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Abstract

Since the launch of Landsat-1 in 1972, Earth observation satellites have undergone significant advancements, enabling the collection
of vast amounts of high-resolution imagery. These satellites continuously provide critical data for monitoring urban expansion,
infrastructure development, and disaster response. In recent years, the number of remote sensing satellites in orbit has increased
substantially, generating extensive visual datasets essential for precise spatial mapping across civil, public, and military applications.
One of the key challenges in utilizing satellite imagery is the automated reconstruction of building footprints, which demands high
precision to account for variations in architectural styles. Traditional methods rely on manual or semi-automated approaches, which
are often time-consuming and prone to inaccuracies. To address these limitations, this paper introduces PolyAttractNet, a novel deep
learning framework designed to improve building boundary delineation in satellite imagery. Our approach incorporates Attraction
Field Maps (AFMs) within a Graph Neural Network (GNN) framework, combined with an enhanced Mask R-CNN backbone.
The proposed architecture effectively detects building instances from a single satellite image while minimizing boundary noise by
embedding geometric regularity and integrating multi-scale, multi-resolution, and boundary-preserving mask features. AFMs play
a crucial role in refining boundary precision by guiding feature extraction toward geometric consistency. As a result, our model
achieves a 9.6% improvement in Average Precision (AP) and a 5% increase in Average Recall (AR) compared to the baseline,
demonstrating its effectiveness in producing more accurate and regularized building footprints.

1. Introduction

Buildings play a significant role in shaping cities, serving as
the backbone of urban infrastructure. Rapid urbanization re-
quires precise monitoring and analysis of urban environments,
with remote sensing offering critical data for managing urban
growth. Satellite images have played a pivotal role in gener-
ating digital maps for Geographic Information Systems (GIS),
with building footprint information serving as a critical asset
for urban planning, smart city development, and other related
fields. Moreover, building footprints with well-regularized
boundaries can be represented as vectorized polygons, offering
significant advantages in terms of transferability across various
GIS platforms, thereby enabling a broad range of applications.

Despite the widespread availability and accessibility of satellite
imagery, there remains a persistent demand for higher-quality
building footprint data. This demand has yet to be fully met
due to several key challenges. First, the creation of highly pre-
cise building footprints on GIS maps often requires manual or
semi-automated processes, which are both labor-intensive and
time-consuming. Additionally, the vast diversity in building
roof designs presents further obstacles to large-scale, automated
footprint extraction. The geometric potential inherent in satel-
lite imagery has also not been completely utilized.

Traditional methods often struggle with complex building geo-
metries, occlusions, and variations in scale and orientation in
aerial and satellite images. In the last decade, deep learning has
driven significant advancements in artificial intelligence (AI).
This remarkable success of deep learning has prompted explor-
ation into its potential applications within the remote sensing
domain. Several deep learning-based approaches (Hu et al.,
2023, Xu et al., 2023, Sheikholeslami et al., 2024a) for poly-
gonal building segmentation have emerged. However, they of-

ten present challenges such as high training complexity, com-
putational intensity, and issues like inconsistent projections or
missing corner points. Motivated by the challenges of regu-
larized building footprint extraction and enhancing our previ-
ous baseline model, R-PolyGCN (Zhao et al., 2020), this study
will present our novel model, PolyAttractNet. This network
improves the baseline model by inculcating the orientation in-
formation acquired from the attraction field maps (Xue et al.,
2019) and better initializing graphs based on corner prediction.
This enhances the feature map for generating the initial poly-
gon, resulting in more regularized building footprints.

2. Literature Review

Deep learning is a specialized subset of machine learning dis-
tinguished by its multi-layer neural architectures, which enable
it to capture hierarchical data representations at varying levels
of abstraction (LeCun et al., 2015). Unlike traditional machine
learning approaches that depend on manually crafted features,
deep neural networks autonomously learn complex, structured
features through a sequence of linear and non-linear transform-
ations. In supervised learning, these networks iteratively adjust
their parameters by minimizing the discrepancy between pre-
dicted outputs and ground truth labels using an appropriate loss
function, thereby improving model accuracy and robustness.

Deep learning-based object detection models are broadly clas-
sified into two-stage and one-stage architectures. Two-stage
models follow a sequential detection process, with Region-
based Convolutional Neural Networks (R-CNN) pioneering this
paradigm. R-CNN (Girshick et al., 2014) generates around
2000 candidate regions, extracts features using a convolutional
neural network, and subsequently classifies each region using a
support vector machine (Cortes, 1995). Fast R-CNN (Girshick,
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2015) optimizes this approach by processing the entire image
with a single CNN pass while still relying on a separate region
proposal step. Faster R-CNN (Ren, 2015) further streamlines
the pipeline by integrating a Region Proposal Network (RPN)
for an end-to-end learning framework. In contrast, one-stage
object detectors such as YOLO (Redmon, 2016) and SSD (Liu
et al., 2016) eliminate the need for explicit region proposal gen-
eration by directly predicting bounding boxes across densely
sampled locations in the image, leading to faster inference. Re-
cent advancements (Zhou et al., 2021) have further improved
detection accuracy by leveraging keypoint-based object local-
ization strategies.

Instance segmentation, a crucial task for delineating individual
objects within a scene, often involves two primary approaches:
semantic segmentation followed by object grouping or direct
instance-level segmentation. Early methods, such as Sharp-
Mask (Pinheiro et al., 2016), followed the former approach,
whereas Mask R-CNN (He et al., 2017) reversed the order by
first detecting objects and then segmenting them, leading to
more precise contours. Additionally, U-Net (Maggiori et al.,
2016) has proven highly effective for building extraction tasks,
showcasing the potential of deep learning in instance-level seg-
mentation.

One key challenge in segmentation tasks, particularly for struc-
tured objects such as buildings, is boundary regularization. Tra-
ditional approaches, including Binary Space Partitioning and
Minimum Description Length (Jung and Sohn, 2019), applied
geometric heuristics to refine boundaries in point cloud data.
More recent deep learning-based methods integrate bound-
ary regularization directly into neural networks. For instance,
DSAC (Marcos et al., 2018) incorporates active contour mod-
els within CNNs to enhance boundary precision. PolyRNN
(Castrejon et al., 2017) and its improved version, PolyRNN++
(Acuna et al., 2018), use recurrent neural networks (RNNs) to
sequentially predict polygon vertices for semi-automated an-
notations. CurveGCN (Ling et al., 2019) introduces graph con-
volutional networks (GCNs) to generate polygonal representa-
tions that are more geometrically efficient. R-PolyGCN (Zhao
et al., 2020) further refines this approach by integrating an ob-
ject detection module to predict building corners in a single
pass. However, CNN-GCN frameworks often suffer from re-
dundant vertices due to fixed vertex counts. (Li et al., 2019)
addressed this limitation by reframing corner detection as a seg-
mentation task, followed by GCN-based vertex refinement.

Further advancements include PolyWorld (Zorzi et al., 2021),
which introduces a permutation matrix to encode vertex con-
nectivity for accurate polygon generation. CornerRegNet
(Sheikholeslami et al., 2024a) and OriCornerNet (Sheik-
holeslami et al., 2024b) enhances R-PolyGCN by incorporating
oriented corners as auxiliary representations, refining geometric
consistency. Meanwhile, HiSup (Xu et al., 2023) integrates at-
traction field maps to achieve precise polygon mapping, though
it requires post-processing to fully regularize building bound-
aries. These developments highlight the ongoing evolution of
deep learning techniques in structured segmentation, particu-
larly for applications in building footprint extraction and urban
mapping.

3. Methodology

Traditional segmentation approaches that classify individual
pixels often struggle to capture the geometric structure of ob-

jects, as their pixel-wise representation provides limited contex-
tual information about shape. In contrast, graph-based models
inherently preserve geometric properties by representing build-
ings as a network of vertices and edges. By leveraging a Graph
Neural Network (GNN) for convolutional operations, we enable
feature propagation across vertices, allowing the model to learn
and maintain structural coherence more effectively.

Attraction Field Maps (AFMs) further contribute to boundary
refinement by directing pixels toward their nearest edges. This
vector-based guidance enforces smoother and more consistent
delineations that align with building contours. By respecting
the underlying geometry, AFMs help maintain the structural
integrity of extracted building footprints, ultimately leading to
more accurate and regularized polygonal representations.

To harness the geometric advantages, we introduce PolyAttract-
Net, an end-to-end architecture comprising two essential com-
ponents: a backbone network and a graph convolutional net-
work. By integrating Attraction Field Maps in the backbone,
PolyAttractNet enhances edge detection and achieves more pre-
cise building footprint extraction by implicitly learning poly-
gonal shapes, resulting in accurate and complete representa-
tions.

3.1 Backbone Network

The backbone network in our model is optimized for feature
encoding, building object detection, and localization. We util-
ize a Residual Network combined with a Feature Pyramid Net-
work to extract deep, multi-scale features critical for accurately
detecting objects of varying sizes within large satellite images
encompassing diverse building structures. We employ a two-
stage object detection model to detect and localize buildings,
incorporating a Region Proposal Network (RPN) and a local-
ization layer with bounding box regression and classification.
The RPN generates initial bounding box proposals using pre-
defined anchor boxes on extracted features, which are then ap-
plied to the feature maps for cropping. Based on box proposal
sizes, the corresponding feature maps are selected for cropping,
and the cropped features are passed through a RoI pooling layer,
yielding standardized RoI features. These features are then pro-
cessed to refine bounding box coordinates and class scores. The
final bounding boxes and the multi-scale feature maps are fed
into a RoI-Align layer, generating highly localized RoI features.

We also employ AFMs, which provide explicit pixel-wise guid-
ance toward boundaries, enabling precise localization of build-
ing edges by directing the model’s focus to the most accurate
boundary, even in regions of low contrast or where multiple
boundaries are in close proximity. The attraction field maps
and their application in our network are explained below.

3.2 Attraction Field Maps

Attraction Field Maps (AFMs) provide a structured repres-
entation of spatial attraction forces, guiding pixels toward
their nearest object boundaries. Unlike traditional edge detec-
tion methods, AFMs enhance boundary localization by captur-
ing geometric relationships and structural consistency, making
them particularly useful in complex scenarios with occlusions,
weak gradients, or noisy environments.

In our network, AFMs define regions of interest by modeling
buildings as attractive objects, aiding in shape reconstruction
and precise boundary delineation. By generating a vector field
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Figure 1. Network Architecture

where each pixel is directed toward the closest boundary point,
AFMs refine feature representation and improve object-based
image analysis. The Euclidean distance between a pixel p and
its nearest boundary point b determines the attraction vector,
which can be normalized to retain directional consistency while
discarding magnitude.

D(P ) = min
b∈boundary

∥p− b∥2 (1)

a(p) =
(xb − x, yb − y)

∥(xb − x, yb − y)∥2
(2)

AFMs are integrated into deep learning frameworks by concat-
enating them with feature maps at multiple layers, enabling the
network to leverage both semantic and geometric cues. Addi-
tionally, AFMs can be incorporated into the loss function to
encourage alignment between predicted and ground truth at-
traction vectors, improving model robustness. Similarly, in our
network, AFMs provide explicit pixel-wise guidance toward
boundaries, enabling precise localization of building edges by
directing the model’s focus to the most accurate boundary, even
in regions of low contrast or where multiple boundaries are
in close proximity. Not restricted to specific building shapes,
AFMs allow our model to generalize effectively across diverse
structures.

3.3 Graph Convolution Network

In the second stage, we employ a multi-step architecture for
coarse-to-fine polygon prediction, progressively refining vertex

positions using a Graph Convolution Network (GCN). The pro-
cess begins by generating an initial polygon based on the pre-
dicted masks and corners, with vertices uniformly resampled to
match the ground truth vertex count.

GCNs require an input graph, which can either be fixed, as seen
with the arbitrary circle used in R-PolyGCN, or dynamically
based on prior predictions, such as masks and corners. The lat-
ter approach optimally leverages available information, initial-
izing the GCN with a more accurate estimation of the building
shape and allowing it to focus on fine-tuning details. Our ini-
tialization module constructs this initial polygon by using pre-
dicted masks and corners as input. First, the contour of the mask
is extracted via the marching squares algorithm (Lorensen et
al., 1998) and simplified with the procedure by Douglas Peuker
Algorithm(Ramer et al., 1972). Next, a polygon is formed by
matching predicted corners to their closest points on the con-
tour, recovering any potentially missing corners from the con-
tour points to ensure a complete shape. This results in a more
geometrically accurate initial graph. Finally, 16 vertices are
uniformly resampled from the graph to match the vertex count
in the ground truth.

The initial graph features are processed through a GCN to com-
pute vertex offsets, which adjust the vertex positions and pro-
duce updated graph features. These refined vertices are then fed
into a subsequent GCN stage, which predicts additional offsets
for further refinement. This iterative approach continues over
multiple steps, progressively improving the accuracy of vertex
positions and polygon predictions. For this study, we imple-
ment a three-step GCN pipeline, where each step incorporates
a multi-layer GCN to enable comprehensive feature extraction
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and vertex refinement.

3.4 Loss Design

Our network loss function is structured into two primary
branches. The first branch focuses on the backbone network,
which includes Region Proposal Network (RPN) loss, bound-
ing box regression loss, classification loss, and localization loss.
The second branch addresses polygon vertex prediction and
geometric regularization, ensuring structural accuracy. Addi-
tionally, we define training strategies to optimize the perform-
ance of these loss functions.

3.4.1 Backbone Network Losses: Object detection losses
in the backbone network are computed in two stages: RPN
training and box regression with classification. Both stages em-
ploy a multi-task learning approach, combining box regression
loss and classification loss to improve detection accuracy.

Box Regression Loss: Instead of directly predicting bounding
box coordinates, our model estimates box deltas, which define
the transformation required to refine anchor boxes into more
precise proposals. These deltas are computed as.

tx = (x− xa)wa, ty = (y − ya)ha (3)

tw = log(w/wa), th = log(h/ha) (4)

t∗x = (x∗ − xa)wa, t
∗
y = (y∗ − ya)ha (5)

t∗w = log(w∗/wa), t
∗
h = log(h∗/ha) (6)

where x, y = bounding box center
w, h = bounding box width , height
x, xa, x

∗ = predicted box, anchor box, actual box

To evaluate box deltas, we use the Smooth L1 loss, which bal-
ances sensitivity to minor errors and robustness against outliers.

Lreg(t, t
∗) =

∑
i∈{x,y,w,h}

SmoothL1(ti − t∗i ) (7)

SmoothL1(x) =

{
0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(8)

Classification Loss: To assess the confidence of the predicted
class labels, we employ Binary Cross-Entropy (BCE) loss,
which measures how well the model distinguishes between
building and non-building classes.

Lcls(p(y)) = −(ylog(p(y)) + (1− y)log(1p(y))) (9)

where y = actual class label (0 or 1)
p(y) = predicted probability

RPN Loss: During RPN training, anchor boxes are assigned
objectness scores to classify them as positive or negative. The
RPN loss function is formulated as:

Lrpn(p
obj, trpn) =

1

Ncls

Ncls∑
i=1

Lcls(p
obj
i (y))

+
1

Nbox

Nbox∑
i=1

Lreg(t
rpn
i , t∗i ) (10)

where Ncls = number of boxes after NMS
Nbox = positive boxes

Localization Loss: To refine the final building bounding boxes,
we compute localization loss, combining classification and re-
gression.

Lloc(p
class, tloc) =

1

Ncls

Ncls∑
i=1

Lcls(p
class
i (y))

+
1

Nbox

Nbox∑
i=1

Lreg(t
loc
i , t∗i ) (11)

where pclass = predicted class probability
tloc = refined bounding box deltas

Attraction Field Map (AFM) Loss: To improve boundary regu-
larization, we introduce an Attraction Field Map (AFM) loss,
which minimizes the difference between predicted attraction
vectors and ground truth vectors.

LAFM =
1

N

∑
p∈P

∥ṽ − vp∥2 (12)

where ṽ = predicted attraction vector
vp = ground truth attraction vector
N = number of pixels in the image

Thus, the total backbone loss is:

Lbackbone = Lrpn + Lloc + LAFM (13)

3.4.2 Polygon-Based Losses: In addition to backbone
losses, our second branch focuses on polygon localization and
geometric regularization.

Polygon Localization Loss: We define a polygon as a sequence
of N-ordered vertices p = vi|i = 1, 2, ..., N . Given K predicted
polygons, we measure their alignment with ground truth using
the geometric L1 distance.

L1(p
pre, pgt) =

N∑
i=0

(
|xpre

i − x
gt
i |+ |ypre

i − y
gt
i |
)

(14)
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Since the starting vertices of the predicted and ground truth
polygons may not align, we perform vertex correspondence
matching by iterating over all N possible alignments. The fi-
nal polygon localization loss is:

Lpoly(p
pre, pgt) =

1

K

K∑
k=1

min
j∈{0,1,...,N−1}

(
L1(p

pre
k+j , p

gt
k )

)
(15)

Orthogonality Loss: To enforce geometric regularity, we intro-
duce an orthogonality loss, which encourages building bound-
aries to form right angles. This loss penalizes deviations from
0°, 90°, 180°, and 270° angles.

Lortho =
1

N

N∑
j=1

L(Pj) (16)

L(P ) =
1

n

n∑
i=1

min
θpeak

|θi − θpeak| (17)

where θ = internal angles of the polygon

By enforcing orthogonality, we ensure that building footprints
maintain realistic structural constraints, improving both visual
quality and detection accuracy.

3.4.3 Total Loss Function: By integrating polygon localiz-
ation loss and orthogonality loss into the backbone losses, we
establish a robust loss formulation:

Ltotal = Lbackbone + λ
1

N
Lpoly + λLortho (18)

where λ = Weighting Fator for the losses

The proposed loss function ensures precise object detec-
tion while refining polygon-based representations of buildings.
AFM loss improves boundary accuracy, polygon localization
loss enhances vertex alignment, and orthogonality loss enforces
geometric regularity. These components collectively enhance
model performance in complex urban environments, ensuring
accurate and structured building footprint extraction.

4. Experiments and Results

4.1 Dataset

For training and evaluating our network, we employed the
WHU Building Dataset (Ji et al., 2018), which contains approx-
imately 220,000 annotated building footprints extracted from
high-resolution aerial imagery. Each image measures 300 ×
300 pixels with a fine spatial resolution of 0.075 meters per
pixel, covering a total area of 450 square kilometers in Christ-
church, New Zealand. This dataset was compiled using remote
sensing imagery from various global urban regions, captured
by advanced Earth observation satellites such as QuickBird, the
WorldView series, IKONOS, and ZY-3. The diversity and scale
of the dataset make it a valuable benchmark for assessing and
refining building footprint extraction models, ensuring robust
performance across different geographic and imaging condi-
tions.

4.2 Performance Metrics

To assess the performance of building extraction models, we
utilize Average Precision (AP), Average Recall (AR), and
PoLiS (Polygonal Line String Similarity). These metrics
provide insights into how accurately the model captures the
shape and extent of buildings. Precision measures the propor-
tion of correctly identified building pixels among all pixels clas-
sified as buildings. A high precision score indicates fewer false
positives, which is crucial in applications where incorrect de-
tections can be problematic. It is defined as:

Precision =
TP

TP + FP
(19)

where TP = True Positives (correctly detected pixels)
FP = False Positives (incorrectly classified pixels)

Recall evaluates the model’s ability to detect all actual build-
ing pixels, reflecting how many relevant structures are correctly
identified. A high recall score suggests fewer false negatives,
which is essential in applications where missing buildings are
critical. It is calculated as:

Recall =
TP

TP + FN
(20)

where FN = False Negatives (missed building pixels)

PoLiS (Polygonal Line String Similarity) is a vector-based
metric designed to assess the geometric accuracy of predicted
building polygons. Unlike pixel-based metrics, PoLiS evalu-
ates boundary alignment and structural similarity by measuring
the shortest distance from each vertex in the predicted polygon
to the closest point on the ground truth polygon and vice versa.
This bidirectional comparison ensures a thorough assessment of
shape consistency, capturing discrepancies in spatial arrange-
ment and structural detail.

PoLiS(P,Q) =
1

2NP

∑
pj∈P

min
q∈Q

∥pj − q∥

+
1

2NQ

∑
qk∈Q

min
p∈P

∥qk − p∥ (21)

By incorporating PoLiS alongside precision and recall, we
achieve a more comprehensive evaluation of building extraction
models, focusing on both detection accuracy and geometric fi-
delity.

4.3 Results

Training on the WHU dataset is performed for 35 epochs on a
single NVIDIA GeForce RTX 2080 GPU with a batch size of 1.
Our neural network models, training, and inference codes were
implemented with Python 3.9 on Pytorch 1.10.1

We assess the results through qualitative analysis using both
raster-based and vector-based metrics to evaluate model per-
formance. These evaluations highlight the effectiveness of our
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approach in overcoming key challenges in building extraction,
such as automating the footprint extraction process, handling
diverse roof appearances, achieving a balance between recog-
nition accuracy and precise localization, distinguishing closely
spaced structures, detecting buildings of varying sizes, and ac-
curately preserving the geometric integrity of building poly-
gons. The robustness of these metrics demonstrates the adapt-
ability and reliability of our method across diverse and complex
urban environments.

Networks AP(%) AR(%) PoLiS ↓
Baseline 45.7 57.5 2.58
+Orthogonality Loss 46.1 58.3 1.96
+Augmented Features 53.0 61.4 1.90
+Attraction Field Maps 55.3 62.5 1.46

Table 1. Ablation Study of PolyAttractNet on the WHU Dataset
(Lower PoLiS Values Indicate Better Performance)

By integrating Orthogonality, Feature Augmentation, and At-
traction Field Maps into the baseline, our model achieves sig-
nificant improvements, with a 9.6% increase in AP and a 5%
increase in AR, as shown in Table 1. Figure 2 illustrates
that PolyAttractNet produces predictions that closely match the
ground-truth, accurately capturing buildings of various sizes
and shapes.

Figure 2. Comparison of Results: The top row shows the
ground-truth building footprints, while the bottom row displays

the predictions by PolyAttractNet..

5. Conclusion

In this study, we present a deep learning framework for auto-
matic building footprint extraction from satellite imagery, in-
corporating enhanced boundary regularization. Our approach
utilizes a backbone network for multi-scale feature encoding
and object detection, generating well-localized Region of In-
terest (RoI) features. These features are further refined through
orientation information from Attraction Field Maps (AFMs)
and a Graph Convolutional Network (GCN) to reconstruct
building footprints with greater geometric accuracy. By lever-
aging AFMs and GCNs, the framework enhances geometric
learning and improves boundary precision. AFMs are partic-
ularly effective in capturing diverse building structures, im-
proving the detectability of smaller buildings while ensuring
consistent vector guidance for larger or more complex struc-
tures, even in occluded areas. Additionally, AFMs mitigate
challenges related to overlapping building edges by maintain-
ing distinct attraction fields, which helps preserve clear and

well-separated boundaries. Experimental evaluations demon-
strate that our network, PolyAttractNet outperforms both our
baseline model and prior approaches, achieving higher accuracy
and producing well-regularized building footprints. The results
are on par with state-of-the-art methods, confirming the effect-
iveness of our approach. This advancement represents a crucial
step toward fully automated, high-precision building extraction,
reducing reliance on manual intervention. The proposed frame-
work offers a scalable and robust solution for applications in
urban planning, Geographic Information Systems (GIS) map-
ping, and spatial data analysis.

References

Acuna, D., Ling, H., Kar, A., Fidler, S., 2018. Efficient inter-
active annotation of segmentation datasets with polygon-rnn++.
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 859–868.

Castrejon, L., Kundu, K., Urtasun, R., Fidler, S., 2017. Annot-
ating object instances with a polygon-rnn. Proceedings of the
IEEE conference on computer vision and pattern recognition,
5230–5238.

Cortes, C., 1995. Support-Vector Networks. Machine Learning.

Girshick, R., 2015. Fast r-cnn. arXiv preprint
arXiv:1504.08083.

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich
feature hierarchies for accurate object detection and semantic
segmentation. Proceedings of the IEEE conference on computer
vision and pattern recognition, 580–587.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn.
Proceedings of the IEEE international conference on computer
vision, 2961–2969.

Hu, Y., Wang, Z., Huang, Z., Liu, Y., 2023. PolyBuilding: Poly-
gon transformer for building extraction. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 199, 15–27.

Ji, S., Wei, S., Lu, M., 2018. Fully convolutional networks for
multisource building extraction from an open aerial and satellite
imagery data set. IEEE Transactions on geoscience and remote
sensing, 57(1), 574–586.

Jung, J., Sohn, G., 2019. A line-based progressive refinement
of 3D rooftop models using airborne LiDAR data with single
view imagery. ISPRS Journal of Photogrammetry and Remote
Sensing, 149, 157–175.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature,
521(7553), 436–444.

Li, Z., Wegner, J. D., Lucchi, A., 2019. Topological map ex-
traction from overhead images. Proceedings of the IEEE/CVF
International Conference on Computer Vision, 1715–1724.

Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S., 2019. Fast in-
teractive object annotation with curve-gcn. Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion, 5257–5266.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-
Y., Berg, A. C., 2016. Ssd: Single shot multibox detector. Com-
puter Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings, Part
I 14, Springer, 21–37.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-765-2025 | © Author(s) 2025. CC BY 4.0 License.

 
770



Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2016. Con-
volutional neural networks for large-scale remote-sensing im-
age classification. IEEE Transactions on geoscience and remote
sensing, 55(2), 645–657.

Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M.,
Liao, R., Urtasun, R., 2018. Learning deep structured active
contours end-to-end. Proceedings of the IEEE conference on
computer vision and pattern recognition, 8877–8885.

Pinheiro, P. O., Lin, T.-Y., Collobert, R., Dollár, P., 2016.
Learning to refine object segments. Computer Vision–ECCV
2016: 14th European conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part I 14, Springer,
75–91.

Redmon, J., 2016. You only look once: Unified, real-time ob-
ject detection. Proceedings of the IEEE conference on computer
vision and pattern recognition.

Ren, S., 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. arXiv preprint
arXiv:1506.01497.

Sheikholeslami, M. M., Kamran, M., Wichmann, A., Sohn,
G., 2024a. Cornerregnet: Building segmentation from over-
head imagery using oriented corners in deep networks. IGARSS
2024 - 2024 IEEE International Geoscience and Remote Sens-
ing Symposium, 4642–4647.

Sheikholeslami, M. M., Kamran, M., Wichmann, A., Sohn, G.,
2024b. Enhancing Polygonal Building Segmentation via Ori-
ented Corners. arXiv preprint arXiv:2407.12256.

Xu, B., Xu, J., Xue, N., Xia, G.-S., 2023. HiSup: Accurate
polygonal mapping of buildings in satellite imagery with hier-
archical supervision. ISPRS Journal of Photogrammetry and
Remote Sensing, 198, 284–296.

Xue, N., Bai, S., Wang, F., Xia, G.-S., Wu, T., Zhang, L., 2019.
Learning attraction field representation for robust line segment
detection. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 1595–1603.

Zhao, K., Kamran, M., Sohn, G., 2020. Boundary Regular-
ized Building Footprint Extraction from Satellite Images Us-
ing Deep Neural Networks. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 5, 617–624.

Zhou, D., Wang, G., He, G., Yin, R., Long, T., Zhang, Z., Chen,
S., Luo, B., 2021. A large-scale mapping scheme for urban
building from Gaofen-2 images using deep learning and hier-
archical approach. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 14, 11530–11545.

Zorzi, S., Bittner, K., Fraundorfer, F., 2021. Machine-learned
regularization and polygonization of building segmentation
masks. 2020 25th International Conference on Pattern Recog-
nition (ICPR), IEEE, 3098–3105.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-765-2025 | © Author(s) 2025. CC BY 4.0 License.

 
771




