
Generating Watertight 3D Building Models from Airborne LiDAR Point Clouds using
Detection Transformer (DETR)

Lilli Kaufhold1, Martin Kada1

1 Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, Germany
(lilli.kaufhold, martin.kada)@tu-berlin.de

Keywords: Buildings, 3D, Airborne Laser Scanning (ALS), Deep Learning, Geometry, Reconstruction.

Abstract

This work proposes a method for creating accurate, watertight 3D building models from airborne laser scanning (ALS) point
clouds by leveraging a modified Detection Transformer (DETR) architecture. We adapted the DETR architecture to directly predict
building planes from point clouds, from which the 3D model can be inferred using Boolean operations of half-spaces. We tested the
model on the RoofN3D dataset and achieved a mean angle error of 1.7◦ for the building planes and a mean point-to-plane distance
of 0.16m. Building facets can be detected even in the total absence of representative points, a common challenge in ALS data
due to scanning direction and occlusions. By learning higher-level geometric principles, such as favouring 90-degree angles and
symmetry, the model is able to adapt to various architectural styles without the need for explicit rules or pre-defined roof archetypes.

1. Introduction

Three-dimensional (3D) city models are increasingly being
used in applications such as urban planning, disaster man-
agement, cultural heritage conservation, resource optimisation
such as the location of solar panels sites and the creation of di-
gital twins for real-time monitoring and simulation (Biljecki et
al., 2015, Romero Rodrı́guez et al., 2017, Gao et al., 2018)). In
addition to topographic objects like vegetation, roads, street fur-
niture, and an underlying terrain representation, buildings are
often an important part of these models, and the focus here is
to capture their geometries. While small areas can be modelled
by hand, large-scale models need to be automatically extracted
and reconstructed. There exist a number of methods to tackle
this problem, as, for instance, discussed in (Haala and Kada,
2010, Buyukdemircioglu et al., 2022).

A common data source for extracting 3D building models is
airborne laser scanning (ALS). Although satellite images and
TrueOrtho photos provide high-resolution texture, they do not
include 3D information. To introduce 3D aspects, additional
data sources such as digital surface models (DSMs) would have
to be used. Point clouds, generated through photogrammetry or
lidar (Light Detection and Ranging), provide 3D data. While
in photogrammetric point clouds the buildings are often oc-
cluded by trees, ALS has the advantage of being able to pen-
etrate vegetation to map underlying structures. They are also
widely available. Depending on whether the images are taken
obliquely or from a nadir perspective, vertical surfaces such as
building façades may be only partially visible or completely
missing, which needs to be taken into account by the recon-
struction method.

However, raw point cloud data presents challenges for down-
stream tasks due to its unstructured nature and complexity.
Thus, there is a need to create 3D models that are more manage-
able and still capture relevant information. Measuring the qual-
ity is not straightforward and quality measures should match
the intended use of the models (Oude Elberink and Vosselman,
2011). In general, there are several desired properties, includ-
ing:

• Accuracy: The extracted 3D models represent the actual
geometries of buildings, ensuring that vertex locations,
edges, roof angles, etc. are preserved according to the
true physical forms captured by ALS data. Inaccuracies in
building dimensions can significantly affect downstream
applications, such as urban airflow simulation; for ex-
ample, (Carpentieri and Robins, 2015) demonstrated that
errors in building height can significantly alter simulated
wind flow and dispersion.

• Aesthetics: Models should maintain the architectural in-
tegrity of the original structures. This includes the pre-
servation of design elements such as symmetries, right
angles, and other distinctive features. These also depend
on the cultural and historical context of the building.

• Compactness: Models should be simple, avoiding the
use of an excessive number of primitives that make down-
stream processing tasks computationally expensive. As
highlighted in (Yu et al., 2021), overly complex models
can hinder real-time rendering in interactive applications
and increase computational costs in simulations, which is
especially problematic in large-scale urban environments.

• Geometric Integrity: Geometric flaws can limit the use
in different tools and exchange, and lead to errors in sub-
sequent computations. Thus, models should be watertight,
free from self-intersections, and have non-degenerate faces.
Furthermore, the surface should form a 2-manifold geo-
metry.

• Editability: As some automatically generated models
might not meet user requirements, especially in the case of
buildings with special or uncommon geometries, it should
be easy to adapt and correct the resulting models manually.
This means that changes should involve low effort and lead
to building models that still fulfil the above-mentioned re-
quirements.

The primary focus of our study is to investigate the feasibility
of using the detection transformer (DETR) model to produce
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Figure 1. The DETR model predicts a set of planes, which are
combined through intersection to generate a 3D building model,

following the half-space concept.

accurate plane parameters necessary for building reconstruc-
tion. We confirmed this by training the model to generate 3D
models for convex buildings that meet the above-mentioned re-
quirements. Specifically, 3D building models are represented
in a compact manner using half-spaces (Figure 1). These divide
the space into ”inside” and ”outside” and are combined using
Boolean operators to create watertight volumes. The approach
does not rely on a predefined set of architectural rules but in-
fers them from the training data. This is enabled by the trans-
former’s attention mechanism, which captures the relationships
between all building components that leverage symmetries and
orthogonal angles to fill in building facets not represented in the
input point cloud.

2. Related Work

Most existing methods try to balance some or all of these re-
quirements. Model-based techniques typically contain expli-
cit restrictions on the allowed shapes derived from architec-
tural structures. This ensures that the resulting 3D models fulfil
high-level assumptions, such as matching predefined roof types.
In contrast, data-driven or more specifically observation-driven
methods focus on aligning the 3D model closely with the input
point cloud. This alignment guarantees that the model accur-
ately corresponds to the measurements. In practice, all methods
integrate both model-driven and observation-driven elements to
create a balanced final model.

2.1 Traditional Methods

An overview of traditional methods can be found in (Haala and
Kada, 2010) and (Tomljenovic et al., 2015). These methods of-
ten rely on the identification of basic geometric primitives, such
as planes. To this end, algorithms such as RANSAC (Schna-
bel et al., 2007, Li and Shan, 2022, Sun et al., 2024), Hough
transform (Tian et al., 2020, Ballard, 1981), and region growing
(Vosselman and Dijkman, 2001, Liu et al., 2023) are often used.
For a large-scale reconstruction of all buildings in the Nether-
lands, Peters et al. (Peters et al., 2022) used a decomposition
of the building footprints. They then reconstructed the build-
ings from extracted planes. Planes are merged based on their
proximity, with thresholds controlling the merging to scale the
model between accuracy and compactness. These approaches
do not address symmetry directly; however, since the model re-
lies on the footprint of the building, opposite sides will be as
symmetric as the footprint polygon sides.

Instead of using basic primitives, more model-driven methods
explicitly model the roof types. In (Li and Shan, 2022), Li

and Shan use a nested RANSAC approach which estimates the
plane parameters in the inner loop, as well as the full build-
ing parameters in the outer loop based on the extracted planes.
Here, adherence to predefined models pose hard constraints, so
geometric integrity of the resulting models can be guaranteed.
In this way complex buildings with missing parts can also be
constructed.

Others propose energy-minimisation frameworks that combine
data fidelity, smoothness, and complexity penalties (Hu et al.,
2021, Li et al., 2023). These approaches typically take a lot of
effort to adapt to point clouds acquired in a different way, as the
feature extraction has to be tuned manually.

The authors of (Bizjak et al., 2021) detect half-planes that are
then intersected and combined using Boolean operations to
form a final 3D model, which leads to geometrically valid mod-
els, but is not adaptable to user preferences.

2.2 Machine Learning Methods

Supervised machine learning algorithms derive implicit models
from labelled training data. An overview of deep learning tech-
niques in the area of building reconstruction can be found in
(Buyukdemircioglu et al., 2022). A key challenge is extracting
robust features from noisy point clouds. Consequently, several
methods replace hand-crafted features with learnt representa-
tions (Buyukdemircioglu et al., 2022). For instance, (Solei-
mani Vostikolaei and Jabari, 2023) classify the types of (single
part) building roofs using a conventional neural network into a
predefined set of roof types based on optical RGB images and
a DSM, and then determine the building parameters, like ridge
and eaves height, from a normalized DSM. From the primitive
parameters, geometrically valid 3D models can be generated in
a rule-based manner in any geometrical representation, but the
method is limited to a small set of predefined building types.

Segmentation-based techniques focus on partitioning the input
data into meaningful regions that correspond to different build-
ing components, such as roof planes. For example, (Kada,
2022) add prediction heads to jointly estimate the plane para-
meters of each segmented part, thus also replacing the para-
meter estimation step. Similarly, Li et al. (Li et al., 2024)
propose a boundary-aware clustering architecture to segment
the point cloud into roof planes, which could then be paramet-
rised to obtain the final 3D model. Others focus on roof edges:
(Xu et al., 2024) uses CNNs to extract vectorised roof lines
from multispectral images and DSMs, then reconstructs poly-
gons. All these methods rely on sufficient coverage represent-
ative points for each of the segmented building components in
order to detect the components.

Voting-based algorithms bypass the need for a dedicated seg-
mentation step by allowing individual points or seeds in a point
cloud to vote for parameters of the structures to which they
belong (Qi et al., 2019). Notable examples include PPGNet
(Zhang et al., 2019) for 2D line and vertex extraction, and its
3D adaptation in Point2Roof (Li et al., 2022). One limitation is
that it produces wireframes that may not form valid, watertight
3D models. In (Liu et al., 2024), the authors use a transformer-
based architecture to detect vertices and then deduce faces from
them. This produces a set of polygons, which do not necessarily
form a valid polyhedron.

Transformers leverage self-attention mechanisms to capture
complex dependencies within the data (Vaswani et al., 2017).
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By using explicit information about feature locations, these
models are particularly effective in environments where un-
derstanding of spatial relationships within data is necessary.
Originally designed for natural language processing, they have
been extended to various domains, including 3D data analysis
and point cloud processing (Lu et al., 2022). DETR (Detection
Transformers) approaches solve object detection as a direct
set prediction problem (Carion et al., 2020). The architecture
comprises a feature extraction step followed by a transformer
that uses positional embeddings. Unlike voting-based methods,
DETR approaches eliminate the need for non-maximum sup-
pression or grouping and provide a more flexible output format,
such as polygons. This has been shown in 2D building foot-
print prediction, as seen in PolyBuilding (Hu et al., 2022), and
adapted to 3D contexts for object detection in works such as
3DETR presented by (Misra et al., 2021).

3. Materials and Methods

We frame building reconstruction as an object detection prob-
lem, where the objects are building facets represented by planar
polygons contained within half-planes. Each half-plane is
defined by its centroid point p and the normal vector n pointing
outward. In addition, each plane is labelled with a class label to
indicate whether it is a floor, facade, or roof plane. The building
model can then be reconstructed using Boolean intersections of
the half-planes, producing a convex, watertight volume.
We adapt the Detection Transformer (DETR) architecture (Carion
et al., 2020) for this task (see Fig. 2), which originally per-
forms bounding box predictions from images. An advantage
of the DETR architectures and transformers in general is their
independence of the data format. While convolutional neural
networks (CNNs) encode the grid structure of the input images
into the architecture, transformers only rely on the positional
encoding of the input features.

3.1 Architecture

To solve the object detection task, we adapt the original DETR
architecture (Carion et al., 2020) from detecting 2D bounding
boxes to 3D plane primitives. We formulate the task as set
prediction and adapt the DETR architecture to directly predict
the set of planes and their parameters. As backbone for point
clouds, we use a simple PointNet++(Qi et al., 2017) network
with two layers. In this step, the input point cloud is down-
sampled and aggregated from N to N ′ coordinates and point
features, which are subsequently projected to the transformer
dimensions. We use the original DETR transformer proposed
by Carion et al. (Carion et al., 2020), which was pretrained on
2D object detection. In contrast to 3DETR (Misra et al., 2021),
we use learnt parametric queries as also used in the original
DETR and do not use the input point cloud to create queries.

3.2 Positional Encoding

Transformers require positional information to process inputs
effectively. Following Vaswani et al. (Vaswani et al., 2017),
we employ sine-based positional encoding, which uses sinus-
oidal functions to encode spatial positions. Although designed
for word order in text models, it also works for multidimen-
sional coordinates. Their performance is empirically evaluated
in section 4.1 against other encoding methods such as Fourier-
based.

3.3 Heads and Losses

The planes are represented as {pi} = (x, n, c), where x is the
centroid, n is the normal vector, and c is the class. The model
consists of two heads. The first is a classification head to predict
the plane type (floor, facade, roof and the DETR-specific ’no-
object’ class) using cross-entropy loss

LCE(c, ĉ) = −
∑
i

ci log(ĉi).

Furthermore, we use a plane regression head that outputs three
parameters for the centroid of the plane, as well as three para-
meters for the normal. The composite loss function comprises:

• Huber loss for the six-dimensional plane parameters

Lplanes,δ(p, p̂) =

{
1
2 (p− p̂)2 if |(p− p̂)| < δ

δ((p− p̂)− 1
2δ) otherwise

• Cosine similarity loss for the angle discrepancy between
the predicted and ground truth normals

Lcos(n, n̂) = 1− n · n̂
||n||2||n̂||2

• The Euclidean distance from the predicted centroid to the
actual plane

Ldist((x, n), x̂) = |(x− x̂) · n|

The final loss is thus a weighted sum

loss = w1LCE + w2Lplanes + w3Lcos + w4Ldist.

3.4 Bipartite Matching

As the DETR architecture predicts the set of planes in arbit-
rary order, it is necessary to match its outputs with the ground
truth planes. To solve this optimisation problem, we use the
Hungarian matching algorithm. The cost function is a weighted
sum of the l1-norm between the plane parameters and the class
error, defined as 1− p̂(c).

3.5 Training Dataset

We used the RoofN3D dataset from (Wichmann et al., 2018),
which consists of rectangular buildings and provides both the
point clouds and parameters of the building planes to recon-
struct the 3D model. Although these point clouds are originally
constructed using cadastral footprints, our approach does not
use this additional information. From the RoofN3D dataset,
we extracted all buildings with rectangular footprints resulting
in 118.073 buildings. From these we reserved 20% as holdout
data for testing.

3.6 Evaluation Metrics

We evaluated the model on the test set from RoofN3D using
multiple performance metrics. To assess Intersection-over-
Union (IoU), we converted the half-space representation into
explicit mesh reconstructions using PyMesh (Zhou, 2020).
While this step enables direct geometric comparison, it is not
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Figure 2. DETR-based architecture for detecting building faces from 3D point clouds.

always necessary, as a city model could also be stored in half-
space form depending on the application. Further metrics are
angle error, representative points distance, point-to-plane dis-
tance, and cardinal error. The angle error measures the angular
discrepancy between predicted and actual normals. Represent-
ative points distance quantifies the Euclidean distance between
the predicted and actual building face centroids. The point-to-
plane distance assesses the proximity of the estimated point to
the actual plane. Cardinal error captures discrepancies in the
number of building faces

3.7 Additional Real World Testing Dataset

In order to test the model’s generalisation capabilities, we ap-
plied the trained model to a subset of buildings from the AHN3
data in the City3D dataset presented in (Peters et al., 2022). To
match the training dataset, we filtered the dataset to include only
buildings whose footprints are roughly rectangular, defined by
an overlap of at least 80% between their alpha shape and ori-
ented bounding box when projected onto a 2D plane.

4. Results

The sample predictions of the generated 3D building models
are shown in Figure 3. Typical model errors are building mod-
els that are more symmetric than the actual building. Our model
achieved robust performance across various evaluation metrics.
With a mean angle error of 1.7◦, a mean representative points
distance of 0.42 metres, and a mean point-to-plane distance of
0.16 meters, the model effectively captures the geometric char-
acteristics of the buildings. The cardinal error was observed to
be 0.08, indicating that the model estimates the correct number
of faces in the building structures in most cases. Furthermore,
a high IoU score of 0.88 was achieved. We found that large
IoU errors often stem from data ambiguities, such as when dis-
tinguishing between integral building structures and adjacent
elements like awnings is challenging. Angle discrepancies and
slight plane translations are punished less harshly by the IoU.
Notably, the generated buildings largely exhibited symmetrical
structures and right angles, aligning well with typical architec-
tural forms.

4.1 Impact of Positional Encodings

To incorporate positional information into the transformer ar-
chitecture, we investigated three different positional encoding
schemes in addition to the sine-based encoding proposed in

3.2: Fourier-based, learned, and zero encoding. Following
the approach presented in (Wang et al., 2022), Fourier-based
encoding employs a Fourier series to encapsulate positional in-
formation, which proves to be effective in capturing complex
spatial relationships. In the case of a learned encoding, the
positional encodings are initially randomised and subsequently
updated by backpropagation, similar to the method described
by (Yu et al., 2022). Although powerful, this approach lacks the
ability to generalise to unseen positions, limiting its use in cer-
tain contexts. Lastly, zero encoding does not explicitly provide
any positional information to the model, serving as a baseline
to assess the effectiveness of the other encoding strategies. In
Table 1, results for four types of position encodings are shown.
We used sine-based, learnt, Fourier-based, and no positional en-
coding (referred to as ”zero” encoding). We only found small
differences in the use of different positional encodings. This
aligns with the findings of Misra et al. (Misra et al., 2021), who
argued that the input features of the transformer encoder in-
herently contain coordinate information from the point cloud,
making positional encoding less critical. Unlike text or images,
point clouds are unordered by nature, making the transformer
architecture particularly suitable. We observed no necessity for
providing the decoder with a specific positional encoding. We
hypothesize that this may be attributed to the relatively simple
nature of the output space of our building dataset compared to
the dataset used by Misra et al., which allows for the effective
learning of queries even in a 3D context. In our case, the bottle-
neck seems to be the features and coordinates forwarded by the
backbone or ambiguities in the training data itself rather than
the positional encoding.

Positional Encoding Learned Fourier Sine Zero

Angle Error 1.7◦ 1.8◦ 1.7◦ 1.9◦

Rep. Points Dist. [m] 0.43 0.46 0.42 0.45
Point-to-Plane Dist. [m] 0.16 0.16 0.16 0.18
Cardinal Error 0.08 0.06 0.08 0.06
IoU 0.88 0.88 0.88 0.87

Table 1. Evaluation of various position encoding methods.

4.2 Impact of the Training Data Distribution

As the training data plays an important role for machine learn-
ing models, we also investigated the errors in relation to the
distribution of the training data. Fig. 5 shows that the error in-
creases for planes that have fewer similar samples in the training
dataset.
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Figure 3. Predictions on an uncurated subset of the test set in groups of three: input point cloud, ground truth model, predicted model.
The height of the points in the point cloud is colour-coded. Not that the scale of the point clouds does not match the scale of the 3D

models.

Figure 4. Alternatingly input point cloud from City3D dataset (AHN) and prediction
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Figure 5. Histogram of the frequency of angles of the roof planes
and median errors for the respective planes in the test dataset.

4.3 Real-World Test

Sample results for randomly selected point clouds of roughly
rectangular buildings from the AHN3 part of the City3D data-
set are shown in Figure 4. While all extracted models form cor-
rect, watertight 3D volumes and visually convincing buildings,
their correspondence to the observed point cloud varies. As flat
roofs were not part of the training data set, the model had to ap-
proximate them with multiple planar facets. This highlights its
sensitivity to underrepresented architectural variations, as ob-
served in Section 4.2, while also demonstrating its robustness
in adapting to unseen structures.

5. Discussion

The adaptation of the DETR architecture from 2D to 3D intro-
duces new challenges, particularly in how the model handles
positional encodings, query initialization, and spatial feature
representation. The results of our study indicate that the po-
sitional embedding used in the transformer model might not
be as crucial as initially expected. A possible explanation is
that the feature embeddings derived from the point cloud co-
ordinates inherently carry sufficient spatial information, which
reduces the need for explicit positional embeddings. Addi-
tionally, the downsampling operations performed in the point
cloud backbone tend to degrade spatial precision, further min-
imising the impact of positional encoding, which is only based
on the subsampled points. This suggests that point cloud pro-
cessing pipelines may be optimised by focussing less on posi-
tional embeddings and more on robust feature extraction tech-
niques. Queries in DETR-based architectures can be parametric
(learned embeddings, as in DETR) or derived from input data
(as in 3DETR, which samples points from the point cloud).
Misra et al. argue that using points from the point cloud as
queries improves the results, as 3D scenes are often too com-
plex for parametric queries to generalise effectively (Misra et
al., 2021). However, in our case, the situation differs: queries
can learn a structured space of plausible buildings, rather than
having to adapt to arbitrary 3D environments. In our controlled
experiments with simple convex buildings, this approach is suf-
ficient, as the learnt queries implicitly capture the regularities
and constraints of the training distribution. For more complex
structures, however, this remains an open question and future
work should investigate whether incorporating queries derived
from the point cloud improves reconstruction accuracy in more
diverse architectural settings.

A major challenge for machine learning-based methods is the
availability of large-scale high-quality datasets. Unlike tra-

ditional approaches, deep learning models require substantial
training data, which is particularly difficult to obtain for 3D
building reconstruction, as data sets must capture not only ex-
terior surfaces but also structural relationships between building
components. Ideally, such datasets should represent buildings
in a way similar to Constructive Solid Geometry (CSG) trees,
where each component is modelled as a solid. Many existing
datasets, such as used for the ISPRS benchmark (Rottensteiner
et al., 2014), lack the necessary structural detail and require
significant preprocessing. Although formats like CityGML
provide hierarchical representations of buildings, they do not
explicitly define how individual planes or building parts re-
late. The *.obj format, commonly used for geometry storage,
represents buildings as surface meshes rather than solid struc-
tures, making it unsuitable for operations that rely on Boolean
intersections. In contrast, STEP and CAD formats inherently
support solid representations, ensuring that each component is
defined as a watertight polyhedron, preserving geometric integ-
rity.

Another critical issue is the presence of biases in the model and
the challenges in understanding what drives its behaviour. The
proposed method has several advantages in meeting the out-
lined requirements: the geometries are always valid due to con-
struction using Boolean operators, making them robust in terms
of geometric integrity. The models are easy to edit as they con-
tain relatively few primitives, which can be adapted by moving
representative points and rotating planes. The resulting models
are generally as simple as those provided in the training data.
Aesthetically, the output is similar to the training dataset, and
our results showed that the model can learn to favour symmet-
ric constructions. The accuracy of the model is generally good,
but may not always match the precision achievable by directly
computing angles and other geometric details from the point
cloud. Improving spatial accuracy could be achieved by using
more sophisticated backbones or a deformable DETR model.
However, it is important to note that biases may still arise, as
the model may prioritise learnt higher-level assumptions, such
as symmetry, over exact geometric details, especially in am-
biguous cases. This opacity becomes particularly problematic
when reconstructing buildings with uncommon architecture or
when dealing with input point clouds that are of poor quality,
e.g. those with occluded surfaces or high levels of noise. Un-
like traditional RANSAC-based methods, where primitives are
extracted based on the number of points supporting each geo-
metric element, deep learning models do not offer such explicit
interpretability, making the output less predictable under var-
ied conditions. On the other hand, it can be argued that human
modelers are also not fully transparent in the way they extract
the 3D buildings, and the deep learning method tries to mimic
their behaviour as closely as possible.

6. Conclusion

In this work, we have adapted the DETR architecture to build-
ing face detection from 3D point clouds. From these, water-
tight 3D building models can be inferred using half-space mod-
elling and Boolean operations. We showed that the model is
capable of learning to also predict building facets that do not
have representative points, which is a common issue of ALS
point clouds, which might not capture all parts of the buildings
due to scanning direction and occlusions.

This is performed by the model by learning higher-level geo-
metric rules, such as favouring 90◦-degree angles and sym-
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metry. This makes it adaptable to many architectural styles
without providing explicit model rules. The roof archetypes
used in (Henn et al., 2013) can thus all be learnt without ex-
plicitly specifying them. The downside of the model is the re-
quirement for a large amount of diverse training data, which
it shares with most data-driven methods. Furthermore, it can
happen that the network proposes a building model which does
not closely relate to the given input data, but looks convincing.
To address the challenge of acquiring training data, we propose
the workflow of initially creating 3D models using a fully auto-
matic method that does not rely on machine-learning and then
correct them to obtain a training dataset. If footprints are not
available, input point clouds could be generated through se-
mantic segmentation of ALS point clouds using existing models
such as RandlaNet (Hu et al., 2020) or KPConv (Thomas et al.,
2019), followed by an extraction of individual buildings. An
approach suitable for creating complex CSG trees is presented
in (Li and Shan, 2022). So far, we focused on simple buildings
with rectangular footprints, which are available in the RoofN3D
dataset. It would be directly applicable to all datasets contain-
ing convex 3D models but would require further adaptions for
non-convex buildings. This limitation stems from the fact that
intersections of half-planes are always convex. Extensions to
more complex buildings with non-convex geometries would re-
quire training data that include information of the whole CSG
tree; thus datasets such as Vaihingen from the ISPRS bench-
mark (Rottensteiner et al., 2014) which only include the facets
of the boundary representation are not suitable. Future work
will focus on creating datasets to accommodate complex build-
ing structures.
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