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Abstract 

 

Accurate localization and detailed environmental perception are critical for planetary exploration, particularly in unstructured and 

complex terrains. To support such efforts, we present the WHU-PA3D dataset, a planetary analog dataset collected in the Mars-like 

Qaidam Basin. This dataset includes eight handheld LiDAR point cloud sequences and seven UAV image sequences, documenting 

diverse terrains such as yardangs, water-eroded landscapes, and canyons. It integrates multimodal data, including RGB imagery, 

LiDAR, and IMU measurements, offering a realistic testing platform for SLAM and image classification algorithms. Benchmarking 

experiments reveal the strengths and limitations of existing algorithms in handling complex and unstructured environments. The 

WHU-PA3D dataset provides a useful reference for planetary surface localization, geological analysis, and mission planning. 

 

 

                                                                 
 * Corresponding author  

1. Introduction 

1.1 General Instructions 

With the rapid advancement of space science and technology, 

the demand for exploration of planetary surfaces has become 

increasingly urgent. Planetary surface localization and mapping, 

as a critical task, provides accurate navigation maps for 

planetary rovers and other equipment. This is of great 

significance for planning safe and efficient exploration routes, 

identifying resources, and establishing human habitats and 

infrastructure for activities(Wynne et al., 2022). Traditional 

planetary rovers typically rely on stereo cameras and other 

equipment, but the advantage of LiDAR lies in its reliable 

performance in low-light conditions, ensuring effective surface 

mapping even in environments with insufficient lighting. It can 

capture subtle surface changes and topographic features, 

providing robust data support for scientific research on 

planetary geology and landforms. 

 

Currently, LiDAR point cloud-based SLAM technology has 

achieved successful applications in various fields such as 

autonomous driving (Bresson et al., 2017; Bürki et al., 2019; 

Cong et al., 2023), automated construction (Mascaro et al., 

2021), and agriculture (Oliveira et al., 2021; Shu et al., 2021), 

enabling accurate localization and map construction in 

unknown environments. However, SLAM performance still 

requires further evaluation when dealing with unstructured and 

highly complex environments (Giubilato et al., 2022a; Le Gentil 

et al., 2020). Particularly on planetary surfaces such as the 

Moon and Mars, their unique and complex terrain features—

such as craters, mountains, and fissures on the Moon, and 

deserts and canyons on Mars—lack structured features like 

buildings or roads, making localization and map construction 

significantly more challenging. 

 

In the field of general LiDAR SLAM, datasets like KITTI 

(Geiger et al., 2013) have become standard benchmarks for 

evaluating algorithm performance. However, they are primarily 

limited to urban environments and man-made structures, and 

fall short when addressing SLAM challenges such as feature 

degradation and scene complexity in natural environments. To 

address these issues, researchers have developed LiDAR SLAM 

datasets specifically for natural environments, such as forests, 

rugged terrain, underground mines, lakes, and farms (Leung et 

al., 2017). To better meet the demands of planetary surface 

LiDAR SLAM, purpose-designed datasets have now emerged. 

These datasets simulate the extreme environments of planetary 

surfaces and provide challenging topographical features. Tong 

CH et al. (Tong et al., 2013) provided two real planetary 

simulation rover test scenarios, with data collected by different 

rover platforms using a stop-scan-go method to gather 3D laser 

scan data, where 360° × 180° full-range scans are performed 

when the rover is stationary. Table 1 summarizes some existing 

SLAM datasets for unstructured scenes. 

 

However, despite these datasets providing more realistic 

environments for planetary exploration missions, there are still 

some unresolved challenges. To better meet the demands of 

planetary surface LiDAR SLAM, we present a dataset collected 

in the Qaidam Basin of Qinghai, China. The Qaidam Basin is 

renowned for its unusual natural geography and unique 

geological formations and is widely regarded as one of the most 

"Mars-like" places on Earth. We recorded eight point cloud 

sequences using a handheld sensor unit, with durations ranging 

from 5 to 18 minutes and covering distances up to 

approximately 2 kilometers. The unit included two RGB wide-

angle cameras, LiDAR, and IMU. Additionally, seven UAV 

image sequences were collected using a DJI drone, covering the 

point cloud collection scenarios mentioned above. The eight 

point cloud sequences collected by the handheld device and the 

seven image sequences collected by the UAV were classified 
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based on different terrains, including yardang landforms and 

water erosion landforms. To further validate the application 

value of the dataset, we designed specific experiments to test 

the capabilities of 3D reconstruction, SLAM, and image 

classification algorithms. First, we processed UAV images to 

generate high-precision 3D models. These models can simulate 

the realistic terrain of planetary surfaces, assisting researchers in 

conducting navigation and localization experiments under 

various conditions. Secondly, we conducted benchmarking 

experiments on the dataset, including LiDAR-SLAM and aerial 

image classification. Through the above research, we aim to 

provide robust data support for planetary exploration missions. 

 

Table 1: SLAM Datasets in Unstructured Environments 

Datasets Sensors Quantity Length Platform 

(Leung et al., 2017) Stereo Camera, 3D LiDAR, 2D Radar 43 ~2km Rover 

(Furgale et al., 2012) Stereo Camera, Sun Sensor, Inclinometer 23 ~10km Rover 

(Meyer et al., 2021) 
Stereo Camera, RGB Camera, 

Omnidirectional Camera 
36 ~9.2km Handheld 

(Vayugundla et al., 2018) Stereo Camera 2 ~2km Rover 

(Giubilato et al., 2022b) Stereo Camera, 3D LiDAR 7 
~4.3km 

~90min 
Handheld 

(Hewitt et al., 2018) 
Stereo Camera, 3D LiDAR, ToF Camera, 

UAV Visible Light 
3 

~1.8km 

~87min 
Rover, UAV 

Ours 
RGB Camera, 3D LiDAR, UAV Visible 

Light and Infrared 
15 

~4.5km 

~95min 
Handheld, UAV 

 

2. Datasets 

In the Qaidam Basin of western China, we collected eight point 

cloud sequences and seven UAV image sequences, 

documenting the unique features of various natural geological 

and landform characteristics in the region. The Qaidam Basin is 

renowned for its distinctive natural geography and geological 

structure, and is widely regarded as one of the most "Mars-like" 

places on Earth. Figure 1 shows the hardware devices used in 

our data collection. 

 

  

 
Figure 1: Handheld Scanner and UAV Used for Data Collection 

 

2.1 Data collection devices 

The handheld sensor system integrates a VLP16 LiDAR and an 

MTI-300 IMU. The VLP16 LiDAR features a 360-degree 

horizontal field of view and a 30-degree vertical field of view (-

15° to +15°), operating at 10 Hz. The MTI-300 IMU provides 

high-quality inertial measurements with a roll/pitch accuracy of 

0.2° RMS, heading accuracy of 1° RMS. Additionally, two 

visible-light cameras in the system capture RGB images at 

resolutions of 1920×1080 pixels, with a 220-degree horizontal 

field of view. 

 

The UAV system captures high-resolution terrain imagery using 

visible-light and infrared cameras. The visible-light camera 

features an 85° field of view, a 35 mm equivalent focal length of 

24 mm, and an aperture of f/2.8. Images are captured at a 

resolution of 4056×3040 pixels, with automated flight planning 

ensuring an overlap rate of 80% laterally and 70% 

longitudinally. The infrared camera provides thermal imaging 

with a resolution of 640×480 pixels and captures temperature 

ranges of -10°C to +140°C in high-gain mode or -10°C to 

+400°C in low-gain mode. The GNSS module supports 

GPS+GLONASS dual-satellite positioning, achieving positional 

accuracy of ±0.5 m vertically and ±1.5 m horizontally during 

flight. 

 

2.2 Data introduction 

The data collection area is remote from human activity, offering 

us an view of extreme and undisturbed natural environments, 

including landforms commonly found on Mars, such as yardang 

and water erosion features. In terms of yardang landforms, we 

collected three point cloud sequences and two UAV image 

sequences. These point cloud sequences capture the complex 

and towering yardang formations and significant topographical 

variations, making them suitable for testing the pose estimation 

capability of SLAM algorithms in complex terrains.  

 

In terms of water erosion landforms, we collected four point 

cloud sequences and five UAV image sequences. These point 

cloud sequences encompass the complex structures of gully and 

river valley landforms, resembling water erosion landforms on 

Mars. By analyzing erosion features, river channels, and valley 

networks in these point cloud data, researchers can gain deeper 
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insights into the origins and movement processes of Martian 

water bodies (Xiao, 2021). 

 

Additionally, we collected one point cloud sequence in a 

canyon. Compared to other terrains, canyons are a typical 

structural landform with significant faulting, folding, and 

geological features. 

To provide a comprehensive overview of the data collection, 

Table 2 summarizes the handheld LiDAR data collection 

sequences in the Qaidam Basin, while Table 3 details the 

corresponding UAV data collection sequences. Additionally, all 

UAV data were processed using DJI Terra software to generate 

3D models, including both mesh and point cloud models. 

Notably, the Yardang01 handheld sequence corresponds 

directly to the Yardang01 UAV sequence, capturing the same 

region through complementary perspectives. Similarly, the 

handheld sequences Yardang02-03 align with the UAV 

sequence Yardang02. The handheld sequences Gully01-03 

correspond to the UAV sequences Gully01-03, and the 

handheld sequence River Valley 01 is consistent with the UAV 

sequences River Valley01-02. 

 

Table 2: Overview of Handheld LiDAR Data Collection Sequences in the Qaidam Basin 

RosBag 

Filename 
Duration Handheld Device Image Samples Description 

Yardang01 315 sec 

  

Yardang landscape, data 

collected along the base 

of formations (Approx. 

0.23 km). 

Yardang02 908 sec 

  

Yardang landscape, data 

collected along the base 

of formations (Total 

approx. 1.02 km). 
Yardang03 521 sec 

Gully01 1118 sec 

  

Water erosion landforms 

(Gullies) in Qaidam 

Basin. (Total approx. 1.82 

km) 

Gully02 1077 sec 

Gully03 434 sec 

River 

Valley01 
356 sec 

  

Water erosion landforms 

(River Valley) in Qaidam 

Basin. (approx. 0.19 km) 

Canyon01 1013s N/A 

Collected in a canyon; no 

trajectory and camera 

malfunction, only point 

clouds recorded. 

 

Table 3: Overview of UAV Data Collection Sequences in the Qaidam Basin 

Name Quantity Area (km²) D-GPS Trajectory Data Samples 

Yardang01 63 0.0614 

   

Yardang02 339 0.3255 
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Gully 01 116 0.1330 

   

Gully 02 217 0.2970 

   

Gully 03 95 0.1193 

   

River Valley 01 271 0.2150 

   

River Valley 02 143 0.2063 

   

 

3. Benchmark 

To evaluate the performance of existing SLAM and image 

processing algorithms in planetary-like environments, we 

conducted comprehensive benchmarking on the WHU-PA3D 

dataset, including performance assessment of LiDAR-SLAM 

algorithms and experimental analysis of image classification 

tasks. 

 

3.1 SLAM 

To evaluate the performance of existing SLAM algorithms in 

planetary-like environments, we conducted experiments on 

some mainstream LiDAR odometry algorithms (Lv et al., 2021; 

Xu et al., n.d.; Zhang and Singh, 2014) using the WHU-PA3D 

dataset. Because most of our data were collected in natural, 

unstructured terrains, where artificial features are largely absent, 

standard SLAM algorithms encountered substantial difficulties. 

In our experiments, we observed that many solutions either 

struggled to initialize or maintain tracking in regions with 

sparse or repetitive geometry, yielding partial or inconsistent 

results. 

 

Among these approaches, LOAM (Zhang and Singh, 2014) 

successfully processed a short portion of the “Canyon01” 

sequence, yet it exhibited trajectory instability and produced 

incomplete maps in areas with abrupt morphological changes. 

Figure 2 illustrates LOAM’s localization trajectory and 

generated point cloud map in the canyon sequence. While the 

system performed adequately in segments featuring more 

prominent terrain structures, its accuracy degraded rapidly over 

extended stretches lacking sufficient vertical constraints. 

 

A range of underlying factors contribute to these challenges. 

Specifically, planetary-analog terrains typically feature fewer 

distinct geometric cues, making it difficult for feature-based 

matching algorithms to remain reliable over extended 

trajectories. Environmental conditions such as dust, variable 

lighting, and highly uneven topography further compromise 

sensor measurements and reduce SLAM robustness. Looking 

ahead, two major directions for improvement can be pursued: (1) 

hardware advancements, for example integrating LiDAR 

sensors with increased channel counts or larger vertical fields of 

view to capture more comprehensive surface information, and 

(2) algorithmic refinements, which may involve leveraging 

multi-modal data fusion (e.g., LiDAR, camera, and IMU) and 

designing more robust feature-extraction and matching 

strategies tailored to unstructured geological settings. 

 

 
Figure 2: Localization Trajectory and Map in the Canyon 

Sequence (LOAM) 

3.2 Image Classification 

The dataset contains a total of 1,244 high-resolution images, 

with 622 images used for the training set and 622 images used 

for the test set. Due to the spatial overlap of the UAV-collected 

data, random splitting may result in training and test sets being 

too similar, which could hinder the effective evaluation of the 
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model's generalization ability. Therefore, we divided the data 

based on the range and time of capture to ensure that the 

training and test sets do not overlap spatially. 

 

To comprehensively evaluate the classification performance of 

models on planetary-like terrains, we selected mainstream deep 

learning image classification models, including the ResNet (He 

et al., 2016) (ResNet-34, ResNet-50, ResNet-101), VGG 

(Simonyan and Zisserman, 2015), EfficientNet (Tan and Le, 

2019), Vision Transformer (Dosovitskiy et al., 2021), and 

models integrating convolutional and Transformer architectures, 

such as Swinv2 (Liu et al., 2022) (Swinv2-small, Swinv2-tiny), 

MaxViT (Tu et al., 2022) and VOLO (Yuan et al., 2021). The 

selection of these models was primarily based on their 

lightweight design and efficiency, making them suitable for 

resource-constrained and real-time processing scenarios in 

planetary exploration missions. Moreover, these models 

encompass both classic convolutional neural network (CNN) 

architectures and modern Transformer architectures, enabling a 

comprehensive evaluation of their performance in image 

classification for planetary-like terrains. 

 

During the experiments, all models were trained under the same 

settings. We used cross-entropy as the loss function, with SGD 

as the optimizer and a learning rate of 0.1. The training batch 

size was set to 16, and a total of 75 epochs were conducted. All 

models were implemented and trained using the PyTorch 

framework, with acceleration provided by an NVIDIA RTX 

3060 GPU. To comprehensively evaluate the classification 

performance of the model, we used the F1-score as the primary 

evaluation metric, which combines both precision and recall. 

 

Experimental results (Tabel 4) indicate that existing image 

classification algorithms face challenges in planetary-like 

environments, particularly in distinguishing between categories 

with similar terrain features. Future research could consider the 

following aspects: First, increasing dataset diversity by 

collecting more images under varying lighting conditions, 

seasons, and angles to enhance model generalization. Second, 

integrating multimodal data such as multispectral and infrared 

imagery to enrich feature representations and improve the 

model's ability to discern subtle differences. Additionally, 

designing specialized network architectures for terrain features 

or incorporating attention mechanisms to enhance feature 

learning in critical areas are also promising directions for 

exploration. 

 

Table 4: Image Classification F1-score of the Dataset 

Method Params Yardang Gully 
River 

Valley 

resnet34 21.8 95.59 95.93 92.44 

resnet50 25.56 85.97 91.40 62.50 

resnet101 44.55 90.81 90.03 68.79 

vgg19 143.68 83.33 93.47 74.41 

Maxvits(tiny) 30.92 92.59 99.27 89.12 

swinv2(small) 49.7 96.05 97.83 88.96 

swinv2(tiny) 28.33 93.26 96.27 73.79 

Efficientnet(b0) 5.29 85.07 97.31 80.94 

Vit(tiny) 5.72 86.86 91.10 60.98 

volo(d1) 26.63 94.20 98.53 80.71 

 

4. Conclusion 

We present a dataset recorded in a planetary simulation 

environment, which includes camera, LiDAR, and Inertial 

Measurement Unit (IMU) data, covering several typical natural 

geological and landform features, such as yardang landforms, 

water erosion landforms, and canyons. We also evaluated the 

performance of various LiDAR-based SLAM algorithms and 

the classification performance of aerial images on the sequences. 

This dataset provides a realistic testing platform for positioning 

and navigation technologies in planetary exploration missions, 

and also offers valuable data resources for geological and 

landform analysis as well as planetary environment simulation. 
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