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Abstract 

 

Global warming and water scarcity have made snowfall an essential area of study. Rapid melting of glaciers and snowfields transforms 

ecosystems and water availability, emphasizing the need to measure snow water equivalent (SWE). This study employs SWE, the 

Normalized Difference Snow Index (NDSI), and Snow Depth from MODIS time-series images to monitor and analyze snow-related 

changes effectively. MODIS images, with their consistent temporal resolution, are ideal for tracking seasonal and annual snow 

variations. This research examines MODIS data spanning 2007 to 2023 during the winter months (December to March) to evaluate 

changes in snow-covered areas and their water equivalents. The study focuses on Turnagain Arm, a prominent waterway in the north-

western Gulf of Alaska. Machine Learning methods were applied to model SWE variations, using NDSI and Snow Depth as predictors. 

A test-train split approach was implemented to ensure robust and reliable results. Data from six USDA monitoring stations around 

Turnagain Arm supported the model's accuracy and relevance. The findings reveal significant trends in snow coverage and water 

storage over time, providing valuable insights for understanding snowmelt dynamics and informing strategies for water resource 

management in the region. This comprehensive approach demonstrates the potential of integrating remote sensing data and Machine 

Learning techniques to monitor environmental changes caused by global warming. 

 

1. Introduction 

More than 30 percent of the Earth is covered by seasonal snow, 

and about 10 percent by permanent glaciers. The melting of 

glaciers is a well-documented effect of global warming. As the 

climate warms, Earth’s glaciers are melting at an accelerating 

rate. The Portage Glacier, located in the U.S. state of Alaska, is 

the headwater of the Turnagain Arm, one of two narrow branches 

at the north end of Cook Inlet. Turnagain Arm is subject to 

climate extremes and large tide ranges. 

The glaciers have been retreating for over a century due to 

warmer temperatures and changes in precipitation. Since 1900, 

the terminus has retreated as much as 12 km (7.5 mi). Snow water 

equivalent (SWE) is the amount of water contained within the 

snowpack. It is defined as the depth of water that would result if 

the entire snowpack were melted instantaneously. SWE is 

typically measured in millimeters or inches. It is an important 

parameter for hydrological and meteorological studies, as it 

provides information on the amount of water that will be 

available for runoff during the spring melt. 

A quantitative understanding of snow thickness and snow water 

equivalent (SWE) on glaciers is essential to a wide range of 

scientific and resource management topics. However, robust 

SWE estimates are observationally challenging, in part because 

SWE can vary abruptly over short distances in complex terrain 

due to interactions between topography and meteorological 

processes. McGrath et al. found that SWE can be highly variable 

(40% difference) over short spatial scales (tens to hundreds of 

meters), especially in the ablation zone where the underlying ice 

surfaces are typically rough. 

Additionally, recent studies have shown that climate change has 

led to shifts in snowfall patterns, with some regions experiencing 

increased snowfall while others face prolonged drought 

conditions. These variations further complicate the accurate 

estimation of SWE, necessitating the use of advanced remote 

sensing techniques. The integration of satellite imagery with in-

situ observations helps to improve the reliability of SWE 

measurements and allows for large-scale monitoring of 

snowpack dynamics. 

As both the model predictions and passive microwave snow 

water equivalent (SWE) observations contain large errors 

attributable to land surface complexities and temporally frequent 

snowmelt processes in the western United States, the 500-m daily 

Moderate Resolution Imaging Spectroradiometer (MODIS) snow 

cover area (SCA) product has been widely used as an important 

constraint on snowpack processes in land surface and 

hydrological models. MODIS provides consistent spatial 

coverage, making it an invaluable tool for tracking changes in 

snow distribution over time. 

For calculating SWE from the NDSI index from MODIS satellite 

images, the best months are December to March, which represent 

the winter season in the USA. These months record the highest 

snowfall accumulation, making them ideal for studying 

snowpack dynamics. The seasonal cycle of snow accumulation 

and melt plays a crucial role in regional hydrology, affecting river 

flow, reservoir storage, and water availability for agriculture and 

human consumption. 

For monitoring SWE changes, a long-term dataset is necessary to 

capture interannual variability and detect significant trends. This 

study utilizes MODIS images spanning 18 years, from 2005 to 

2023, focusing on the winter months (December to March). By 

analyzing this extensive dataset, we aim to enhance our 

understanding of snowpack evolution and its implications for 

water resource management in a changing climate. 

Monitoring and analyzing snow variations play a crucial role in 

hydrological studies, climate research, and water resource 

forecasting. Snow Water Equivalent (SWE) is a key parameter 

that represents the amount of water stored in snow. This 

parameter can be obtained through ground-based measurements 

or estimated using statistical models based on related variables 
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such as the Normalized Difference Snow Index (NDSI) and snow 

depth. This study employs polynomial Regression to model the 

relationship between SWE, NDSI, and snow depth. 

 

2. Proposed Method 

2.1 Flowchart 

The flowchart below outlines the key steps in the Snow Water 

Equivalent (SWE) estimation research process. It begins with 

data acquisition from MODIS imagery, incorporating SWE, the 

Normalized Difference Snow Index (NDSI), and Snow Depth. 

The data is then pre-processed through cleaning, normalization, 

and test-train splitting to ensure model accuracy. A polynomial 

regression model is applied to predict SWE using NDSI and 

Snow Depth as input variables, followed by model evaluation 

using metrics such as Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and the R²-score. The results are analyzed 

to identify trends in snow cover variability and their implications 

for water resources. The study concludes with insights into 

climate change impacts and future water management strategies. 

 

 
Figure 1. The flowchart of the proposed methodology 

 

2.2 Data 

The NDSI is defined as the difference of reflectance observed in 

a visible band such as MODIS band 4 (0.555 Am) and a short-

wave infrared band such as MODIS band 6 (1.640 Am) divided 

by the sum of the two reflectances: 

𝑁𝐷𝑆𝐼 =
(𝐵4 − 𝐵6)

(𝐵4 + 𝐵6)
 (1) 

where, NDSI = The Normalized Difference Snow Index, B4 = 

very high visible (VIS) reflectance, and B6 = very low 

reflectance in the shortwave infrared (SWIR). 
The MODIS imagery which is used is the MOD10A1 V6. It is a 

Snow Cover Daily Global 500m product that contains snow 

cover, snow albedo, fractional snow cover, and quality 

assessment (QA) data. Snow cover data are based on a snow 

mapping algorithm that employs a Normalized Difference Snow 

Index (NDSI) and other criteria tests. The period of monitoring 

NDSI from MOD10A1 V6 images is December 2005 to February 

2023 and just for four months, during which the winter season 

(December to March) has more snow and snow water equivalent.  

Also, Snow Water Equivalent (SWE) which drives from ground-

based stations represents the amount of liquid water contained 

within a snowpack. It is a crucial parameter for hydrological and 

climate studies, as it directly affects water resource management 

and runoff estimation. The SWE is calculated using the following 

equation: 
𝑆𝑊𝐸 =  𝜌s × 𝐻𝑠 (2) 

 

where SWE is the snow water equivalent (mm or cm), 𝜌 is the 

snow density (kg/m³), and Hs is the snow depth (mm or cm). 

Snow Density Considerations: Fresh snowfall has a low density, 

typically between 50 and 150 kg/m³. Compacted or older snow 

has a higher density, often ranging from 200 to 400 kg/m³. Wet 

snow can have densities exceeding 500 kg/m³. 

To obtain accurate SWE values, precise measurements of both 

snow depth (Hs) and snow density (𝜌) are required. If snow 

density is unknown, empirical relationships or remote sensing 

techniques, such as the Normalized Difference Snow Index 

(NDSI), can be used to estimate it. 

 

2.3 Location 

Station Name Station ID Coordinates 

Anchorage Hillside 1070 61.11, -149.67 

Indian Pass 946 61.07, -149.45 

Mt. Ayesha 1103 60.96, -149.09 

Turnagain Pass 954 60.78, -149.18 

Grand View 956 60.61, -149.06 

Summit Creek 955 60.62, -149.53 

Table 1. Information on ground stations 

 

Table 1 illustrates six ground stations that are measuring Snow 

Water Equivalent from 2005 to 2023 and they are located around 

the Turnagain Arm. In the picture below there are the locations 

of ground stations and Turnagain Arm in map from USDA. 

 

 
Figure 2. SWE measuring from ground stations map 

 

2.4 SWE and Snow Depth Figures 

The following figures present the variations in Snow Water 

Equivalent (SWE) and snow depth for each of the six monitoring 

stations over 18 years. These visualizations provide a 

comprehensive representation of temporal trends in snow 

accumulation and water content. The data used to generate these 

figures were obtained from the United States Department of 

Agriculture (USDA) database, ensuring accuracy and 

consistency in the recorded measurements. Each station's dataset 

highlights seasonal and interannual variations, offering valuable 

insights into long-term snow dynamics and the potential impacts 

of climate change on snowpack stability.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

(f) 

Figure 3. Snow Depth Index in (a) Anchorage Hillside station, 

(b) Grandview station, (c) Turnagain_pass station, (d) Summit 

Creek station, (e) Mt.Alyeska station, (f) Indian_pass station. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 4. SWE in (a) Anchorage Hillside station, (b) Grandview 

station, (c) Turnagain_pass station, (d) Summit Creek station, 

(e) Mt.Alyeska station, (f) Indian_pass station. 

 

Figure 5 presents the temporal variations of Snow Water 

Equivalent (SWE) as measured and the Normalized Difference 

Snow Index (NDSI) derived from six monitoring stations over 

the period from December 2005 to March 2023. A comparative 

assessment of these datasets reveals an inverse relationship 

between the snow cover index and the snow water equivalent 

index. Specifically, in regions experiencing seasonal temperature 

increases, particularly during warmer months, accelerated 

snowmelt leads to a reduction in snow cover. This phenomenon 

is reflected in decreasing NDSI values, signifying diminished 

snow coverage, while simultaneously, SWE measurements from 

ground stations exhibit an increase due to the additional water 

content derived from melting snow. This inverse correlation 

underscores the influence of temperature fluctuations on 

snowpack dynamics, wherein elevated temperatures contribute to 

the depletion of snow cover while augmenting the measurable 

water equivalent from melted snow. 

 
2.4 Methodology 

We employ polynomial regression to model the relationship 

between snow water equivalent (SWE), normalized difference 

snow index (NDSI), and snow depth. The dataset consists of 

SWE measurements recorded at the Anchorage Hillside ground 

station, along with corresponding NDSI values derived from 

satellite imagery and snow depth records. 

To improve model accuracy and mitigate overfitting, the dataset 

is divided into two subsets: training data, comprising 80 percent 

of the total observations, is used for model training, while the 

remaining 20 percent serves as test data for model evaluation. 

The modeling approach involves the application of polynomial 

regression to establish the relationship between SWE and the two 

independent variables, NDSI and snow depth. Initially, input 

features are expanded to a third-degree polynomial using 

polynomial feature transformation. Subsequently, a linear 

regression model is fitted to the transformed dataset. 

The performance of the model is evaluated using three statistical 

metrics: mean absolute error (MAE), mean squared error (MSE), 

and the coefficient of determination (R²-score). The model 

outputs include the polynomial regression coefficients and the 

intercept, which indicate the influence of independent variables 

on SWE prediction. The R²-score serves as a key indicator of the 

model’s goodness of fit and predictive accuracy. 

 

Station Name MAE MSE R2-score 

Anchorage Hillside 0.73 0.92 0.94 

Indian Pass 2.77 13.85 0.86 

Mt. Ayesha 1.15 2.14 0.86 

Turnagain Pass 1.27 2.55 0.91 

Grand View 1.07 1.51 0.83 

Summit Creek 2.01 7.06 0.93 

Table 2. Information on statistical metrics 

 

The results indicate that third-degree polynomial regression 

effectively captures the relationship between SWE, NDSI, and 

snow depth. This approach can be a valuable tool for SWE 

estimation, particularly in regions where ground-based 

measurements are limited. 

 
3. Conclusion 

This study underscores the profound impact of climate change on 

snow dynamics and water resource availability, particularly in 

Turnagain Arm, a vital waterway situated in the northwestern 

Gulf of Alaska. The rapid melting of glaciers and snow-covered 

regions, driven by increasing temperatures, highlights the urgent 

need for continuous monitoring and precise measurement of 

Snow Water Equivalent (SWE). As temperatures continue to rise, 

these shifts in snowpack behavior have significant long-term 

implications for hydrology, freshwater availability, and regional 

climate patterns. Given the escalating rate of snowmelt, it is 

critical to develop reliable methods for quantifying these 

changes, allowing for better prediction and management of water 

resources that rely on seasonal snowpack.   

To track these changes effectively, this research leverages 

MODIS time series imagery spanning from December 2005 to 

March 2023. By using high-temporal resolution satellite data, the 

study provides an extensive examination of both seasonal and 

interannual variations in snow accumulation and water content. 

A focus on the winter months—when snow coverage is at its 

peak—ensures that the analysis captures critical data on 

snowpack dynamics. By concentrating on these months, the 

study successfully illustrates the varying behavior of snow packs, 

reflecting shifts in snow depth, melt timing, and the subsequent 

impact on hydrological cycles and regional water systems. This 

methodology offers essential insights into how snow 

accumulation patterns change over time and how they can be 

influenced by broader climate shifts. 

To further refine the analysis, polynomial regression is applied to 

model the relationship between SWE, the Normalized Difference 

Snow Index (NDSI), and snow depth. The dataset includes SWE 

measurements recorded at the Anchorage Hillside ground station, 

alongside NDSI values derived from satellite imagery and 

recorded snow depth. This approach is particularly advantageous 

as it allows for the incorporation of non-linear relationships 

between the variables, which are often present in environmental 

systems. The regression model begins by transforming the input 

features into a third-degree polynomial, enhancing the ability of 

the model to capture complex interactions between the 

independent variables. A linear regression model is then fitted to 

the transformed data, enabling the estimation of SWE based on 

the relationships between NDSI, snow depth, and SWE. 

The results of this modeling approach provide significant insights 

into the relationship between SWE, snow depth, and NDSI, with 

third-degree polynomial regression proving to be an effective 
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tool for capturing the complexities of snow dynamics. The 

model’s performance is assessed through several evaluation 

metrics, with the regression coefficients and intercept providing 

valuable information on the individual contributions of NDSI and 

snow depth to SWE predictions. Additionally, the R²-score 

further validates the robustness of this approach. The relatively 

high R²-score indicates that the model is capable of explaining a 

substantial proportion of the variability in SWE, making it a 

reliable method for estimating SWE in similar regions and 

conditions. 

The integration of snow depth derived from NDSI and the 

measured SWE has revealed an important trend: an inverse 

relationship between snow cover and SWE. This relationship 

demonstrates that as snow-covered areas decrease, SWE 

increases due to the heightened water content in the melting 

snow. These trends align with broader patterns observed in other 

regions affected by climate change, where warming temperatures 

contribute to reduced snow accumulation and an earlier onset of 

snowmelt. As a result, the available snowpack water is released 

more rapidly, further exacerbating changes in water availability 

and contributing to altered runoff patterns. These findings have 

profound implications for water resource management, as they 

directly impact the availability of freshwater, ecological systems, 

and local and regional climates. This inverse relationship 

between snow cover and SWE is a crucial factor for 

understanding future water resource availability in regions highly 

dependent on snowpack for water storage and runoff. 

The study not only highlights these important trends but also 

provides a structured and user-friendly methodology for SWE 

estimation in areas where ground-based measurements are scarce 

or unavailable. By offering a reliable framework for integrating 

satellite-derived NDSI data and ground-based snow depth 

measurements, this research contributes to improving snow 

estimation techniques. It is particularly valuable for regions 

where ground station data is limited, allowing for more 

comprehensive and accurate monitoring of snowpack dynamics. 

These findings emphasize the necessity of continuous monitoring 

to enhance our understanding of snow dynamics and adapt to 

climate change more effectively. The results presented in this 

study contribute to a broader understanding of how snowpack 

and water resources are shifting in response to climate change, 

underscoring the need for enhanced strategies to manage water 

resources and ensure sustainability in a warming world.  

Ultimately, this research provides critical insights into the 

evolving behavior of snow packs and their implications for 

hydrological processes, resource management, and ecological 

systems. The findings will support more informed decision-

making in water resource management, climate adaptation 

planning, and the development of strategies for mitigating the 

impacts of climate change on snow-dependent water systems. 

The ability to predict and monitor these changes will be crucial 

for developing adaptive solutions that can address the challenges 

posed by a warming climate and ensure the availability of water 

resources for future generations.  In Figure 5, the variations in 

SWE, the NDSI, and Snow Depth are depicted for six monitoring 

stations, covering the period from 2005 to 2023. These 

visualizations provide an in-depth understanding of the trends 

observed in snow cover and water storage dynamics over time. 

The 3D polynomial regression plot illustrates the relationship 

between SWE, NDSI, and Snow Depth. This visualization helps 

in identifying complex interactions between these variables, 

emphasizing the impact of climate change on snowpack 

variations. The polynomial regression model enables effective 

SWE estimation by incorporating satellite-derived NDSI values 

and measured Snow Depth, ensuring a comprehensive analysis 

of snow distribution. 

By analyzing the data from different stations across multiple 

years, this study aims to capture interannual variations and long-

term trends in snow accumulation and melting patterns. These 

insights contribute to a better understanding of hydrological 

processes and their implications for water resource management, 

ecological stability, and climate adaptation strategies. The ability 

to predict and monitor these changes will be crucial for 

developing adaptive solutions to mitigate the impacts of climate 

change on snow-dependent water systems and ensure sustainable 

water availability for future generations. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 5. The 3D plot in (a) Summit-Creek station, (b) 

Indian_pass station, (c) Mt.Alyeska station, (d) 

Turnagain_pass station, (e) Grandview station, (f) Anchorage 

Hillside station. 
 

The plot in Figure 6. presents the relationship between actual 

SWE values and the predicted SWE obtained through a second-

degree polynomial regression model. The red dashed line 

represents the ideal 1:1 relationship, where perfect predictions 

would align. The proximity of data points to this line indicates 

the model’s accuracy in estimating SWE. A strong alignment 

suggests a reliable predictive performance, while deviations 

highlight potential sources of error, such as variations in snow 

properties or limitations in input data. 
 

 
Figure 6. The scatter plot of actual vs predicted SWE 
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