampled regions from the ROIs. The merged ROIs is split into 

training (70% of the ROIs) and testing (30% of the ROIs) datasets 

to develop and evaluate the classification model. To ensure 

balanced class representation, a stratified sampling approach is 

used, where an equal number of samples from each class is 

included for the training and testing data. A Random Forest 

classifier, with 100 decision trees, is used to conduct the land 

cover classification. 

 

3.5 Accuracy-weighted averaging 

Given the mixed success of the classifier for some classes, a 

weighted averaging method for imputing missing values using 

the accuracy scores is used. Two datasets are combined: the 

original dataset received from the classifier where values are 

mostly complete, weighted by the provided accuracy scores and 

the second dataset where only values with an accuracy score of 

0.70 or above were used.  

The equations to compute the imputed values for each missing 

data point in the first dataset are as follows: For each variable 

(e.g., `Fields/Plantation`, `Water`, `Dry`), identify the missing 

values in 𝑋1 and the corresponding values in 𝑋2. The imputed 

value for a missing data point in 𝑋2 for a given variable can be 

calculated as:  

 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 = 𝐴 × 𝑋2 + (1 − 𝐴) × �̅�1            (2) 
 

Given:  

𝑋1: Dataset with missing values (accuracy below 0.70 were 

removed)  

𝑋2: Complete Dataset with the inclusion of lower accuracies 

𝐴: Accuracy Scores 

 

The weighted average formula uses the accuracy score 𝐴 to 

determine how much weight to give to the second dataset's value 

versus the mean of the first dataset's available values. If the 

accuracy score 𝐴 is high (close to 1), the imputation relies more 

on the value from the second dataset, indicating high confidence 

in that data. If the accuracy score 𝐴 is low (close to 0), the 

imputation leans more on the mean of the available data in the 

first dataset, reflecting lower confidence in the second dataset's 

value. 

  

3.6 Creating the Index 

To improve comparability across different indices, all index 

values are initially normalized using the following equations, 

irrespective of their original dimensions and units. The Min-Max 

Normalisation is used, whereby 0 represents the 𝑚𝑖𝑛𝑗  and 1 the 

𝑚𝑎𝑥𝑗. 

 

�̅�𝑗(𝑖) =  
�̅�𝑗(𝑖)− 𝑚𝑖𝑛𝑗

𝑚𝑎𝑥𝑗− 𝑚𝑖𝑛𝑗
                                    (3) 

 

The weighting and aggregation process then follows with the 

assigned weights, shown in Table 3. 

  
Food 

Security 

Category 

Variable Scenario 

1 

Scenario 

2 

Scenario 

3 

 

 

 

Availability 

Land Cover Water 5% 2% 0% 

Land Cover: Vegetated 

Fields 

10% 5% 0% 

Land Cover: Dry fields 10% 5% 0% 

NDVI 25% 15% 0% 

 

 

 

Physical and 

Economic 

Access 

Food Price Index 25% 32% 33.3% 

All trucks (to account 

for fuel needed and the 

delivery of food) 

5% 9% 33.3% 

Food trucks (majority 

of trucks are filled with 

humanitarian goods 

ensuring economic 

access) 

20% 32% 33.3% 

Table 3. Applied percentage weights in the food security index. 

 

When values are missing for a variable in the landcover analysis 

due to a low accuracy score, the weights are adjusted amongst the 

available land cover variables, so their combined weight still adds 

up to 25%. These weights are applied to compute a new weighted 

total for each month.  

Scenario 1 reflects normal circumstances where equal weighing 

is given to availability and physical and economic access, 
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whereby more information on access is known. Scenarios 2 and 

3 are implemented in October 2023, when the significance of 

availability through farming means became significantly lower 

(Famine Early Warning Systems, 2024). 

 

4. Results 

4.1 Consumer and Food Price Inflation  

The Palestine's Consumer Price Index (CPI) is relatively stable 

from 2018 to 2024, with only modest fluctuations. Food tax hikes 

are applied to many items in 2015, 2019, 2022, and 2023 

(Lipkind, 2024). The average CPI value 104.94 suggests a 

moderate increase in prices since 2018, but the low standard 

deviation indicates that these changes have been gradual and 

controlled. However, when the last value, 136.33 in December 

2023 is recorded, a significant increase can be detected. 

 

 
Figure 3. Food price inflation measured through components of 

the CPI from 2018 to 2024. 

 

The Gaza Strip experiences considerable inflationary volatility in 

2023-2024, indicating little stability, as evidenced by the rapid 

increase in CPI values and high standard deviation. The mean 

CPI of 115.18 suggests that, on average, prices were higher than 

in the whole of Palestine, but the extreme upper range 322.76 

indicates a significant spike in prices, particularly noticeable after 

October 2023. This volatility shows Gaza Strip’s economy high 

sensitivity to external shocks. 

 

 

 
Figure 4. Food price inflation in Gaza (2018 baseline = 100). 

 

Figure 4 shows severe economic challenges, particularly after 

October 2023, which leads to sharp increases over 180% in the 

cost of essential food items. These economic pressures are further 

exacerbating food insecurity, leaving the population highly 

dependent on food imports and humanitarian aid. 

 

4.2 Truck and food imports  

 
Figure 5. Total truck and food truck imports from 2018 to 2024. 

 

Food imports declined significantly during periods of heightened 

conflict and instability, notably from May to August 2021 and 

after October 2023, as shown in Figure 5. The number of trucks 

remain relatively stable from 2018 to 2023, ranging from about 

7,900 to 9,500 with monthly variations. Monthly truck entries 

range from around 9,000 from January to June, to the low of 

around 6,000 in the months of July and August, followed by a 

rise from September to December to approximately 10,000. In 

2021, truck imports follow a similar trend, except in May to 

July/August, where imports drop considerably to 4,300 and 

continue to stay around 5,150 trucks for two more months. This 

timing coincides with the 2021 Israel-Palestine crisis, reflecting 

a potential role of politics in truck entries. In 2022 truck imports 

continues at normal levels, as well as up to September 2023. 

However, from October to May 2024 imports drop significantly, 

although they slightly increase in March and April 2024, 

following IPC Phase 5 famine warning release in early March 

2024 (IPC, 2024). 

 

4.3 Normalised Difference Vegetation Index (NDVI) 

 

 
Figure 6. NDVI from 2018 to 2024. 

 

The study reveals a significant decline in agricultural 

productivity in Gaza, as indicated by the decreasing maximum 

NDVI values from 0.25 in 2018 to 0.16 in 2024 in Figure 6. This 

decline points to worsening vegetation health and coverage. The 

cyclical nature of food production is reflected in the NDVI and 

Landcover Analysis, with peaks around February and troughs 

around September.  
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Figure 7. Component Analysis of the NDVI. 

 

In Figure 7, the seasonal component is highlighted and found to 

be a variation of ± 0.25 with peak in January, the growing season, 

with values of 0.22 to 0.25 and lows in July-September, the off-

season, with values of 0.14 to 0.17. The trend analysis reflects 

the gradual decline in NDVI values from the start of the series at 

around 0.24 to around 0.18 by the end. This suggests that a 

decline in overall vegetation health or coverage has occurred over 

the observed time period. The residuals are relatively small, 

mostly within the range of -0.02 to 0.02, indicating that the 

decomposition model captured the primary trends. There is a 

missing data point in February 2024 and the NDVI dropped 

extremely low in December 2018, which led to the high residual 

value. These are most likely data quality issues. 

 

4.4 Land-cover Map  

The land-cover map achieved an overall average accuracy of 0.82 

and a kappa statistic of 0.76 from January 2018 to May 2024. The 

median values for these metrics remained consistent with the 

overall results, while the model's performance showed variability 

with maximum accuracy and kappa values reaching 0.89 and 

0.85, respectively, and minimum values dropping to 0.76 and 

0.68, respectively. These classification results are depicted in 

Figure 8. 

 

 
Table 4. Accuracy Assessment of the Landcover Model. 

 

 
Figure 8. Maximum accuracy 0.88 (05/2022) on the left versus 

minimum 0.76 (10/2023) accuracy classification on the right 

 

 
Figure 9. Inverted dry fields from 2018 to 2024.   

 

The Inverted Dry Fields values in Figure 9 fluctuate significantly 

over time, showing both increasing and decreasing trends 

depending on the season. The Holt-Winters smoothed line 

reveals a more stable and predictable pattern compared to the raw 

data and captures the seasonal trends. The difference between the 

peaks and troughs in the raw data ranges from about 0.2 to 0.6, 

suggesting a moderate level of variability. 

 

 
Figure 10. Vegetated fields from 2018 to 2024.   

 

As illustrated in Figure 10, vegetated fields exhibit a distinct 

seasonal pattern, with elevated field levels (0.4-0.6) persisting 

from early January through mid-year (June-July). This period is 

followed by a remarkable decrease in levels, which remain low 

for the remainder of the year, aligning with repeated dry field 

conditions during these months. The amplitude in the raw data 

ranges from about 0.45 to 0.9 indicates significant variability. 

After smoothing, the amplitude reduces to a range of 

approximately 0.5 to 0.75. Using both vegetated and dry fields as 

land classification categories helps increase the certainty of the 

analysis, especially given the respective accuracies of analysis of 

the individual categories of 0.68 and 0.75. In both series, there 

are no significant upward or downward trends, which is most 

likely a result of moderate accuracies of the model. No similar 

analysis has been found in the literature; hence the findings 

cannot be triangulated. However, the two land categories present 

an inverse relationship and as the inverted dry fields follow the 

same pattern as the vegetated fields and the NDVI, some validity 

in the findings can be assumed.  

 

4.5 Food Security Index 

The developed food security index in Figure 11 reflects these key 

findings, showing impacts of seasonal patterns.  

 

 
Figure 11. Developed food security index from 2018 to 2024. 
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From 2018 to 2022 the index fluctuates around a middle range of 

0.6, with moderate peaks and troughs, reflecting the seasonal 

trends of local food production. From 2023 to 2024 the trend 

declines consistently, indicating a worsening in food security. 

 

 
Figure 12. Scenario 2 developed food security index from 2018 

to 2024. 

 

With the changed final weights, the index values remain the same 

before October 2023. Post October 2023, the adjustments cause 

the index to reflect a stronger influence from economic and 

transportation factors, while decreasing the contribution from 

agricultural and environmental metrics including NDVI, water 

availability, and the vegetation of the fields. This produces a 

lower minimum and faster recovery, when more trucks entered 

Gaza.  

Around 68 percent of households are found to be either 

moderately or severely food insecure during the latest Socio-

Economic and Food Security Survey in 2019 when the food 

security index was around 0.60 (UN OCHA, 2018). According to 

the index developed in Figure 11, food security through May 

2024 registered a values of 0.37, showing a 38.3% decline 

compared to previous levels. This percentage increase suggests 

that moderate or severe food insecurity levels increase to 94.0 

percent according to this created index. The IPC global initiative 

findings show that 95 percent of the Gaza Strip’s population face 

high levels of acute food insecurity from June to September 2024, 

for which 96 percent of the population is analysed (IPC, 2024). 

This figure aligns with the findings derived from the developed 

index, highlighting its utility in tracking changes in food security, 

particularly when a baseline survey is available for comparison. 

Increased food insecurity in Gaza is primarily driven by two key 

drivers as findings by the IPC show, restricted humanitarian 

access, affecting the number of trucks allowed to enter and 

hostilities, directly affecting crop production, which are 

abandoned due to the displacement of the population. These same 

drivers are reflected in the developed index, reinforcing its ability 

to capture real-world food security dynamics, when they are 

accounted for (IPC, 2024). 

 

 
 

Figure 13. Scenario 3 developed food security index from 2018 

to 2024. 

 

Each hypothetical scenario post October 2023 leads to 

significantly different changes in food security, highlighting the 

need for further calibration of the model with an on-ground 

assessment of each variable’s importance. The Scenario 1 Food 

Security Index decreases by approximately -12.2% from January 

2024 to May 2024. The Scenario 2 index has a smaller decrease 

of approximately -3.1% over the same period, meaning that the 

reduction of vegetated fields significantly impacts the index. 

Scenario 3 shows a slight increase of approximately 0.5% in the 

index from January 2024 to May 2024, reflecting the slight 

reduction of inflation and increase in food trucks. 

 

5. Discussion and Conclusion 

Whilst this study highlights the potential of remote sensing in 

assessing food security, several limitations emerge, including 

moderate accuracy in land cover assessment, limited knowledge 

of distribution mechanisms, and missing data.   

The accuracy of land cover analysis remains moderate due to 

various factors. Seasonal changes significantly impact 

classification accuracy, with vegetated fields showing the lowest 

accuracy (0.68), followed by dry fields (0.75), while water has 

the highest accuracy (0.98). Noise in the data and cloud cover 

during certain months further reduce classification performance. 

Additionally, the training areas within the regions of interest 

(ROIs) are only defined once, which does not account for 

seasonal variations, which results in fluctuating accuracy 

throughout the year. The random forest model accuracy declines 

in 2024 due to infrastructure destruction, which the model was 

not trained on. 

To improve land cover classification accuracy, training data can 

be collected across multiple seasons. Furthermore, integrating 

data from multiple remote sensing sources, such as optical and 

SAR imagery, has been shown to improve classification results 

(Weiss, Jacob, and Duveiller, 2020). Higher resolution imagery 

may also improve classification accuracy and enable monitoring 

of greenhouse changes, though this objective is not pursued in 

the present study due to moderate classification performance. 

Additionally, classification accuracy is affected by seasonal 

variation and cloud cover, as well as unexpected infrastructural 

destruction in 2024, which is not accounted for in training data. 

Missing data and limited knowledge of distribution mechanisms 

present significant constraints in assessing food security. The 

movement of delivered goods remains largely unknown, 

complicating measurements of food distribution within Gaza. 

Truck data is collected from UN agencies and COGAT for May 

2025, for which third-party verification is not possible, nor does 

it exist, due to safety concerns. Additionally, detailed information 

on food types and kilocalories transported in each truck is 

unavailable, restricting the depth of analysis, particularly in terms 

of food utilisation.   

Although remote sensing provides a cost-effective and scalable 

alternative to traditional field assessments, it cannot capture food 

utilization and intra-region distribution disparities. The spatial 

resolution of Sentinel-2 imagery limits the ability to monitor 

small-scale domestic food production and animal agriculture, 

thereby reducing the comprehensiveness of the analysis.   

Nevertheless, the integration of socioeconomic indicators and 

machine learning-based forecasting can enhance early warning 

systems and humanitarian response strategies. Understanding 

seasonal patterns can allow for targeted increases in food support 

ahead of time. An early warning system with more than one 

indicator is more likely to be able to capture changes in the food 

dynamics, which solely remote sensing-based systems fail to pick 

up. Furthermore, combining remote sensing techniques with 

contextual analysis—such as agricultural change detection, food 

import data, and food inflation trends—can provide a more 

granular understanding of food security dynamics than a singular 

approach.  Through tracking changes in the dimensions of food 
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security, policies can also be targeted specifically towards a 

declining dimension.   

Despite its limitations, remote sensing remains a valuable tool for 

assessing food security in contexts where traditional data 

collection methods are impractical. A multifaceted approach that 

integrates multiple remote sensing techniques with 

socioeconomic and contextual analysis can offer a more 

comprehensive perspective on food security challenges, enabling 

timely humanitarian interventions. 
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