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Abstract

Oil spills impose significant environmental challenges, leading to critical consequences for marine ecosystems and sea habitant’s
health. Early delineatin and efficient surveillance are absolutely important to prevent more contamination and support quick hazards
reduction. This study focuses on detecting oil spills using satellite imagery and deep learning models, specifically Convolutional
Neural Networks (CNN). The dataset used to train the CNN comprised 695 images extracted from Sentinel-1 Synthetic Aperture
Radar (SAR) data over the Mediterranean Sea. In particular, 486 images (70%) were allocated for training, 139 images (20%) for
validation, and 70 images (10%) for testing. Preprocessing involved a thresholding technique to enhance feature extraction and
improve classification precision. The CNN model achieved a high test accuracy of 98.57%, with perfect precision (1.0000), recall
of 96.43%, and F1 score of 0.9818, demonstrating strong performance and reliability. These high accuracy levels underscore the
model’s efficiency in identifying oil spills and its soundness in handling unseen data. The significance of this work is in using
satellite-based deep learning models for scalable and automated oil spill detection, therefore providing a reliable and effective
substitute for more traditional monitoring systems. The model may be applied over large oceanic areas by using satellite images,
thereby supporting marine ecosystem preservation and enhancing environmental risk management connected with oil pollution.

1. Introduction

Oil spills are among the most significant environmental dis-
asters, posing severe threats to marine ecosystems, economic
activities, and human health. Between 2010 and 2020, the
Eastern Mediterranean experienced over 1,000 oil leak incid-
ents, affecting marine ecosystems and contaminating hundreds
of kilometers of shoreline. Reducing the effects of oil spills
requires early detection and monitoring. Traditional detection
techniques based on optical remote sensing or human observa-
tion are severely constrained due to atmospheric weather condi-
tions, limitations in nighttime acquisition, and the large spatial
extent that must be monitored. An effective system for auto-
mating and improving oil spill monitoring procedures has been
developed by combining Artificial Intelligence (AI) techniques
with remote sensing techniques, particularly with Sentinel-1
Synthetic Aperture Radar (SAR) data (Cheng et al. 2024). Re-
gardless of sunlight, Sentinel-1, part of the European Space
Agency’s (ESA) Copernicus mission, can penetrate clouds and
provide high-resolution SAR data. SAR data is particularly
useful for maritime applications since oil spills suppress sur-
face waves and produce distinctive dark patches in the reflected
radar signal. Additionally, Sentinel-1’s dual-polarization cap-
ability (VV and VH) enables it to distinguish oil spills from
similar phenomena, such as low-wind areas, phytoplankton, or
wave shadows. These characteristics make Sentinel-1 SAR data
highly effective for detecting oil spills under various environ-
mental conditions (Li, Kim et al. 2023).

Several studies have explored the application of deep learn-
ing methods with SAR data for efficient oil spill detection in
diverse marine environments. Recent advancements have fo-
cused on leveraging Sentinel-1 SAR imagery for automated
detection and early warning systems. For instance, (Wang et
al. 2024) developed a system that processes oil spill detection

within approximately 1.5 hours, achieving a false discovery rate
of 23.3% and a false negative rate of 24.0% in the Southeastern
Mediterranean Sea. This highlights the growing effectiveness
of machine learning models in maritime surveillance while em-
phasizing the need for further improvements in reducing false
detections. In another study, an encoder-decoder convolutional
neural network (CNN) was trained on verified oil spill incid-
ents in Pakistan’s Exclusive Economic Zone (Basit et al. 2024).
The model detected 92 previously unreported occurrences by
analyzing SAR data from 2017 to 2023. In 2020, the highest
number of leaks (26) was recorded, while in 2021 the most af-
fected area (395 km2) was observed. The findings demonstrated
that deep learning significantly enhances oil spill detection and
facilitates more effective monitoring techniques.

Considering the challenges posed by SAR data, a novel ap-
proach for identifying oil spills in the Suez Canal was pro-
posed by (Cheng et al. 2024). The study introduced a Boosting
Random Support Vector Machine (BRSVM) classifier, which
achieved an accuracy of 94.72% and an F1-score of 95.33%,
demonstrating the effectiveness of this method for large-scale
detection. (Kalogirou et al. 2024) examined the environmental
challenges posed by oil spills, which contribute significantly to
marine pollution and can have long-lasting effects on ecosys-
tems and the economy. The study highlighted that oil spills oc-
cur due to accidental discharges or intentional actions such as
illegal dumping by cargo ships. The research focused on detect-
ing oil spills in the North-Eastern part of Cyprus using a deep
learning model and compared its effectiveness with a conven-
tional Adaptive Thresholding Algorithm. The results indicated
that deep learning models achieve higher accuracy, showcasing
the potential of advanced technologies in improving oil spill de-
tection. Additionally, leveraging Sentinel-1 data, an autonom-
ous oil spill detection system with early warning capabilities
was proposed for the Southeastern Mediterranean (Yang et al.
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2024). This system employed a deep learning-based oil spill
detector, achieving a false negative rate of 24.0% and a false
discovery rate of 23.3%. The system demonstrated practical ap-
plicability, with the complete processing workflow—including
SAR image acquisition and spill trajectory modeling—being
completed in approximately 1.5 hours.

The development and comparison of machine learning models
for oil spill detection in the Persian Gulf were investigated by
(Najafizadegan et al. 2023). The study compared Support Vec-
tor Machine (SVM), Random Forest (RF), and CNN models.
The results showed that CNN achieved the highest accuracy
(95.8%), outperforming RF (86.0%) and SVM (78.9%). Fur-
thermore, the study underscored the importance of tracking oil
spills using both ascending and descending satellite passes. The
accuracy and reliability of oil spill detection systems can be en-
hanced by continuously training models with newly acquired
SAR data. A study by (Li, Park et al. 2023) introduced a self-
evolving oil spill detection algorithm, which was tested using
eight SAR images. The results demonstrated promising poten-
tial for real-time maritime pollution monitoring.

CNN models are at the forefront of this technological revolu-
tion, driving advances in image analysis and facilitating applic-
ations in pollution detection, marine surveillance, and environ-
mental monitoring. Deep learning has shown great promise in
the critical field of oil spill detection, a pressing environmental
issue that threatens fisheries, coastal populations, and marine
ecosystems. The integration of satellite remote sensing and arti-
ficial intelligence provides a robust solution for rapid and accur-
ate monitoring, which is critical for mitigating environmental
damage. By leveraging deep learning techniques and satellite
imagery, this study aims to develop an automated oil spill de-
tection framework. Automating the detection process enhances
monitoring efficiency, allowing for rapid response and damage
mitigation. The integration of AI with satellite remote sens-
ing represents a major breakthrough in environmental monitor-
ing, paving the way for advancements in pollution control and
marine ecosystem preservation (Gao et al. 2024). The primary
objective of this study is to employ satellite imagery and deep
learning models to detect oil spills. The research investigates
how CNN can be utilized for large-scale, automated oil spill
detection, offering a reliable alternative to conventional monit-
oring techniques while enhancing environmental risk manage-
ment.

The remainder of this paper is structured as follows:. Sec-
tion 2 discusses the dataset, including sources, coverage, and
preprocessing operations, with subsections on data training and
validation, radar satellite images (RSI), and ground truth masks
(GTM) processing. Section 3 describes the CNN model ar-
chitecture, while Section 4 presents the oil spill detection al-
gorithm, including training, optimization, and evaluation meth-
ods. Section 5 assesses the model’s performance using various
metrics such as model accuracy, model loss, training loss, val-
idation loss, and accuracy and loss plots during training and
validation. Section 6 presents the results and comparisons with
ground truth data. Finally, Section 7 concludes the study, sum-
marizing the findings and future research directions.

2. Dataset and Methodology

This section briefly describes the preprocessing of SAR data,
CNN architecture utilized, and model evaluation. The flow

graph as shown in Figure 1., illustrates the pipeline for de-
tecting oil spills using Sentinel-1 SAR images and a CNN
model. The dataset consists of 50 confirmed oil spill incidents
(2014–2019) validated through Ground Truth Measurements
(GTM) and Radar Satellite Images (RSI). Preprocessing steps,
including noise reduction and radiometric corrections, enhance
image quality before feeding the data into a CNN architecture
comprising convolutional, pooling, and fully connected layers
with a sigmoid output for binary classification (oil spill/no oil
spill). The dataset is split into 70% training, 20% validation,
and 10% testing, with the model trained using the Adam op-
timizer and binary cross-entropy loss over 10 epochs. Model
evaluation focuses on accuracy and loss metrics, with predic-
tions compared against ground truth data to assess classification
performance.

2.1 Dataset

The collection of a significant number of oil spill observations
to create a sufficiently large training dataset for deep learning
models is a major challenge for various reasons. The dataset
used was openly accessible to the public via: https://

drive.google.com/file/d/15WYzzFZvAHmqSIW0PXXRTp_

YVd_868l8/view?usp=sharing. A significant challenge was
obtaining a balanced dataset, particularly in terms of acquiring
a sufficient number of confirmed oil spill-like areas to match
the number of oil spill samples. To address this issue and
maintain the dataset’s validity, images from confirmed oil spill
incidents from previous studies were used. The 116 incidents
of oil spills recorded between 2014 and 2019 were reviewed,
and 50 incidents were selected based on the variety of oil spill
sizes and the availability of images with different contrasts.

Areas of interest containing confirmed oil spills were extracted
from the raw SAR images, followed by radiometric corrections
and calibration, which are critical steps to minimize radiometric
distortions and ensure that the pixel values correspond precisely
to the surface backscatter coefficient (sigma naught measured in
dB). Noise filtering is critical for oil spill detection in SAR im-
ages, as noise can significantly hinder the extraction of informa-
tion. The Lee filter was implemented as an effective method for
noise reduction while preserving the clarity of edges and key
features. Given the large variability in pixel values in radar im-
ages, converting pixel values from a linear scale to dB enhances
contrast. As an adaptive speckle noise reduction technique for
synthetic aperture radar (SAR) images, the Lee filter calculates
the local average and variance in a moving window, adjusting
the smoothing level based on local statistics. It preserves details
in areas of high variance while effectively suppressing noise in
homogeneous areas. Since speckle noise in SAR images is mul-
tiplicative, applying the filter in the logarithmic domain (dB)
converts the noise to an additive form, facilitating suppression

Figure 1. The flowchart of the proposed method for oil
spill detection using Sentinel-1 SAR and CNN.
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Figure 2. The modeled Convolutional Neural Network (CNN) architecture and detailed parameters for detecting oil spills
from SAR imagery.

and improving the overall image sharpness. Research analyzing
multi-spot noise reduction techniques for SAR data concluded
that Lee filters are among the most effective methods for im-
proving image quality and suppressing noise (Varshini R et al.
2024). After completing the preprocessing steps, the corres-
ponding ground truth mask was created for each image. The
accurate oil spill masks are the most critical step to ensure the
reliable performance of the model. The image masks were geo-
metrically corrected using the Universal Transverse Mercator
(UTM) projection, with preprocessing carried out via the Sen-
tinel Application Platform (SNAP). Therefore, the images were
selected to contain only two labels: oil spills and water sur-
faces. The labeled images were split into smaller patches of
size 256×256×1 using the Patchify library (Cheng et al. 2024;
Ahmed et al. 2023).

Figure 2 illustrates the architecture of a CNN designed for oil
spill detection using Sentinel-1 SAR satellite images. Initially,
a square patch is extracted from the satellite image, focusing on
a dark region, indicating an oil spill’s presence. The CNN pro-
cesses this input through multiple convolutional layers, where
the first stage generates 32 feature maps (32@ 254x254), which
are reduced to 32@127x127 via Max-Pooling. A second convo-
lutional layer with 64 filters produces 64@62x 62, followed by
another layer with 24 feature maps (24@48x48). The extracted
features are flattened into a one-dimensional array (flatten) and
passed through fully connected (dense) layers with 256 neur-
ons, leading to a final output layer with a single neuron (1x1)
performing binary classification. The CNN output is either “Oil
Spill Detected,” if an oil spill is present, or “No Oil Spill Detec-
ted,” if no indication of an oil spill is found. This model lever-
ages texture differences and radar wave reflection properties to
identify oil spill patterns in marine environments effectively.

2.2 Data Training and Validation

A data allocation ratio of 70%–20%–10% was used to train,
validate, and test the model, ensuring a balance between per-
formance assessment and training. Using binary cross-entropy
as the loss function and the Adam optimization technique, the
model was trained for 10 epochs. During training, a separate
validation dataset was used to monitor accuracy and prevent
overfitting, while the test dataset was employed to evaluate the
model’s generalization capabilities.

The model was trained using the Adam optimizer, which dy-
namically adjusts the learning rate by combining the benefits
of Momentum and Stochastic Gradient Descent (MSGD) ap-
proaches. Since this is a binary classification problem (oil spill
or not), binary cross-entropy was selected as the loss function.
Activation functions such as sigmoid enabled the network to

Figure 3. Sample SAR images (left column) and corres-
ponding ground truth mask (GTM) image (right column);
yellow areas are the oil spills.

learn and recognize intricate patterns in the images, and the fi-
nal layer of the network employs a sigmoid activation function
to classify images into two categories: “oil spill” and “no oil
spill.” The model’s fully connected layer generates a numerical
output that determines the final classification.

2.3 Data Preparation: RSI Images and GTM Processing
Masks

Before the model training, the data preparation process was car-
ried out, which involved RSI and GTM. Proper data preparation
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is crucial for effective model training, as it ensures that the in-
put data is normalized and correctly formatted. Initially, the
RSI images were loaded and normalized to the [0,1] scale us-
ing the image to array method, which converts the images
into numerical arrays. This normalization is essential, as im-
ages with pixel values in this range help the model learn the
patterns in the data more effectively. Subsequently, the GTM
masks were loaded in grayscale, representing categories (e.g.,
oil spill or not) and were normalized using a predefined color
map (COLOR MAP).

A four-class oil spill classification is given by (Hassani et al.
2020). As shown in Figure 3, the oil spill detection mask is
primarily displayed in a yellow hue, representing the main body
of the oil, while the water is depicted in black to indicate areas
without any detected contamination. Minor appearances in red,
blue, and green are due to small variations or noise during data
processing, causing some pixels at the boundaries between classes
to be classified slightly differently. These minor deviations re-
flect the sensitivity of the classification method and do not af-
fect the overall representation of the oil spill; they simply high-
light small anomalies that may occur during the image con-
version and processing stages. After loading the images and
masks, proper image-mask matching was performed, ensuring
that each RSI image matched the corresponding GTM mask.
This process was crucial to ensure that the model would be
trained with the correct labels for each pixel. Proper match-
ing of images and masks is necessary for the model to learn the
correct association between the image features and their corres-
ponding mask labels. The goal of this process was to prepare
the data in the right way so that the model could be trained ef-
fectively and achieve good generalization on unseen data.

2.4 The Basic Structure of CNN

CNNs are powerful deep learning models specialized in im-
age processing and analysis. They are widely used in various
applications, including environmental monitoring, where they
help detect oil spills in satellite imagery. A CNN consists of
three main components: the input layer, which receives and
processes images; the feature extraction layers, which use fil-
ters to identify important patterns; and the classification layers,
which categorize the image based on extracted features. The
convolutional layers play a pivotal role in feature extraction by
applying filters that detect edges, textures, and shapes within
an image. These filters help identify key characteristics of an
oil spill, such as texture variations and boundary contours. To
retain spatial information, zero padding is applied at the edges,
while pooling layers help reduce dimensionality, preserving the
most relevant features while lowering computational costs.

The final stage of a CNN includes fully connected layers, which
take the extracted features and classify the image into predefined
categories. In the case of oil spill detection, the model determ-
ines whether an oil spill is present or not. By stacking multiple
layers, CNNs effectively learn hierarchical representations of
image data, making them well-suited for complex visual recog-
nition tasks (Dehghani-Dehcheshmeh et al. 2023).

2.5 Proposed Oil Spill Detection Algorithm

The proposed oil spill detection algorithm is based on a CNN
designed to analyze satellite images and identify oil spills with
high accuracy. Despite the presence of noise and distortions in
satellite data, CNNs have a strong ability to detect patterns and
recognize key features in images. The detection process follows
three key stages.

Table 1. Training and Validation Performance Metrics of
the CNN Model

Epoch Accuracy Loss Validation
Accuracy

Validation
Loss

1/10 0.5040 2.4372 0.7612 0.5681
2/10 0.7623 0.4970 0.8504 0.3470
3/10 0.8854 0.2991 0.9281 0.2719
4/10 0.9173 0.2539 0.9353 0.2450
5/10 0.9270 0.2204 0.9525 0.1568
6/10 0.9580 0.1741 0.9496 0.1340
7/10 0.9706 0.1085 0.9741 0.1278
8/10 0.9686 0.1184 0.9612 0.1204
9/10 0.9667 0.0995 0.9784 0.0913

10/10 0.9639 0.1139 0.9755 0.0805

• First, convolutional layers extract essential features such
as edges, textures, and shapes by applying specialized fil-
ters. These layers process raw image data, identifying the
fundamental visual properties of an oil spill.

• Next, pooling layers reduce the spatial dimensions of the
extracted features while retaining the most significant in-
formation. Max pooling is commonly used to select the
most prominent features, enhancing model efficiency and
minimizing computational load. This step also helps pre-
vent overfitting, improving the model’s generalization to
new images.

• Finally, fully connected layers analyze the collected fea-
tures and classify the image into one of two categories:
“oil spill” or “no oil spill.” These layers integrate all ex-
tracted patterns to produce a final classification decision.

By leveraging the hierarchical feature extraction capabilities of
CNNs, the proposed model can detect oil spills in satellite im-
ages with a high degree of accuracy, even in challenging envir-
onmental conditions (Lee et al. 2017).

3. CNN Model Evaluation

This section discusses the model accuracy and loss during train-
ing and validation of CNN for oil spill detection.

3.1 Model Accuracy and Loss

As shown in Table 1, the model performed well during train-
ing, achieving a training accuracy of 96.39% and training loss
of 0.1139. The high accuracy suggests that the model is able to
make correct predictions most of the time, while the relatively
low loss shows that it is minimizing errors in its predictions.
Additionally, the model’s performance on the validation set was
also successful, with a validation accuracy of 97.55% and a val-
idation loss of 0.0805. This indicates that the model is able to
generalize well to unseen data, as the validation accuracy is al-
most as high as the training accuracy. The low validation loss
further supports this, suggesting that the model is not overfit-
ting and is maintaining good performance on data that it hasn’t
encountered before.

Overall, these metrics demonstrate that the model has been
trained effectively. It can make accurate predictions on both the
training and validation datasets, and its ability to generalize to
new data suggests that it will perform well when deployed in
real-world applications.
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Figure 4. Model Training and Validation Accuracy Over
Epochs.

3.2 Training and Validation Loss

The training loss of 0.1139 indicates that the model is learning
well from the training data. Loss is a metric that measures the
difference between the predicted values and the actual ground
truth. A smaller loss means that the model’s predictions are
closer to the true values, which is the goal during training. The
steady decrease in training loss over the epochs suggests that
the model is gradually improving its predictions for the training
data. This predicted behavior shows that the model is gradually
learning and reducing the inaccuracy.

The validation loss of 0.0805 is equally low, which is also a
positive outcome. Validation loss is calculated on a separate
dataset that the model has not seen before, helping to assess
how well it generalizes to new, unseen data. The fact that the
validation loss is not much higher than the training loss suggests
that the model is not overfitting. If the validation loss were
significantly higher, it would indicate that the model failed to
generalize and was too specialized to the training data. There-
fore, the model demonstrates good generalization ability, as it
performs well on both the training and validation datasets.

3.3 Qualitative Analysis of CNN Model

The accuracy plots, as shown in Figure 4, provide valuable in-
sights into how well the model is performing. In these plots,
the training accuracy (represented by the blue line) and the val-
idation accuracy (represented by the orange line) are almost
identical. This alignment is a positive indicator, as it suggests
that the model is generalizing well and is not overfitting, mov-
ing forward with the training epochs. Overfitting typically mani-
fests as high training accuracy with significantly lower valida-
tion accuracy, but that is not the case here. The model appears
to be learning effectively from the training data and applying
that knowledge to make accurate predictions on unseen valida-
tion data.

In the early epochs, the model shows important improvement
in accuracy, which is typical during the first stages of training
as the model learns the basic patterns in the data. As training

Figure 5. Model Training and Validation Loss Over
Epochs.

progresses, the rate of improvement in accuracy begins to slow
down, but this is expected as the model approaches its perform-
ance limits on the training data.

3.4 Fluctuations in Validation Loss

Small fluctuations in validation loss are observed after a few
epochs, as shown in Figure 5. These fluctuations are expected
in any training process. They typically do not pose a problem
unless they cause a significant increase in validation loss. They
can arise due to changes in the data distribution or small ad-
justments made by the model during training. Slight variations
in validation loss can be influenced by the complexity of the
model or hyperparameter choices. Weight updates or changes
in the data subsets used in each epoch may also lead to minor
fluctuations in performance.

3.5 Predicted Labels

For several important reasons, the process of generating pre-
dicted labels in a binary classification model for oil spill detec-
tion is vital. Using the sigmoid activation function, which scales
the output between 0 and 1, it first automates the classification
operation by converting the numerical outputs of the model into
probability scores. These probabilities are then converted into
binary labels (“oil spill” or “no oil spill”) based on a predefined
threshold (typically 0.5), allowing for efficient processing of
large data sets without the need for continuous human inter-
action. In addition, generating expected labels is significant for
evaluating the performance of the model. It is possible to calcu-
late critical performance metrics, such as accuracy, sensitivity,
and specificity, by comparing these predictions with the ground
truth labels. These metrics provide insights into the model’s
performance, indicating opportunities for development and en-
suring the system’s reliability in real-world scenarios. Another
critical element to avoid overfitting is monitoring the predicted
labels on separate validation and testing datasets. This continu-
ous evaluation ensures that the model not only understands the
features of the training data but also successfully generalizes to
new, untested data, which is significant in real-world situations,
such as environmental monitoring. In conclusion, automated
generation of predicted labels improves the overall performance
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of the system, allowing the model to be seamlessly integrated
into decision-making processes and real-time monitoring sys-
tems (Sun et al. 2024).

4. Results

The dataset was prepared from Sentinel-1 Level-1 Ground Range
Detected (GRD) images, which is a C-band SAR system and
provided by the ESA through the Copernicus Open Access Hub.
With a pixel spacing of 10 meters, the SAR sensor provides
ground coverage of approximately 250 kilometers. The raw
data from the vertical-vertical (VV) polarization were processed
to create the SAR dataset.

The model accuracy results indicated in Table 1 that the model
is effectively learning from the training data. The performance
of the model in both the training and validation phases has been
promising. The training accuracy of 96.39% indicates that the
model was able to effectively learn from the training data and
generalize well to the test set, achieving a high level of precision
in predicting the target class. This is supported by a relatively
low training loss of 0.1139, which shows that the model’s pre-
dictions closely align with the true labels in the test set. The
validation accuracy, which reached 97.55%, further reinforces
the model’s generalization capability, demonstrating that it per-
forms well not only on the training data but also on different
datasets. The validation loss of 0.0805 further supports this
finding, suggesting that the model maintains high predictive ac-
curacy with minimal error when tested on the validation set.
The relatively small gap between the test and validation accur-
acy indicates that the model is neither underfitting nor over-
fitting. It suggests that the model has effectively captured the
underlying patterns in the training data while still maintaining
the ability to generalize to unseen examples. The close proxim-
ity between the test and validation loss values (training loss =
0.1139, validation loss = 0.0805) further implies that the model
is not overfitting to the training data and is therefore robust to
variations in new data.

As shown in Figure 6, it can be observed how the model accur-
ately detected oil spills, confirming its reliability and precision
in identifying marine pollution. The successful classification
indicates that the model has effectively learned to recognize the
characteristics of oil spills, making it a valuable tool for en-
vironmental monitoring and pollution management. Also, its
capacity to generalize to new data implies that it can be used in
many geographic locations, supporting the preservation of mar-
ine ecosystems and facilitating prompt action in the event of
pollution incidents. The following images illustrate the model’s
prediction outcomes, where the detected oil spills are validated
against real-world data. This demonstrates the model’s effect-
iveness in real scenarios, reinforcing the role of artificial in-
telligence in monitoring and safeguarding marine ecosystems.

The model achieved a high-test accuracy of 0.9857, demon-
strating its strong performance in classification. With a perfect
precision score of 1.0000, the model exhibits no false positives,
ensuring that all predicted positive cases are truly relevant. The
recall score of 0.9643 indicates a slight margin of false negat-
ives, meaning that a small portion of actual positive cases were
not detected. The F1-score, which balances precision and re-
call, reached 0.9818, confirming the overall robustness and re-
liability of the model in accurately identifying the target class.

The confusion matrix in Figure 7 shows the performance of
the oil spill detection model, demonstrating excellent accuracy

Figure 6. Predicted Labels: detected oil spill and no oil
spill.

Figure 7. Confusion matrix of the model achieved for the
given dataset.
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98.57% and perfect precision for oil spill detection 100%. Spe-
cifically, the model correctly identified 27 oil spill cases (true
positives) and 42 non-spill cases (true negatives), with no false
positives, highlighting its reliability. However, there was one
false negative, meaning the model missed one actual oil spill,
resulting in a recall of 96.43%. While the overall performance
is very high, this indicates a small chance that the model might
fail to detect some real oil spills, which could be critical in real-
world applications.

These results signify that the model is performing well and can
make accurate predictions, which is especially important when
applied to tasks such as environmental monitoring, where reli-
able predictions are crucial. In conclusion, a key component of
machine learning applications is model performance, which es-
tablishes the accuracy and dependability of predictions. While
achieving high accuracy is critical, maintaining the model’s sta-
bility and adaptability to various datasets is just as essential.
Models are frequently tested in real-world situations in prac-
tical applications, where data distributions may differ and unex-
pected difficulties may occur. Therefore, ongoing assessment,
adjustment, and refinement are required to ensure optimal per-
formance.

5. Conclusions and Future Work

The CNN model achieved a high test accuracy of 98.57%, with
perfect precision (1.0000), recall of 96.43% and F1 score of
0.9818, demonstrating strong performance and reliability. The
results demonstrate that the model has achieved high perform-
ance in both the training and validation phases, with high ac-
curacy and minimal loss. The fact that the model achieved
96.39% training accuracy during training and 97.55% accuracy
during validation confirms that it has learned to generalize well
from the training data to unseen examples. Furthermore, the
relatively low training and validation loss values indicate that
the model is capable of making predictions with high accuracy,
which is essential for tasks such as detecting oil spills or other
environmental hazards in satellite imagery. The model’s ability
to generalize well to the validation set suggests that it has suc-
cessfully captured relevant features within the dataset without
overfitting. This makes it a promising tool for deployment in
real-world scenarios, where unseen data may vary. The good
performance on both the training and validation sets highlights
that the model is reliable and can be trusted to make accurate
predictions in a wide range of situations, providing confidence
in its application for environmental monitoring, especially in
the detection of phenomena such as oil spills. Given the high
performance of the model, it can be confidently stated that the
model is ready for integration into operational systems that re-
quire accurate and reliable predictions. Furthermore, its success
validates the effectiveness of using deep learning techniques for
such image classification tasks, particularly in environmental
science applications. Although the model has achieved strong
results, there are areas that could be deployed in future research
and development to improve its performance and increase its
applicability to wider areas.

One of the main priorities for the future development of
the model is to extend the dataset beyond the Mediterranean
Sea. While the current dataset has provided valuable training
data, further strengthening the robustness of the model can be
achieved by incorporating a greater variety of images from dif-
ferent geographical areas and environments that will allow the

model to learn to detect oil spills. We will also address the im-
pacts of environmental hazards under different conditions and
ocean current impacts on oil spills over certain time spans (Iqbal
et al. 2022). By incorporating these techniques, the model could
achieve greater accuracy in detecting various conditions of oil
spill pollution. Being an accurate oil spill detection crucial for
preventing and minimizing environmental impacts, in this work
it has been demonstrated that the automated satellite image ana-
lysis allows for faster and more precise detection compared to
traditional methods, helping authorities make timely decisions
to address pollution and restore the marine environment.

6. Acknowledgements

The present work was carried out in the framework of
the AI-OBSERVERTM project (https://ai-observer.eu/)
titled “Enhancing Earth Observation Capabilities of the
Eratosthenes Centre of Excellence on Disaster Risk Reduc-
tion through Artificial Intelligence,” that has received funding
from the European Union’s Horizon Europe Framework Pro-
gramme HORIZON-WIDERA-2021-ACCESS-03 (Twinning)
under Grant Agreement No 101079468. The authors also ac-
knowledge the ‘EXCELSIOR’: ERATOSTHENES: Excellence
Research Centre for Earth Surveillance and Space-Based Mon-
itoring of the Environment H2020 Widespread Teaming pro-
ject (www.excelsior2020.eu) in which the Eratosthenes CoE
has been established. The ‘EXCELSIOR’ project has received
funding from the European Union’s Horizon 2020 research and
innovation program under Grant Agreement No. 857510, from
the Government of the Republic of Cyprus through the Direct-
orate General for the European Programmes, Coordination, and
Development and the Cyprus University of Technology.

References

Ahmed, Samira et al. (2023). ‘Deep neural network for oil
spill detection using Sentinel-1 data: application to Egyptian
coastal regions’. In: Geomatics, Natural Hazards and Risk 14.1,
pp. 76–94.

Basit, Abdul et al. (2024). ‘Deep Learning-Based Detection of
Oil Spills in Pakistan’s Exclusive Economic Zone from January
2017 to December 2023.’ In: Remote Sensing 16.13.

Cheng, Lingxiao et al. (2024). ‘A marine oil spill detection
framework considering special disturbances using Sentinel-1
data in the Suez Canal’. In: Marine Pollution Bulletin 208,
p. 117012.

Dehghani-Dehcheshmeh, Saeid et al. (2023). ‘Oil spills detec-
tion from SAR Earth observations based on a hybrid CNN
transformer networks’. In: Marine Pollution Bulletin 190,
p. 114834.

Gao, Yuhao et al. (2024). ‘Relating CNN-Transformer Fu-
sion Network for Remote Sensing Change Detection’. In:
2024 IEEE International Conference on Multimedia and Expo
(ICME). IEEE, pp. 1–6.

Hassani, Behnam et al. (2020). ‘Oil spill four-class classific-
ation using UAVSAR polarimetric data’. In: Ocean Science
Journal 55.3, pp. 433–443.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025 | © Author(s) 2025. CC BY 4.0 License.

 
763

https://ai-observer.eu/
www.excelsior2020.eu


Iqbal, Muhammad Amjad et al. (2022). ‘Doppler Centroid Es-
timation for Ocean Surface Current Retrieval from Sentinel-
1 SAR Data’. In: 2021 18th European Radar Conference
(EuRAD), pp. 429–432.

Kalogirou, Eleftheria et al. (2024). ‘Empirical Analysis of Oil
Spill Detection Methods’. In: IGARSS 2024-2024 IEEE Inter-
national Geoscience and Remote Sensing Symposium. IEEE,
pp. 3673–3677.

Lee, Yeakang et al. (2017). ‘Making a More Reliable Classi-
fier via Random Crop Pooling’. In: Robot Intelligence Tech-
nology and Applications 4: Results from the 4th International
Conference on Robot Intelligence Technology and Applications.
Springer, pp. 309–318.

Li, Chenglei, Duk-jin Kim et al. (2023). ‘A self-evolving
deep learning algorithm for automatic oil spill detection in
Sentinel-1 SAR images’. In: Remote Sensing of Environment
299, p. 113872.

Li, Chenglei, Soyeon Park et al. (2023). ‘A Deep Learn-
ing Based Self-Evolving Oil Spill Detection Algorithm Using
Sentinel-1 SAR Images’. In: IGARSS 2023-2023 IEEE Inter-

national Geoscience and Remote Sensing Symposium. IEEE,
pp. 1289–1292.

Najafizadegan, Sahand et al. (2023). ‘Variable-complexity ma-
chine learning models for large-scale oil spill detection: The
case of Persian Gulf’. In: Marine Pollution Bulletin 195,
p. 115459.

Sun, Zhen et al. (2024). ‘Utilizing deep learning algorithms for
automated oil spill detection in medium resolution optical im-
agery’. In: Marine Pollution Bulletin 206, p. 116777.

Varshini R, Sanjjushri et al. (2024). ‘Speckle Noise Analysis
for Synthetic Aperture Radar (SAR) Space Data’. In: arXiv e-
prints, arXiv–2408.

Wang, Dawei et al. (2024). ‘Marine oil spill detection using im-
proved polarimetric feature based on polarization SAR image’.
In: International Journal of Remote Sensing 45.3, pp. 911–929.

Yang, Yi-Jie et al. (2024). ‘A near real-time automated oil spill
detection and early warning system using Sentinel-1 SAR im-
agery for the Southeastern Mediterranean Sea’. In: Interna-
tional Journal of Remote Sensing 45.6, pp. 1997–2027.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025 | © Author(s) 2025. CC BY 4.0 License.

 
764


	Introduction
	Dataset and Methodology
	Dataset
	Data Training and Validation
	Data Preparation: RSI Images and GTM Processing Masks
	The Basic Structure of CNN
	Proposed Oil Spill Detection Algorithm

	CNN Model Evaluation
	Model Accuracy and Loss
	Training and Validation Loss
	Qualitative Analysis of CNN Model
	Fluctuations in Validation Loss
	Predicted Labels

	Results
	Conclusions and Future Work
	Acknowledgements



