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Abstract 

 

Geological formations are used worldwide for storage of energy sources and carriers such as natural gas and hydrogen, but also carbon 

dioxide. Caverns in rock salt are a specific type as due to the properties of salt, they are particularly suitable for long term safe and 

stable storage of various materials. However, the operation interacts with the environment in several ways, with ground movements 

being the most observed. The purpose of this study was to analyse land cover changes in the vicinity of underground gas storage based 

on a case study area of Kosakowo, Poland. The region is mainly agricultural with a neglected drainage system, located close to the sea, 

at low altitude, making it prone to waterlogging. The condition and changes in land surface, with vegetation and surface water 

monitoring in particular, were analysed using spectral indices derived from the ESA Copernicus Sentinel-2 data. In the study, it was 

tested and validated whether and if open multispectral satellite data in connection with spatial statistics can be effectively used for 

monitoring land cover changes in such regions. 

 

1. Introduction 

Underground gas storage (UGS) is an element of the energy 

sector aimed at maintaining the reserves during low and high-

demand periods throughout the year. It is commonly used for 

storage of hydrocarbons and, increasingly, hydrogen. Geological 

storage projects are created in various formations, including 

depleted oil and gas reservoirs, aquifers and porous media, or 

rock caverns. The latter are mainly developed in salt deposits, as 

due to the unique properties of rock salt, it is particularly suitable 

for storage, ensuring long-term stability and safety (Liu et al., 

2023). Underground gas storage (UGS) interacts with the 

environment in a number of ways. The main impact observed on 

the surface is the subsidence caused by the cavern convergence. 

The subsidence can be superimposed with cyclical movements 

caused by pressure changes inside the caverns (Tarkowski et al., 

2024). As salt is a plastic medium, the effects of salt mining on 

the surface appear with a temporal delay and are observed 

decades after mine closure. However, the characteristics of UGS 

operations differ, as gas is alternately injected into and withdrawn 

from storage caverns, causing cyclical upward and downward 

movements of the land surface (Benetatos et al., 2020). 

Combined with shallow groundwater level or intense rainfall 

events that have become more frequent in recent years due to 

climate change (Dong and Sutton, 2025), it can cause local 

waterlogging and flooding, affecting the vegetation condition. 

 

Monitoring in geological storage sites includes a collection of 

methods providing complex analysis of the storage infrastructure 

and its surroundings. Land surface changes are evaluated using 

geodetic measurements of ground displacements such as precise 

levelling, which provide high quality of measurement (mm 

accuracy). However, the data are limited in time and space. 

Synthetic aperture radar (SAR) interferometry provides an 

alternative to classical geodetic approaches by offering frequent 

monitoring of large areas. It has been successfully applied in 

areas of underground storage for monitoring subsidence and 

seasonal movements associated with operation phases (Fibbi et 

al., 2023; Struhár et al., 2022; Zhang et al., 2022). SAR data can 

also be used in environmental studies of soil moisture (Guo et al., 

2019) or seasonal land cover changes (Czarnogorska et al., 2016). 

Their main advantage over passive remote sensing is the 

independence from weather conditions and clouds. Multispectral 

imagery is proven to be efficient in monitoring earth surface and 

changes that could be applied to UGS sites such as monitoring of 

peats and wetlands (Räsänen et al., 2022), waterlogging (Han et 

al., 2024), or surface water dynamics (Yang et al., 2020).). 

 

The purpose of this work is to test and validate if open 

multispectral satellite data in connection with spatial statistics 

functions can be effectively used for monitoring land cover 

changes in underground gas storage sites with vegetation 

condition and waterlogging phenomena in particular focus. 

Selected spatial statistics methods were applied to process and 

analyse multispectral satellite imagery to identify areas of 

statistically significant changes in the time and space domains. 

 

2. Materials and Methods 

2.1 Study Area 

The study area represents an underground gas storage facility in 

northern Poland at approximately 54°36’22’’ N and 18°27’15’’ 

E (Figure 1). It is located in close proximity to the Baltic Sea and 

the cities of Gdańsk and Gdynia. The site consists of 2 clusters of 

5 caverns each constructed in the Mechelinki salt deposit at a 

depth of approx. 1000 m below the surface. The total capacity of 

the caverns is approx. 295.2 million m3. 

 

The upper geological layers of the region are mainly of 

Quaternary and Holocene origin. The agricultural area located 

north of the UGS facility includes peats and shrublands. The 

thickness of the peat layer reaches up to 6 meters. Due to the low 

altitude, shallow groundwater level, proximity to the sea, and 

given geological conditions, the area is prone to waterlogging and 

local flooding. 
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Figure 1. Location of the underground gas storage facility in 

Kosakowo, Poland. 

 

For the purpose of this study, two study areas were identified. 

The first represents the area of the Kosakowo UGS legal permit, 

while the second corresponds to the extent of the monitoring 

network. The levelling network includes two measurement lines 

located perpendicularly to each other. Additionally, two 

reference fields were selected beyond the mining area of the UGS 

and peats. These represent crops and forests. 

 

2.2 Data 

The analysis was based on data acquired by the European Space 

Agency (ESA) Copernicus Sentinel-2 mission. The multispectral 

imagery at processing level 2A (L2A) was selected. The data are 

atmospherically corrected and represent surface reflectance. The 

L2A processing ensures a common radiometric scale and allows 

for multitemporal analysis and comparison (Song et al., 2001). 

 

The data were accessed through Google Earth Engine Catalog 

and Copernicus Data Space Ecosystem. No initial cloud cover 

threshold was set, as for 10% and period 2015-2024 the data 

rejection rate was 90%. The images were selected manually to 

increase the amount of data and temporal coverage. In the 

analysis, 91 cloudless images acquired over the period 2014-

2024 were used. 80 of them were acquired during the vegetation 

season from May to September. 

 

2.3 Methods 

As the area is primarily croplands and barren land with vegetation 

growing on peat, there are no in situ measurements of soil 

moisture or vegetation condition. Thus, the analysis was based 

on open-access satellite remote sensing data and Geographic 

Information System (GIS) processing tools employed in ArcGIS 

Pro software (ArcGIS Pro, 2024), Google Earth Engine (Gorelick 

et al., 2017) and Python language (Python, 2024). 

 

2.3.1 Urban Area Mask: Bright built-up features in the 

images may be a source of potential interpretation errors, as they 

can be mistakenly taken as bare soil or surface water bodies (Ma 

et al., 2019). Thus, urban areas within the analysis region were 

masked. The mask was developed based on the CORINE Land 

Cover 2018 dataset (CORINE Land Cover 2018, 2020). The 

classification of land cover types in the study area is presented in 

Figure 2. 

 

The mask included the following classes: (1) discontinuous urban 

fabric, (2) industrial or commercial units, (3) airports, (4) sport 

and leisure facilities, (5) sea and ocean. 

 

 
 

Figure 2. Land cover classification of the Kosakowo UGS 

region based on CORINE Land Cover 2018. 

 

2.3.2 Spectral Indices: The images were aggregated into a 

multidimensional dataset allowing for simultaneous processing 

of data representing all time steps. For all images in the database, 

selected indices based on spectral reflectance were calculated for 

the assessment of vegetation, soil moisture and surface water. 

Water has moderate reflection in the visible light region (VIS) 

and strong absorption in short-wavelength infrared (SWIR). On 

the other hand, vegetation shows great absorption in the VIS 

region and reflection in near infrared (NIR). Plants with a high-

water content tend to have low reflectance in SWIR. Thus, based 

on literature (McKenna et al., 2020; Sriwongsitanon et al., 2015) 

the following indices were selected for this study: normalized 

difference vegetation index (NDVI), normalized difference 

infrared index (NDII), and normalized difference water index 

(NDWI). The NDVI was proposed by Rouse et al. (1973) to 

monitor green vegetation vigour using spectral reflectance in the 

red and NIR regions. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑁𝐼𝑅 + 𝑟𝑒𝑑
, (1) 

 

where  NIR = spectral reflectance in near infrared (840 nm) 

 red = spectral reflectance in red (665 nm) 

  

The NDII (Hunt and Rock, 1989) is identical to the normalized 

difference moisture index (NDMI) (Gao et al., 1996). The index 

is used to describe the water content in plant canopies and, thus 

identify vegetation stress. 

 

𝑁𝐷𝐼𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
, (2)  

 

where  NIR = spectral reflectance in near infrared (840 nm) 

 SWIR = spectral reflectance in short wavelength 

infrared (1610 nm) 

 

The NDWI is used to delineate surface water bodies and monitor 

turbidity (McFeeters et al., 1996). The index allows the detection 

of flooded areas. 

 

𝑁𝐷𝑊𝐼 =
𝑔𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝑔𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
, (3)  
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where  green = spectral reflectance in green (560 nm) 

 NIR = spectral reflectance in near infrared (840 nm) 

 

2.3.3 Spatiotemporal analysis: To analyse the variability in 

the time domain, a time series of the indices values was extracted 

to identify any patterns within the data. The processing was based 

on the concept of a space-time cube, where time is considered the 

third dimension (Figure 3).  

 

Further, each pixel was processed separately to analyse its 

variation in time by calculating anomalies. An anomaly expresses 

the variation of a pixel value at a time with respect to the mean 

pixel value over a given time interval (ArcGIS Pro 

Documentation, 2024). In this study, it was computed as the 

difference from mean (Eq. 4) and z-score (Eq. 5). Z-score refers 

to the number of standard deviations in which the pixel value 

differs from the mean. 

 
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑛 = 𝑥 −  𝜇 (4)  

 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇

𝑠
, (5)  

 

where  x = pixel value at a time slice 

 𝜇 = mean of the pixel’s values over a given time 

interval 

S = standard deviation of the pixel’s values over a given 

time interval 

 

 
 

Figure 3. Visualisation of a multidimensional dataset of 

Sentinel-2 imagery. 

 

The selected indices were further investigated spatially to analyse 

the distribution of the indices’ values in space with the aim of 

identifying areas that undergo high temporal variability. It can be 

expressed through the coefficient of variation or through spatial 

clustering of pixels with similar values. Detection of clusters was 

carried out based on the concept of Getis-Ord Gi* statistic (Eq. 

6-8) (Getis and Ord, 1992; Ord and Getis, 1995). Feature values 

are tested whether they are structured in complete spatial 

randomness. Based on the z-score and p-value, the pixels are 

assigned to clusters of statistically significant high or low values. 

Areas of high values are referred to as hot spots, while cold spots 

represent clusters of pixels with negative z-score. 

 

𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗=1 − 𝑋 ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖𝑗
2𝑛

𝑗=1 − (∑ 𝑤𝑖𝑗
𝑛
𝑗=1 )

2
]

𝑛 − 1

 ,  (6) 
 

 

 

and 

𝑋 =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
 , (7)  

 

𝑆 =  √
∑ 𝑥𝑗

2𝑛
𝑗=1  

2
− (𝑋)

2
, (8)  

 

where  x = attribute value for feature j 

 wij = spatial weight between feature i and j 

n = total number of features 

 

The hot spot analysis can be applied to multidimensional datasets 

by evaluating the Gi* statistics using the Mann-Kendall test. The 

statistical test allows for detection of trends in time series data 

(Hamed, 2009). 

 

3. Results 

3.1 Time Series of Spectral Indices 

Processing was based on more than 90 Sentinel-2 images that 

covered the area of interest. The time series plots of the indices 

exhibit seasonal changes related to the natural phenological 

cycle. Thus, the analysis was limited to images representing the 

vegetation period (Figures 4-6). To preserve short-term 

variability within the data, no temporal averaging was performed. 

Instead, representative images were selected for each month and 

year (Figure 7). 

 

The spectral indices for vegetation monitoring follow the same 

patterns that exhibit seasonality throughout the vegetation period. 

The phenological cycle is also observed in the reference forest 

area. The high values of the NDVI, exceeding 0.5, indicate 

vigorous vegetation. The NDII at level 0.2-0.4 corresponds to a 

high canopy with a low level of water stress. On the other hand, 

the water index, NDWI, displays negative values indicating the 

absence of surface water. The two areas of interest represent 

structures more complex in land cover; thus, the indices values 

are overall lower. Moreover, the range of indices’ values is wide, 

as the AOI is covered with crops, barren land, urban and 

industrial areas, or roads. The influence of urban, industrial areas 

and sea (east to the UGS facility) was limited by masking the 

features using CORINE Land Cover classes. However, the 

dataset has a spatial resolution of 100 m, and some smaller 

features may not be included. 

 

 
 

Figure 4.  Time series of mean NDVI values in the Kosakowo 

UGS region. 
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Figure 5.  Time series of mean NDII values in the Kosakowo 

UGS region. 

 

 
 

Figure 6.  Time series of mean NDWI values in the Kosakowo 

UGS region. 

 

The distribution of data is uneven in the time domain. 

Comparative analysis of images from a similar time period 

allows us to investigate long-term changes and patterns. 

However, it is prone to interpretation errors. 

 

 
 

Figure 7. Time series of mean NDVI based on representative 

imagery from the turn of May and June. 

 

The inverse response of the vegetation and water monitoring 

indices is reflected in the correlation coefficient, which is 

consistent throughout the study area (Figure 8). 

 
 

Figure 8. Correlation between the NDVI and NDWI values. 

 

3.2 Anomaly Analysis 

The anomalies were calculated based on 80 images with respect 

to the mean of all values. The majority of the area is covered with 

agricultural fields; therefore, the NDVI values exhibit positive 

variations from the mean (Figure 9). On the other hand, the 

NDWI values are negative, which is expected for such areas 

(Figure 10).   

 

 
 

Figure 9. The anomaly of NDVI values expressed as z-score. 

 

 
 

Figure 10. The anomaly of the NDWI values expressed as a 

difference from the mean. 
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Some fields located north-west of the UGS permit areas show 

different behaviour compared to the neighbourhood. The NDVI 

is lower than average, while the NDWI is high positive, which 

may indicate the temporal occurrence of water in the region. It is 

noteworthy that positive NDWI values are observed in the 

eastern part of the Kosakowo UGS area, but the pixels represent 

urban areas. 

 

3.3 Hot Spot Analysis 

Anomalies are based on a single pixel value change, while the 

hot spot analysis takes into consideration the behaviour of 

neighbouring pixels in both space and time domains. The 

temporal hot spots were determined considering the closest 

spatial neighbourhood of 20 m (Figure 11). 

Spatial autocorrelation plots, as well as temporal hot spot 

analysis based on the Getis and Ord statistic functions (Biwand 

and Wong, 2018), highlight areas that undergo frequent changes. 

In the case of the NDWI, most of the region is classified as an 

oscillating cold spot, meaning the pixels take negative values for 

most of the analysis period. There are also aggregations of 

statistically significant positive values. The clusters were 

identified mainly in the region located north-west of the UGS 

facility. The area is covered with crops and is of particular 

interest, as the area undergoes significant temporal variations of 

the spectral indices confirmed by a higher standard deviation 

compared to the reference area. The standard deviation of the 

indices for forest area is low and refers to the stable condition of 

the vegetation cover, which does not experience short-term 

changes. The appearance of the crop fields is of particular 

interest, as during the inspection of RGB images dark spots were 

discovered. They may indicate the periodic presence of surface 

water. 

 
 

Figure 11. Temporal hot spots of the NDVI values in the Kosakowo UGS region.

 

4. Discussion and Conclusion 

The presented preliminary results obtained for the case study 

indicate that this UGS region represents a complex environment 

that undergoes seasonal changes caused by the natural 

phonological cycle and meteorological conditions. The observed 

land cover changes may be an effect of the influence of peat layer 

and its changes in water content. Depending on the amount of 

water, peat may soak up the water from the rainfall or dry out 

during seasonal droughts, triggering changes in the land surface. 

The findings of our research show that detection of water using 

multispectral remote sensing poses many challenges, but periodic 

changes in the form of waterlogging can be studied through the 

analysis of vegetation condition with spatial statistics. The study  

 

 

 

presented an approach to analyse selected components of the 

environment above an underground gas storage facility using 

open access satellite imagery. 

 

The results obtained in the preliminary study and the processes 

observed in the Kosakowo UGS are the subject of further 

analysis. 
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