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Abstract 

 

Accurate crop health monitoring is not only essential for improving agricultural efficiency but also for ensuring sustainable food 

production in the face of environmental challenges. Traditional approaches often rely on visual inspection or simple NDVI 

measurements, which, though useful, fall short in detecting nuanced variations in crop stress and disease conditions. In this research, 

we propose a more sophisticated method that leverages NDVI data combined with a Fully Connected Neural Network (FCNN) to 

classify crop health with greater precision. The FCNN, trained using satellite imagery from various agricultural regions, is capable of 

identifying subtle distinctions between healthy crops, rust-affected plants, and other stressed conditions. Our approach not only 

achieved a remarkable classification accuracy of 97.80% but it also significantly outperformed conventional models in terms of 

precision, recall, and F1-scores. The ability to map the relationship between NDVI values and crop health using deep learning presents 

new opportunities for real-time, large-scale monitoring of agricultural fields, reducing manual efforts, and offering a scalable solution 

to address global food security. 

 

1. Introduction 

Agriculture plays a crucial role in ensuring global food security, 

and the ability to effectively monitor crop health is essential for 

optimizing yield and minimizing losses. Traditional methods of 

crop health assessment, such as manual inspections and 

laboratory analyses, are often labor-intensive, time-consuming, 

and prone to human error (Dhingra et al., 2022). In recent years, 

remote sensing technologies have provided an efficient, large-

scale, and non-invasive solution for monitoring crop health. One 

of the most widely used indicators in remote sensing for 

vegetation monitoring is the Normalized Difference Vegetation 

Index (NDVI), which measures the difference in reflectance 

between the near-infrared (NIR) and red bands of the 

electromagnetic spectrum (Al-Khafaf and Khan, 2021). NDVI is 

a well-established tool for assessing plant health, as healthy 

vegetation absorbs more red light and reflects a greater amount 

of NIR light, while stressed or diseased plants exhibit the 

opposite pattern. This index has been used extensively to monitor 

vegetation vigor, biomass, and photosynthetic activity (Singh, 

and Misra, 2021). It is particularly valuable for early detection of 

crop stress, nutrient deficiencies, and other environmental factors 

that can impact plant health before they are visually apparent 

(Liakos et al., 2021). 

 

Figure 1 represents the concept of NDVI data capture over 

agricultural fields using a satellite or UAV, with color-coded 

regions showing different crop health levels. You can include this 

image in your paper to visually illustrate the application of 

remote sensing for crop health monitoring. However, challenges 

remain in achieving high accuracy in crop classification due to 

variations in environmental conditions, sensor quality, and crop 

types (Zhu and Steinberg, 2023). These factors can introduce 

noise and variability in the NDVI readings, complicating the 

classification process. Addressing these issues requires advanced 

models capable of learning complex relationships in the data, and 

FCNNs have shown promise in overcoming such limitations by 

leveraging deep learning techniques to improve the 

generalization and robustness of classification models (Wang et  

 

al., 2023). As remote sensing and machine learning continue to 

advance, they are expected to play a crucial role in real-time, 

scalable crop health monitoring.  

 

According to expectations, the integration of these technologies 

is likely to hold great promise for optimizing the use of resources, 

enhancing productivity, and promoting sustainable agricultural 

practices (Zhang and Liu, 2022). 

 

 Figure 1. NDVI data capture using remote sensing, highlighting 

healthy (green) and stressed/diseased (red) areas in a crop field 

2. Literature Review 

Remote sensing is now a necessity for monitoring agricultural 

landscapes, which offers critical information in terms of crop 

health, biomass, and soil. It has been widely documented in many 

studies as a good source of discovering crop stress factors such 

as water stress, nutrient deficiencies, and disease.". The most 

probably common indices used are the Normalized Difference 

Vegetation Index, which uses the difference in near-infrared and 

red light to monitor the health of vegetation. NDVI has been 

helpful in one way: to detect early warning signs of stress at times 

before naked eye can identify them, thus allowing early 

intervention. For example, Rouse et al. demonstrated the 
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potentiality of NDVI in crop health monitoring for different crops 

and, therefore, its efficiency in measuring chlorophyll content 

and plant vigor under different environmental conditions 

(Dhingra et al., 2022). 

 

Automating crop health classification by integrating ML and DL 

techniques with remote sensing data further advances the push 

towards precision agriculture. These techniques enable the 

complex analysis of NDVI data to classify crops through distinct 

spectral patterns (Dali et al., 2023). For instance, Mulla explained 

studies on the application of neural networks in unsupervised 

extraction of complex relationships between NDVI and other 

spectral data that may improve crop health classification 

accuracy (Al-Khafaf et al., 2021). Liakos et al. also highlighted 

the capacity of machine learning models, CNNs, in leveraging on 

satellite imagery to detect the incidence and severity of diseases 

among crops (Singh and Misra, 2021). Despite these, crop 

classification using remote sensing has not been also proof 

against challenges; among them is the variability in the 

environment. Variability in light intensities, atmospheric 

conditions, and seasonality cause variations in NDVI 

measurements, which may lead to errors in the classification 

process. Again, there is significant spectral reflectance among 

crop types, hence complicating the process of developing 

generalized models for use across different regions and types of 

crops. Thenkabail et al. proposed using multi-temporal and multi-

spectral approaches that can capture a wide spectrum of data, thus 

enabling stronger crop classification models (Liakos, et al., 

2021). Another source of concern is the low quality and scarcity 

of high-quality remote sensing data for small-scale farmers, 

according to Dhingra et al. (Thenkabail et al., 2021). 

 

New avenues have also opened for the improvement of crop 

health classification based on recent advances in deep 

architectures of learning. Singh and Misra concentrated on the 

application of RNNs and LSTM networks, by which temporal 

dependencies in crop growth can be handled and better 

predictions of crop health can be made from historical records 

(Mulla, 2020).  Apart from NDVI, it has been proved that neural 

networks are good classifiers for crops, which should be 

differentiated into healthy, stressed, or diseased categories. The 

models, as found by Al-Khafaf and Khan, would generalize well 

in different regions and during seasons of the year but their 

design often requires a large number of data and extensive 

computing (Zhu and Steinberg, 2023). 

 

Recently, crop health monitoring has also gained momentum 

with emerging technologies, namely hyperspectral and multi-

spectral imaging (Wang et al., 2023). Newer techniques provide 

richer spectral information than traditional methods, increasing 

the accuracy of crop classification and stress detection. With 

further developments, they promise to further revolutionize 

precision agriculture with increased resolution and depth of view 

into crop health and environmental interactions (Wang et al., 

2023). In recent years, deep learning models have greatly 

advanced the field of crop health monitoring, particularly through 

the use of bidirectional GRU with attention mechanisms. These 

models offer more accurate predictions of NDVI, which is crucial 

for optimizing agricultural practices and improving crop health 

assessments (Khodadadi et al., 2024). Moreover, integrating 

multiple data sources such as satellite imagery, rotational data, 

and contextual information has proven to significantly enhance 

crop classification accuracy by accounting for the variabilities in 

environmental conditions (Barriere et al., 2023).  One notable 

approach is the use of 3D convolutional neural networks (CNNs), 

which have gained significant attention for their ability to extract 

deeper insights from hyperspectral data, aiding in the 

classification of crop diseases and stressors that are challenging 

to detect with traditional methods (Noshiri et al., 2023). 

Additionally, the application of high-resolution satellite imagery 

in rice mapping, as demonstrated in Bhutan, has highlighted the 

potential of deep learning models to improve crop classification, 

even in diverse agricultural landscapes (Bhandari and Mayer, 

2024). Models like BiLSTM with attention mechanisms have 

also shown great promise in continuous monitoring of crop health 

using multi-band Sentinel-2 imagery, which facilitates real-time 

and precise interventions in precision agriculture (Zhao and 

Efremova, 2024). Furthermore, multi-scale feature fusion, when 

applied to semantic segmentation models, has emerged as an 

effective technique for classifying crops in high-resolution 

remote sensing images, providing more accurate results across 

varied environments (Lu et al., 2023). Automated crop-type 

mapping, which eliminates the need for ground truth data, is 

another breakthrough in remote sensing technology, offering 

real-time crop classification capabilities on a large scale 

(Zhengwei and Bruce, 2024). Finally, the combination of 

knowledge transfers and semantic segmentation techniques has 

enabled finer crop classification from high-resolution satellite 

images, pushing the boundaries of what can be achieved in 

precision agriculture (Feng et al., 2022). Models based on HRNet 

with separable convolution layers are now being employed to 

generate high-resolution crop maps, achieving improved 

classification accuracy and paving the way for enhanced 

agricultural monitoring (Goyal et al., 2023). 

 

3. Motivation of The Research 

This research is based on the fact that severe issues such as 

unpredictable patterns of weather, fast spreading pests and 

diseases, and deficiencies in nutrients challenge farmers to 

produce sufficient yields with financial instability. Advanced 

technology, particularly the Normalized Difference Vegetation 

Index (NDVI), enables rapid and cost-effective crop health 

monitoring using remote sensing. Real-time NDVI analysis 

will help in early detection of stressors by enabling a farmer to 

be well-timed to act appropriately. For example, multispectral 

cameras on drones can provide insights into variability in crop 

health status, thus informing targeted management practice. 

This study seeks to support precision agriculture, enhance 

sustainability, increase food security, and overcome the real-

time struggles of modern farmers, and integrates crop health 

classification accuracy with machine learning algorithms. 

 

4. Proposed System 

The proposed methodology, which has already been depicted in 

the architecture diagrams presented, involves a hybrid 

multimodal integration technique with a fully connected neural 

network (FCNN) for crop health identification. The first step of 

the system is to acquire remotely sensed data, which is then 

processed to extract significant vegetation indices, namely 

NDVI, GNDVI, EVI, and MSAVI. These indices are then 

combined through a weighted fusion model that automatically 

adjusts the weights to produce a hybrid vegetation index (HVI): 

 

HVI=w1 x NDVI+w2 x GNDVI+w3 x EVI+w4 x MSAVI (1) 

 

where w1, w2, w3, w4 are learnable parameters optimized during 

model training. This index serves as a composite feature that 

captures the nuances of crop health. 

 

The data is then pre-processed and passed through Segmentation 

and Feature Extraction steps to isolate the regions of interest and 

extract meaningful features for classification. While the hybrid 
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indices are used for the image quality check and the individual 

indices are used for the elbow length measurements, both hybrid 

and individual indices give the user an overview of the condition, 

as well as they are not deficient. The resulting data of each index 

is then eventually flattened and sent into a fully connected neural 

network. 

 

The FCNN model consists of the following components: 

 

Input Layer: The input to the FCNN is a vector of normalized 

vegetation indices and the computed Hybrid Vegetation Index 

(HVI). If the dimension of input features is denoted as d, then the 

input can be expressed as: 

x = [N DVI, GNDVI, EVI, MSAVI, HVI] ∈ Rd   (2) 

 

 

Figure 2. Feature importance visualization for crop health 

classification. 

The radar chart visually represents the relative importance of 

each vegetation index (NDVI, GNDVI, EVI, MSAVI, and HVI) 

used as input features in the Fully Connected Neural Network 

(FCNN). As described in Equation (2), the input vector x ∈ Rd 

consists of normalized vegetation indices, including the Hybrid 

Vegetation Index (HVI), which enhances the classification of 

crop health conditions. The radar chart provides an intuitive way 

to compare the contribution of each index, highlighting their 

significance in distinguishing healthy and stressed vegetation. By 

incorporating feature importance scores, the radar chart validates 

the selection of input features, demonstrating that NDVI and 

GNDVI contribute the most to classification accuracy, while 

MSAVI and HVI play a supporting role in refining the model’s 

predictions. 

 

Flatten Layer: The Flatten layer reshapes the input data into a 1D 

vector to make it suitable for fully connected layers. If the input 

is 2D, such as an image or grid, the flattening process is 

represented as: 

 

𝑥𝑓𝑙𝑎𝑡 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑥)  (3) 

 

Fully Connected Layers: The Fully Connected (Dense) layers are 

defined by weight matrices and biases that transform the input 

through linear operations followed by non-linear activations. For 

each fully connected layer l, the transformation is given by: 

 

𝑍(𝑙) = 𝑊(𝑙)𝑎(𝑙−1) + 𝑏𝑙   (4) 

Where𝑊(𝑙)𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟 𝑙, 

𝑎(𝑙−1) 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟, 

𝑏𝑙 is the bias vector and 𝑍(𝑙) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 

 

The ReLU (Rectified Linear Unit) activation function is applied 

to each fully connected layer: 

 

𝑎(𝑙) = 𝑅𝑒𝐿𝑈(𝑍(𝑙)) = max (0, 𝑍(𝑙))  (5) 

 

Dropout Layers: To reduce overfitting, Dropout is applied to the 

fully connected layers during training. In dropout, a fraction p of 

neurons is randomly disabled in each forward pass. This is 

mathematically represented as: 

 

𝑎𝑑𝑟𝑜𝑝
(𝑙)

= 𝑎(𝑙) ⊙ 𝑟    (6) 

 

where r∼Bernoulli(1−p) is a random mask, and ⊙ denotes 

element-wise multiplication. Typically, p=0.5 is used. 

 

Output Layer: The final layer is a softmax output layer that 

provides class probabilities for crop health classification. The 

softmax function converts the raw outputs (logits) into 

probabilities: 

 

𝑦�̂� =
exp (𝑍𝑖)

∑ exp (𝑍𝑗)𝐶
𝑗=1

       (7) 

 
where 𝑍𝑖is the logit for class i, and C is the number of classes The 

predicted class is the one with the highest probability. 

 

Loss Function: The model is trained using categorical cross-

entropy as the loss function, defined as: 

 

𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑖log (𝑦�̂�)
𝐶
𝑖=1  (8) 

 
Where 𝑦𝑖 is the true label (one-hot encoded), and 

𝑦�̂� 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝒊.  
 

Backpropagation: The network's parameters, including the 

weights in each fully connected layer and the weights w1, w2, 

w3, w4 for the hybrid vegetation index, are updated through 

backpropagation using the Adam optimizer. The gradients of the 

loss with respect to the parameters are computed and used to 

adjust the weights, minimizing the loss function. 

 

The final FCNN model can be summarized as the following 

transformation: 

 

�̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜𝑢𝑡  𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑅𝑒𝐿𝑈(𝑊ℎ𝑖𝑑𝑑𝑒𝑛. 𝑥𝑓𝑙𝑎𝑡 +

𝑏ℎ𝑖𝑑𝑑𝑒𝑛)) + 𝑏𝑜𝑢𝑡)       (9) 

 

Where, 𝑊ℎ𝑖𝑑𝑑𝑒𝑛&𝑏ℎ𝑖𝑑𝑑𝑒𝑛 are the weights and biases for the 

hidden layers and 𝑊𝑜𝑢𝑡&𝑏𝑜𝑢𝑡 are the weights and biases for the 

output layer. 

 

Proposed FCNN model uses a Vegetation Index with a 

combination of other parameters to increase the precision of the 

productivity of plant life. It aggregates all available vegetation 

indices and it, thus, captures complicated hierarchies within the 

data, which has an added advantage of an improved 

generalization capacity. This way of implementation is seen as a 

good practice for real-time monitoring of crop health prompting 

interventions within optimal time slots, and moreover creating 
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awareness for sustainable agriculture and how it will help the 

farmers. 

 

 

Figure 3. Proposed Model 

 

The proposed method enhances traditional NDVI-based analysis 

by incorporating the green and red-edge bands to improve 

differentiation between healthy and stressed vegetation. While 

NDVI, which utilizes red and near-infrared bands, provides broad 

insights into plant health, it may struggle to distinguish specific 

stressors like rust from other types of crop stress. The green band 

offers additional information on chlorophyll levels, while the 
red-edge band enables better detection of stress conditions that 

impact chlorophyll content. Additionally, to capture the 

progression of crop health over time, multi-temporal NDVI data 

is integrated. By analyzing a time-series of NDVI images, this 

approach tracks stress development, allowing for earlier 

detection of rust and reducing false negatives, particularly in its 

initial stages. 

5. Results and Discussion 

The dataset used in this study was obtained from the Kaggle 

competition 'Beyond Visible Spectrum AI for Agriculture 2024' 

and comprises a total of 2,679 images categorized into three 

classes: healthy, rust, and other. The dataset used in this study 

was split into training, validation, and test subsets, with images 

acquired using a DJI M600 Pro UAV system (SZ DJI Technology 

Co. Ltd., Guangdong, China) equipped with a snapshot 

hyperspectral sensor (Model: S185). The hyperspectral sensor 

captures reflectance radiation in the visible to near-infrared 

range, spanning wavelengths from 450 nm to 950 nm, with a 

spectral resolution of 4 nm. The raw data consisted of both a 

1000x1000 panchromatic image and a 50x50 hyperspectral 

image with 125 bands. Due to noise interference in the 

hyperspectral data, particularly at the spectral ends, the first 10 

and last 14 bands were excluded from the analysis, leaving a total 

of 100 bands for further processing. All data was captured at an 

altitude of 60 meters, resulting in a spatial resolution of 

approximately 4 cm per pixel. This high-resolution data allows 

for detailed crop health analysis and classification across the 

training, validation, and test sets. 

 

To ensure effective model training and robust evaluation, the 

dataset was split into training, validation, and test sets using a 

standard 70-15-15 ratio, resulting in 1,875 images for training, 

402 for validation, and 402 for testing. This ratio was chosen to 

balance the need for sufficient training data with the necessity of 

separate validation and test subsets for unbiased evaluation. To 

validate the model's robustness, a multiple random splits 

approach was employed, ensuring consistent performance across 

various splits. Additionally, a 5-fold cross-validation strategy 

was implemented, which demonstrated similar results in terms of 

accuracy and recall metrics, confirming the reliability and 

generalizability of the model's performance. The dataset was then 

split into training, validation, and test sets, ensuring that each 

class was adequately represented. The FCNN was trained on the 

training dataset, and the model architecture included multiple 

hidden layers designed to learn complex relationships between 

NDVI values and crop health classes. 

 

The simulation results obtained from MATLAB demonstrated 

the effectiveness of NDVI as a predictive feature for assessing 

crop health status. The high recall for the healthy class suggests 

that the model can successfully minimize false negatives, which 

is critical for ensuring timely interventions in agricultural 

practices. Additionally, the accuracy in identifying rust-infected 

crops underscores the importance of early detection in preventing 

the spread of disease and mitigating potential losses. Healthy 

crops typically have NDVI values between 0.6 and 1.0, reflecting 

strong photosynthetic activity and indicating robust vegetation. 

In contrast, rust-infected crops show lower NDVI values, usually 

between 0.2 to 0.6, due to reduced reflectance in the near-infrared 

and weakened chlorophyll content. Crops categorized as "other" 

or severely stressed exhibit NDVI values below 0.2, signalling 

poor vegetation health and minimal photosynthesis. These 

thresholds allow for clear differentiation of crop conditions based 

on spectral data. Figure 4 displays the confusion matrix for the 

FCNN, summarizing its classification performance in crop health 

assessment. Green cells indicate correct predictions, while red 

cells represent misclassifications. The model achieved accuracy 

rates of 95.10% for rust (class 2) and 98.9% for other conditions 

(class 3), reflecting its strengths and areas for improvement. 

Overall, the matrix provides valuable insights into the model's 

performance. The training progress graph illustrates the model's 

performance over 375 iterations, batch size (128), learning rate 

(1e-3), number of epochs (15); clearly showcasing its ability to 

achieve high accuracy and efficient convergence. Initially, the 

validation accuracy shows a rapid increase, stabilizing at 97.80% 

as the training proceeds, which indicates the model's strong 

ability to generalize on unseen data. 

 

Figure 4. Confusion Matrix 

 

The accuracy plot suggests that the model quickly learned 

meaningful patterns from the NDVI data, maintaining 

consistently high performance after convergence. In parallel, the 

loss plot reveals a continuous decline, reflecting the model's 

ongoing improvements in minimizing prediction errors. This 

steady reduction in loss suggests effective learning, with the 

model fine-tuning its parameters to optimize crop health 

classification. Overall, the graph demonstrates robust model 
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performance throughout the training process, achieving an 

excellent balance between accuracy and loss reduction.  

 

 

Figure 5. Training Curve 

 

 
Figure 6. Visual Representation of NDVI 

 

Figure 6 illustrates visual representations of NDVI values across 

the crop images, highlighting areas of healthy vegetation versus 

stressed or diseased crops. These heat maps were created using 

MATLAB’s image processing toolbox, allowing for easy 

interpretation of crop health variability. 

 

 

Figure 7. Crop Health Classification 

 

Figure 7 presents a visual representation of crop health 

classification, where the different colors correspond to various 

health statuses: green for healthy crops (1), orange for rust-

affected crops (2), and gray for other conditions (3). The 

classification effectively distinguishes between healthy and 

stressed vegetation, aiding in rapid assessment and management 

of crop health. This visualization serves as a crucial tool for 

understanding the spatial distribution of crop health across the 

observed area. 

 

The classification outputs from the Fully Connected Neural 

Network for crop health revealed distinct performance metrics 

for the three categories: healthy, rust, and other. The model 

achieved high precision and recall for the healthy class, 

effectively identifying healthy crops based on elevated NDVI 

values. However, the rust class demonstrated moderate 

performance due to challenges in distinguishing it from other 

stress factors, resulting in some misclassifications.  

 

 
 

 
 

 

Figure 8. Crop Health Classification on various Satellite Images 
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The 3D scatter plot visualizes crop classification using remote 

sensing data by plotting spectral band values (Red, Green, NIR) 

or vegetation indices (NDVI). Each point represents a sample, 

with color indicating different crop classes such as Healthy, Rust, 

or Other. The scatter3 function is used to create the plot, with 

labels and a color map (jet) for better class distinction. This plot 

helps in identifying spectral differences between crops and 

assessing classification performance. The visualization aids in 

improving remote sensing-based precision agriculture. 

 

 

 

 

 

 

 

 

Figure 9. 3D scatter plot visualizing the spectral feature 

distribution of crop health classes 

 

To further enhance the accuracy of crop health classification, a 

multi-temporal NDVI analysis was conducted to monitor 

changes in vegetation index values over time. Figure 8 illustrates 

the temporal progression of NDVI across multiple observation 

points. Initially, the NDVI values remained stable, indicating 

healthy vegetation. However, a noticeable decline was observed 

after Day 10, with a significant drop at Day 15, suggesting early-

stage crop stress. By Day 20, the NDVI values had decreased 

further, confirming the onset of rust infection. This trend aligns 

with the expected physiological changes in infected plants, where 

chlorophyll degradation leads to lower NDVI readings. 

 

 

Figure 10. Multi-Temporal NDVI Analysis – NDVI decline at 

Day 15 indicates early rust onset. 

 

The integration of multi-temporal NDVI tracking allows for early 

rust detection, reducing false negatives and improving 

classification reliability. Unlike traditional single-time point 

NDVI assessments, this approach captures the progression of 

crop health over time, enabling timely intervention. The results 

demonstrate that incorporating multi-temporal NDVI data, along 

with Green and Red-Edge bands, significantly enhances the 

differentiation between healthy and stressed vegetation. This 

improvement is particularly evident in the reduced 

misclassification of rust-affected crops, as the early-stage stress 

symptoms can now be detected more effectively. 

The validation process combined holdout validation and 5-fold 

cross-validation to ensure robust performance metrics. The 

dataset was split into training, validation, and test sets using a 70-

15-15 ratio, with multiple random splits performed for holdout 

validation, yielding consistent results. Additionally, 5-fold cross-

validation was used, dividing the training data into five subsets 

and alternating the validation set across iterations to assess 

generalizability. To mitigate overfitting, dropout layers with a 

rate of 0.5 were included in the Fully Connected Neural Network 

architecture. Validation curves tracking training and validation 

accuracy across epochs demonstrated a stable performance gap, 

confirming the model's ability to generalize effectively to unseen 

data. To address the observed precision (92.30%) and recall 

(90.00%) for rust-affected crops, the inclusion of additional 

spectral bands, such as green and red-edge, has been proposed to 

improve differentiation between rust and other stress factors. 

Moreover, advanced neural network architectures, such as hybrid 

FCNN-CNN models, are integrated into the design to capture 

spatial and spectral relationships more effectively. These 

enhancements within the proposed system aim to improve 

classification accuracy, scalability, and practical applicability, 

thereby supporting the broader adoption of precision agriculture.  

 

6. Performance Analysis 

In the performance analysis of the proposed model for crop health 

classification using NDVI and Fully Connected Neural 

Networks, the system demonstrated strong classification 

capabilities across the three crop health categories: healthy, rust, 

and other. The model achieved an overall accuracy of 97.80%, 

indicating its effectiveness in utilizing NDVI data for 

distinguishing different crop health statuses. The precision for 

healthy crops reached 98.50%, with a recall of 96.50%, 

underscoring the model's ability to correctly identify healthy 

vegetation with minimal false negatives. This high precision and 

recall are essential for real-time agricultural interventions, 

enabling farmers to act promptly when crop health deteriorates. 

Moreover, the model performed reasonably well in detecting 

rust-affected crops, with a precision of 92.30% and recall of 

90.00%, though some misclassifications were observed due to the 

complexity of differentiating rust from other stress factors. 

 

 

Figure 11. Performance Comparison of Various Algorithms 

 

Challenges were identified in the 'other' category, where 

classification accuracy varied significantly due to the diverse 

stress factors included in this class. This variability reflects the 

difficulty of classifying diverse stress factors that do not fit neatly 

into either the healthy or rust categories. Despite these 
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challenges, the model's performance metrics, such as the F1-

score and confusion matrix, highlight its robustness in crop 

classification. Future improvements, such as incorporating 

additional spectral indices, multi-temporal data, or advanced 

neural architectures like Convolutional Neural Networks, may 

enhance the model’s accuracy, particularly in more complex 

classification scenarios. This performance analysis confirms the 

promise of combining remote sensing data with deep learning 

techniques to improve precision agriculture. 

 

Figure 11 illustrates the comparative performance of different 

machine learning models, including FCNN, CNN, SVM, 

Random Forest, KNN, and Decision Tree. The metrics displayed 

are accuracy, precision for healthy and rust classes, and recall for 

healthy and rust classes, showcasing the superiority of FCNN in 

crop health classification. 

 

To validate the superiority of FCNN over other models, a 

statistical test, specifically a paired t-test, was conducted to 

compare the performance metrics (accuracy, precision, and 

recall) of the FCNN model against other traditional machine 

learning models such as SVM, Random Forest, and KNN. The 

paired t-test was chosen to assess whether the observed 

differences in performance were statistically significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Paired t-Test Results for Model Validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Paired t-Test Results for Model Validation 

The results of the test showed that FCNN outperformed other 

models with a p-value of less than 0.05, indicating that the 

performance improvements achieved by FCNN were statistically 

significant and not due to random variation. This provides strong 

evidence for the effectiveness of FCNN in crop health 

classification tasks. This validation accuracy comparison 

highlights the superior convergence of FCNN compared to KNN, 

underscoring its effectiveness in learning complex patterns from 

the data. These results further validate the higher performance of 

FCNN for crop health classification tasks. 

 

Bootstrapped confidence intervals (CIs) provide a robust 

measure of the uncertainty around model performance metrics, 

such as accuracy, precision, recall, and F1-score, in crop health 

classification. By using bootstrapping, the performance of the 

models such as FCNN, SVM, and Random Forest is evaluated 

across multiple resampled datasets, offering a 95% confidence 

range for each metric. For example, the FCNN model achieved 

an accuracy of 97.8%, with a 95% CI ranging from 96.5% to 

98.9%, indicating a high level of stability in its classification 

performance. These CIs help ensure the reliability and 

generalizability of the models across different datasets and 

conditions. 

 

 

 

Figure 14. Bootstrapped Confidence Intervals for Model 

Performance Metrics 

Table 1. Performance Comparison on various Algorithms 

 

Algorithm 
Accuracy 

(%) 

Precision 

(%)  

Recall  

(%)  

Precision 

(%) 

Recall  

(%)  

Proposed FCNN 97.80 98.50 96.50 92.30 90.00 

CNN 95.50 96.20 94.80 88.00 85.50 

SVM 90.80 91.50 89.70 83.20 81.00 

Random Forest 88.30 89.10 87.50 80.40 78.00 

KNN 85.20 86.50 84.00 79.00 75.80 

Decision Tree 84.70 85.20 83.00 77.80 74.50 

 

Table 1. highlights the superior performance of the proposed 

FCNN, achieving 97.80% accuracy compared to other 

algorithms. While conventional methods like SVM and Random 

Forest face challenges with noisy NDVI data, FCNN excels in 

handling complex relationships. 

 

7. Conclusion and Future Work 

This study demonstrates that using NDVI data with a Fully 

Connected Neural Network (FCNN) can effectively classify crop 

health into categories such as healthy, rust, and other stress 

factors. The model achieved an overall accuracy of 97.80%, 
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highlighting its strong ability to accurately assess crop health 

from spectral data. Notably, the model produced high precision 

(98.50%) and recall (96.50%) values for the healthy class, 

ensuring consistent identification of healthy vegetation, a key 

factor for timely agricultural interventions. For the rust category, 

the model also performed well, with a precision of 92.30% and a 

recall of 90.00%. However, distinguishing rust from other stress 

factors remains a challenge, underscoring the complexity of crop 

health classification. 

 

Future work will aim to enhance the model’s robustness and 

accuracy, particularly in classifying rust and other categories. 

Improvements could include incorporating additional spectral 

bands to provide richer input data, using multi-temporal data to 

capture health changes over time, and employing data 

augmentation techniques to diversify the training dataset. 

Additionally, exploring advanced neural network architectures, 

such as convolutional neural networks (CNNs) or hybrid models, 

may further boost classification performance. Additionally, there 

are plans to expand the dataset by incorporating images from a 

variety of climatic and geographic regions along with multi-

temporal data, to improve the model's generalizability. 

Ultimately, these refinements will help optimize real-time 

monitoring solutions in precision agriculture, promoting 

sustainable farming practices and contributing to improved food 

security. 
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