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Abstract 

 
The Krkonoše Mountains are a unique ecological region facing increasing pressure from alien invasive and native expansive plant species, 

which threaten biodiversity and ecosystem stability. This study investigates the potential of UAV-based remote sensing for detecting and 

monitoring selected invasive species with focus on Lupinus polyphyllus. The primary objectives were (1) to acquire UAV multispectral 

data for several plots at multiple time points during the growing season in order to identify the best dates for the species detection, (2) to 

collect reference botanical data, (3) to test the suitability and reliability of mapping invasive/expansive species from UAV imagery using 

deep learning methods, and (4) to evaluate the effectiveness of various management interventions. High-resolution UAV imagery was 

processed using the SegUNet deep learning model, achieving classification accuracies up to 95.7%. The results indicated that species 

detection was most effective during flowering but also viable in spring due to distinct leaf morphology. One of the key findings of the 

analysis is that centimeter-range spatial resolution enables the detection and monitoring of Lupinus and other species during their growth 

and flowering stages, to a significant degree without requiring botanical input data. Our study confirms the applicability of UAV remote 

sensing for invasive species detection, offering a cost-effective and scalable solution for landscape-level monitoring in the future. Long-

term monitoring will be essential for refining detection strategies, improving classification models, and testing the reliability, especially 

for detection after management interventions. 

 

 

1. Introduction 

 

The Krkonoše National Park (KRNAP) is one of the most 

significant centres of geobiodiversity in Europe composed by a 

mosaic of several unique ecosystems. Meadows belong to the 

most valuable habitats but they are threatened by the expansions 

and invasions of various species. Biological invasions are 

globally considered one of the main threats to the biodiversity of 

natural ecosystems (Pyšek et al., 2020). In mountain regions, yet, 

environmental stress (short growing season, nutrient availability, 

frost, wind, increased levels of ultraviolet radiation) poses a 

significant barrier to the spread of alien species into mountainous 

regions. However, global warming, changes in nitrogen 

availability, and local anthropogenic disturbances are causing 

ecosystem changes that for sensitive mountain communities are 

difficult, or even impossible, to adapt to (Alexander et al., 2018). 

 

As a result, native species diversity is decreasing and rare 

species, including endemics and glacial relicts, are facing 

decline or even local extinction. At the same time, the spread of 

alien species leads to taxonomic and functional homogenization 

of communities (Haider et al., 2018; Yang et al., 2021) and 

impacts ecosystem services and functions (Pecl et al., 2017). 

This includes not only spreading alien species to the Czech 

Republic (invasive), but also the spread of native species from 

habitats naturally richer in nutrients and/or in the foothills 

(expansive). Uncontrolled expansive species can cause damage 

comparable to that of alien invasive species (Hejda et al. 2021). 

The early detection of new outbreaks of expansive/invasive 

species significantly increases the chances of their complete 

eradication, thereby substantially reducing the economic costs of 

such interventions. This makes the use of advanced remote 

sensing methods very promising. 

 

Remote sensing plays an increasingly significant role in 

detecting and mapping invasive plant species (Singh et al., 2024; 

Rakgoale et al., 2024). This technology enables efficient and 

cost-effective monitoring of invasions across large areas, which 

would be challenging using standard vegetation mapping. 

Satellite data (Sentinel-2, PlanetScope, WorldView-3) are used 

for tracking changes in invasive species distribution, providing 

repeated measurements over time that facilitate the monitoring 

of species spread and their response to management 

interventions (Zagajewski et al., 2024; Schulze-Brüninghoff et 

al. 2021). Aerial data, which often have a higher spatial 

resolution than satellite imagery, have been successfully 

employed for detailed mapping of smaller areas (Sabat-Tomala 

et al. 2024). Various machine approaches (machine learning, 

OBIA, CNNs) are applied in data analysis (Valente et al. 2022; 

Wijesingha et al. 2020; Sabat-Tomala et al. 2022). 

 

Currently, the use of drones/UAVs is gaining importance in the 

field of environmental monitoring (Kupková et al., 2023) and in 

the detection of invasive plants (Weisberg et al., 2021). Sensors 

mounted on drones enable collection of high-resolution data on 

vegetation condition and, above all, offer high operational 
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flexibility in imaging. This proves to be a key feature in 

monitoring invasive plants, as acquiring images during the 

appropriate phenological stages, or during multiple stages 

(active growth, flowering, seed production, senescence), 

facilitates accurate species identification even based solely on 

RGB or multispectral images (Weisberg et al., 2021). The high 

spatial resolution of UAV imagery also enables the detection of 

less extensive areas of invasive plants.  

 

The aim of our study is to develop a methodology for monitoring 

selected invasive/expansive plant species from UAV 

multispectral multitemporal imagery in combination with 

botanical ground truth data. To achieve this, we set up the 

following goals: 

 

1. To acquire multispectral UAV data for plots with selected 

native expansive (Veratrum album subsp. lobelianum, Senecio 

nemorensis agg.) and alien invasive (Rumex alpinus and Lupinus 

polyphyllus) species in the KRNAP in various dates during the 

season in order to identify the best dates for the species detection 

with respect to phenology and different management practices. 

2. To collect botanical reference data along with the UAV data 

acquisition. 

3. To test the suitability and reliability of mapping 

invasive/expansive species from collected high spatial resolution 

UAV imagery using selected classification/detection methods, 

mainly deep learning. 

4. To evaluate the effectiveness of various management 

interventions (mowing, grazing, mulching, chemical treatment, 

manual removal, and no management) and the potential for 

detecting management efficiency using drones. 

 

In this paper we focus particularly on the detection and 

management issues of North American species Lupinus 

polyphyllus (hereafter referred to as Lupinus) which is an 

abundant invasive neophyte with a long tradition of cultivation 

(Pyšek et al., 2022). In addition to ornamental purposes, it has 

been planted by hunters as a game food. It reproduces mainly by 

seeds, but is also able to spread vegetatively by rhizomes. It 

poses a serious threat to the acidophilic mountain flora especially 

due to the symbiosis with the N-fixing bacteria Bradyrhizobium 

in Lupinus root nodules increasing level of available forms of 

nitrogen in environment where nitrogen is often limiting factor 

(Pergl et al. 2023). Therefore, the change in the availability of 

this essential element causes a vegetation shift accompanied by 

the decline of rare montane species. 

 

 

2. Area of interest 

 

KRNAP is situated in the northern part of the Czech Republic 

(see Figure 1), along the border with Poland. Covering an area 

of approximately 370 km², it protects the highest mountain range 

in the country, the Krkonoše Mountains, which includes the peak 

of Sněžka (1,603 m), the highest point in the Czech Republic. 

KRNAP is characterized by rugged terrain, glacial cirques, 

alpine meadows, and extensive spruce forests. 

 

Due to its diverse landscapes and significant elevation 

differences, KRNAP hosts a unique mix of Central European 

and Arctic-Alpine flora and fauna. Established in 1963, KRNAP 

is part of a transboundary biosphere reserve shared with Poland, 

emphasizing the region’s ecological importance. KRNAP is 

home to a variety of valuable ecosystems, including subalpine 

tundra, peat bogs, and ancient spruce and beech forests. These 

habitats support rare and endemic species such as the Alpine 

shrew (Sorex alpinus) and the Krkonoše bellflower (Campanula 

bohemica). However, invasive/expansive plant species pose a 

growing threat to these fragile ecosystems. Alien species like 

Lupinus (large-leaved lupine) spread aggressively, 

outcompeting native flora and altering soil composition.  

 

 

 

  

Figure 1. Location of the KRNAP within Czechia, plots for invasive/expansive species in the area of the KRNAP and picture of Lupinus 

in the central part of Pec pod Sněžkou municipality. 
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Their proliferation disrupts ecological balance, reducing 

biodiversity and impacting species that rely on native 

plant communities.  

 

For study of invasive/expansive species detection and 

management we selected eight plots within the cadastral 

areas of Pec pod Sněžkou, Strážné, and Velká Úpa 

(ranging in size from 0.45 to 1.1 ha). Lupinus dominates 

on the plots Chaloupky, Pec, and Výsluní Modřín (see 

Figure 1). 

 

 

3. Methods 

 

3.1 UAV data acquisition 

 

UAV imagery was collected four times in 2024 (May, 

June, July, August). The data were captured using a DJI 

Mavic 3M equipped with an RGB camera featuring a 4/3 

CMOS 20 MP image sensor and four cameras for 

acquiring multispectral imagery: NIR 860 nm ± 26 nm, 

RedEdge 730 nm ± 16 nm, Red 650 nm ± 16 nm, Green 

560 nm ± 16 nm. The data were captured mostly under 

stable conditions (clear sky or consistently overcast). The 

captured data have a spatial resolution of 1 cm. The 

acquired images, before processing, represent a data 

volume of around 500GB. 

 

3.2 Botanical data acquisition 

 

Botanical data were collected shortly after UAV image 

acquisition (several days to one week). We mapped the 

occurrence of target invasive/expansive species, other 

significant dominant species forming stands (e.g., native 

Vaccinium myrtillus, alien Imperatoria ostruthium), 

conspicuously flowering species (e.g., Taraxacum 

officinale), physiognomically similar species (e.g., 

Petasites hybridus and Telekia speciosa), and distinctive 

objects (e.g., a pile of stones). The target species were 

mapped in various phenological stages and levels of 

vitality (e.g., browsed individuals, frost-damaged plants, 

etc.). We consistently aimed to capture the variability of 

phenophases and vitality across the entire site. 

 

We used GPS Trimble devices (models Geo 7X and 6000, 

as well as Trimble Juno and Trimble R8) with sub-

decimeter accuracy, further refined by ground-based 

corrections to an accuracy of a few centimeters (see Figure 

2). At each site, we surveyed several dozen points, 

focusing on both alien and native dominant vegetation. 

Specifically, 218 points were recorded at the Chaloupky 

site, 129 points at the Pec site, and 203 points at the 

Výsluní Modřín site. The measurements were not always 

optimal. The accuracy was negatively affected primarily 

by terrain topography. We obtained less precise results in 

valleys with limited GPS satellite visibility and in 

locations with poor internet connectivity, which is 

necessary for ground-based GPS corrections. 

 

For each recorded plant occurrence, the following 

attributes were documented: plant height, cover within a 

circle of a specified radius, vitality, and phenological 

stage. The radius of the circle around each point was 

defined in such a way that the mapped plant covered as 

much of the circle as possible. These data served as 

reference points/polygons for training and validating 

UAV image classification for the target sites with 

vegetation stands of the studied invasive and expansive 

plant species, as well as for control vegetation plots. For 

each record, photograph was taken to allow for the later 

verification. 

 

3.3 Management interventions 

Since one of the project objectives is to monitor the 

effectiveness of management interventions, permanent 

plots for long-term monitoring of various control 

strategies were established in agreement with landowners 

and tenants. The permanent plots for management practice 

and its efficiency monitoring are square-shaped, 

measuring 25 m² (5×5 m), with an embedded subplot of 

10 m² (3.16×3.16 m). The larger plot is oriented so that its 

opposite sides align with the N–S and W–E directions 

(applicable for both flat and sloped terrain), and the 

embedded subplot is always placed in the SW corner of 

the larger plot. A phytosociological relevé was recorded 

for each plot, documenting the cover of all species using a 

percentage scale between May and July. The earlier 

sampling period in May proved particularly suitable for 

species such as Lupinus and Telekia, as invasive 

dominants had not yet grown too tall, allowing for better 

visibility of their understory. Additional species appearing 

later in the season, such as Agrostis capillaris, were 

subsequently recorded. Conversely, in the subalpine zone 

of the KRNAP, sampling had to be postponed by a month 

to ensure that the vegetation was at a comparable growth 

stage.  

 

 
 

 
 

Figure 2. Field collection of botanical data (upper photo) 

and UAV data acquisition (lower photo). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-821-2025 | © Author(s) 2025. CC BY 4.0 License.

 
823



 

The original plan to include all types of management 

within a single site or in closely situated locations proved 

impractical due to technical constraints and, in some cases, 

conditions related to agricultural subsidies. The variability 

of management interventions was best captured for 

Lupinus, which was thus chosen as the model species. 

Through collaboration with the working group of the 

KRNAP Administration, we were also able to incorporate 

manual removal and chemical treatment. As a result, we 

covered the full range of management methods proposed 

in the project for the KRNAP, including mowing, grazing, 

mulching, chemical treatment, manual removal, and no 

management. The cover of the target species ranged from 

1% to 90%. At each site and for each management type, a 

control was selected either in an unaffected stand or, if no 

such area was available at the same site, in a stand with 

the lowest possible cover of the target species. 

At several time points—spring aspect, vegetation peak, 

immediately after management intervention, and after a 

longer post-treatment period—we assessed the following 

attributes for target species in the permanent plots: plant 

height, vitality, phenology, and cover. The same attributes 

were measured across the entire flight area after each 

drone survey for every mapped individual/population of 

the invasive/expansive species and other 

physiognomically similar dominants, as done in the 

previous research activity. This detailed mapping of 

species responses to different management types directly 

in field conditions allows for a more precise comparison 

of the effectiveness of interventions with results obtained 

from drone imagery. 

 

3.4 Data pre-processing  

The images were processed using the Pix4D software 

suite. Within the KRNAP area, 31 RGB datasets were 

successfully generated (8 locations, 4 time points, with 

one dataset missing for the Pec location), along with the 

same number of multispectral (MS) datasets with a spatial 

resolution of 1 cm and an equal number of digital surface 

models (DSM). The image positions, initially determined 

in-flight using RTK GNSS technology, were refined 

during processing using ground control points and 

validated with check points. The average root mean square 

error (RMSE) of image orientation at the ground control 

points ranged from 0.8 to 1.7 cm. The total surveyed area 

covers 5.8 hectares. 

 

The training and validation polygons obtained from field 

measurements with centimeter-level accuracy, combined 

with recorded characteristics of homogeneous vegetation 

stands (radius, species, coverage, etc.), include 1,250 

polygons, covering approximately 0.2% of the surveyed 

area, specifically 0.95 million image pixels. Of these, 

approximately 41% of the polygons were manually 

corrected based on a comparison of polygon positions and 

the actual location of the target species in the GIS 

environment. The adjusted portion of the training and 

validation dataset represents 37% of its total area. 

 

 

3.5 Detection of Lupinus on orthorectified UAV 

multispectral imagery 

 

The aim of the pilot testing, conducted after data 

acquisition in the first season, was to: 

 

● Identify a suitable algorithm to ensure a detection 

success rate of at least 90% 

● Design the entire processing workflow to enable 

maximum automation (particularly concerning the 

definition of training data) 

● Define the most suitable timeframes and 

phenological stages for detecting selected species 

based on the results 

● Refine the requirements for data collection (imaging 

conditions, flight parameters, image resolution, 

number of botanical data). 

 

Based on a literature review (e.g., Valente et al., 2022; 

Qian et al., 2020; Massetti et al., 2023), testing of 

vegetation species detection methods using deep learning 

(DL) approaches was carried out. Due to the relatively 

small amount of in-situ data, the heterogeneity of the study 

sites, and previous experience of the research team, 

statistical approaches (such as maximum likelihood) were 

deemed unsuitable. In the following year, after additional 

data acquisition, the random forest algorithm will be tested 

as an alternative (Bergamo et al., 2023; Sabat Tomala et 

al., 2022; Kattenborn et al., 2019). 

 

In this pilot phase, deep learning implementations 

available in ArcGIS Pro and ENVI software were 

evaluated. Both platforms offer solutions utilizing several 

pre-trained convolutional networks, which help address 

the challenge of limited training data and significantly 

reduce the time required for preprocessing inputs for the 

convolutional network. Testing was performed on four 

species in selected areas. In all cases, the training and 

validation datasets contained only two classes: the target 

invasive/expansive species and the “other” (background) 

class. 

 

The detection of Lupinus was conducted at the Výsluní 

Modřín site based on UAV data acquired on June 12, 

2024. After evaluating various software solutions and 

convolutional network implementations, the SegUNet 

neural network in ENVI was selected for this task. Built 

on the U-Net architecture (Ronneberger et al., 2015), it 

performs pixel-wise classification. 

 

For training, only a portion of the study area was utilized, 

where 66 Lupinus polygons (circles) were delineated in 

the field (see Figure 3 for a detailed example). The trained 

model was then applied to the entire dataset, and accuracy 

was assessed using 133 polygons, of which 66 had been 

included in the learning process. 

 

Additionally, the use of a Class Activation Raster was 

explored. This visualization highlights the regions of the 

input image that contribute most to the model’s 

classification decisions. Different threshold values were 

applied to refine the detection of the target category. The 

tests indicated that the maximum entropy parameter 

provided the best results, with thresholds of 0.3, 0.4, and 

0.5 being examined. Figure 4 illustrates the detected extent 

of Lupinus, color-coded according to the applied 

thresholding. 
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Figure 3. Lupinus overlayed with training polygons 

(upper image) and output of detected Lupinus using 

SegUNet neural network in ENVI (lower image). 

 

 

4. Results and Discussion 

 

The result of Lupinus detection is shown in Figure 4. The 

final processing accuracy value indicates the percentage 

of pixels identified by botanists where Lupinus was 

detected by the trained model. Using a threshold value of 

0.5 for maximum entropy from the activation raster, a 

processing accuracy of 88.6% was achieved. At a 

threshold of 0.4, the accuracy increased to 92.8%, and at 

0.3, it reached 95,7%. However, this accuracy assessment 

does not provide information on where Lupinus was 

incorrectly classified in areas where it was not actually 

present. 

 

These results place our method among the most accurate 

approaches when compared with previous studies that 

have applied remote sensing and machine learning 

techniques for detecting Lupinus or similar invasive 

species (refer to table 1). Wijesingha et al. (2024) utilized 

UAV-RGB imagery with a deep learning semantic 

segmentation model, achieving an accuracy of 91.6%. 

Wijesingha et al. (2020), who employed Object-Based 

Image Analysis (OBIA) with Random Forest 

classification using UAV-borne RGB, thermal, and 

surface model data, our approach provided comparable 

results. They reported an average prediction accuracy of 

89%, with 88% of classified pixels matching digitized 

pixels. The study by Schulze-Brüninghoff et al. (2021), 

which used WorldView-3 satellite imagery and a 

combination of deep learning, gradient boosting, 

generalized linear models, and ensemble methods, 

achieved a median area under the receiver operating 

characteristic curve of 77%. This performance is lower 

than our results, suggesting that UAV-based approaches, 

coupled with deep learning models such as SegUNet, can 

provide superior detection performance compared to high-

resolution satellite imagery when identifying Lupinus. 

Sabat-Tomala et al. (2024) utilized airborne HySpex 

hyperspectral images and a combination of support vector 

machine (SVM) and random forest (RF) classifiers. Their 

results showed an F1-score range of 0.78–0.85, with a user 

accuracy of 88% for RF and 92% for SVM, and an overall 

accuracy (OA) of 89–94%. Their highest accuracy values 

are comparable to our highest reported accuracy of 95.7%. 

 

In most cases, management interventions were carried out 

by landowners or tenants, while the removal and chemical 

treatment of Lupinus were implemented by the KRNAP 

working group. Five permanent plots were designated for 

manual removal. One of these represented the early stage 

of Lupinus invasion into an acidophilous grassland 

dominated by Nardus stricta, where the invasive species 

covered only 2%, whereas in the other plots selected for 

uprooting, its coverage ranged between 25% and 40%. 

 

The areas designated for chemical treatment with 8% 

Roundup were treated at the end of the season, considering 

organic farming requirements, and the effectiveness of the 

intervention is not yet known. Manual removal was 

conducted twice a year—at the end of June and then 

monitored again at the turn of October and November. 

Although by autumn of the first season, Lupinus appeared 

weaker than in the surrounding stands and had a coverage 

of only a few percent, this method proved to be very 

labour-intensive (requiring 4 hours to remove Lupinus 

from a 25 m² plot in dry, rocky soil). Moreover, the low 

regeneration rate might have also been influenced by 

prolonged dry weather. In one plot, however, the vitality 

of Lupinus was significantly reduced even before spraying 

(greyed-out leaves), despite normally being at full strength 

at that time of year. Similarly, its response to mowing was 

weaker, with fewer and shorter new inflorescences 

developing. Some interventions were implemented too 

late to prevent further spread of the invasive species, in 

some cases due to conflicts with other conservation 

priorities—such as mowing or mulching during the seed 

production phase of Lupinus. A primary management 

method is often supplemented with additional practices, 

adjusted according to local conditions. As a result, while 

we do not obtain a pure effect of a single method as in 

controlled garden experiments, the outcomes more 

accurately reflect real-world conditions in the study areas. 

Interestingly, Lupinus was completely eradicated from an 

enclosure grazed by sheep but not by cattle. 

 

Regarding the timing of invasive species detection, some 

species are best identified in UAV imagery during 

flowering, while others can be effectively detected in early 

spring due to their distinct leaf morphology and faster 

growth compared to native plants. Lupinus can be 

successfully detected in both cases and also in June, as it 

is a significantly dominant species with a robust growth 

habit.
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Figure 4. Detection of Lupinus at the site Výsluní Modřín (left) and original orthoimage before depicting Lupinus before the 

detection (right). 

 

 

Study 

RS data 

source Botanical data 

Spatial 

resolution 

Method used for 

detection Accuracy 

Wijesingha 

et al., 2024 

UAV-RGB Manual 

digitization of 

RGB images. 

0.01 Deep Learning semantic 

segmentation model. 

91.60% 

Wijesingha 

et al., 2020 

UAV-borne 

RGB, thermal, 

and surface 

model data 

Manual 

digitization of 

aerial images 

with field 

comparison. 

0.009 Object-Based Image 

Analysis (OBIA) with 

Random Forest 

classification. 

Average prediction 

accuracy of 89%. The 

largest difference 

between classified and 

digitized lupine area was 

5%. 88% of all classified 

pixels matched digitized 

pixels. 

Schulze-

Brüninghoff 

et al., 2021 

WorldView-3 Random 

squares, expert 

evaluation of 

lupine share. 

0.3; 1.24 DL: Deep Learning, 

GBM: Gradient Boosting 

Machine, GLM: 

Generalised Linear 

Model, XRT: Extremely 

Randomized Trees, DRF: 

Distributed Random 

Forest, SE: Stacken 

Ensembles. 

Area under the receiver 

operating characteristic 

curve - median 77% 

Sabat-

Tomala et 

al., 2024 

Airborne 

HySpex HS 

images 

Field 

measurements 

of lupine and 

co-occurring 

plants in dense 

patches. 

0.5 SVM, RF F1: 0.78-0.85; UA RF 

88% SVM 92%; (OA: 

89–94%) 

 

Table 1: Selected publications dealing with Lupinus detection/classification. 
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The most recent UAV data were collected in August 2024, 

but the full effects of management interventions were not 

yet evident. Therefore, additional UAV data will be 

acquired in 2025 at three different time points to further 

test the detection of both species’ occurrence and the 

success of eradication efforts. 

 

One of the key findings of the analysis is that centimeter-

range spatial resolution enables the detection and 

monitoring of Lupinus and other species during their 

growth and flowering stages, to a significant degree 

without requiring botanical input data. However, this 

approach will be further tested, particularly to assess how 

it affects detection accuracy. We will also continue to 

verify this approach, with a particular focus on 

determining the extent to which various management 

interventions, leading to plant damage and mortality, may 

limit this capability. 

 

To confirm the feasibility of monitoring the effectiveness 

of management interventions using remote sensing, long-

term observation is required. Although some studies 

mention this possibility (Sabat-Tomala et al., 2024; 

Wijesingha et al., 2020´; Rajdus et al., 2020) in general 

terms, an extended monitoring effort that provides clear 

findings has not yet been conducted. The plots established 

for long-term monitoring should provide a definitive 

answer to this question in the future.  

 

5. Conclusions 

The primary objectives of our study were to acquire 

multispectral UAV data for selected expansive/invasive 

species in the KRNAP across different seasonal time 

points, determine the optimal timing for detection in 

relation to phenology and management practices, collect 

botanical reference data, and evaluate the reliability of 

high-resolution UAV imagery for species classification 

using deep learning. Additionally, the study aimed to 

assess the effectiveness of various management 

interventions, including mowing, grazing, mulching, 

chemical treatment, manual removal, and no management, 

and explore the potential of UAVs for monitoring 

management success. 

Through our analysis, we confirmed that UAV-based 

remote sensing is highly effective in detecting invasive 

and expansive species, particularly Lupinus, with high 

precision. By using SegUNet for semantic segmentation, 

we achieved a processing accuracy 95.7%, surpassing or 

matching previous studies. This highlights the advantage 

of advanced deep learning methods in invasive species 

mapping, particularly when applied to UAV-derived high-

resolution imagery. However, further validation is 

necessary to assess false positives and improve 

generalizability across different environments and 

datasets.  

 

The collection of botanical reference data alongside UAV 

imagery allowed us to validate and improve the 

classification accuracy of deep learning models. The 

ability to capture species at different phenological stages 

enhances its applicability, providing critical insights into 

their seasonal variability and spread dynamics. The results 

indicate that detection accuracy is highest during 

flowering, but early spring observations also proved 

valuable due to distinct leaf morphology and growth 

characteristics. In case of Lupinus we proved that its 

robust growth habit allows for very successful detection 

also during early summer. Detectability also depends on 

the matrix, when under height grass canopy it is 

impossible to recognize small Lupinus seedlings. Such 

detectability is even worse, when windy weather blurred 

the photos and then only large flowering plants are visible. 

The evaluation of management interventions revealed 

varying degrees of effectiveness in controlling Lupinus. 

While uprooting significantly reduced plant coverage, it 

proved labour-intensive and was likely influenced by 

environmental conditions, such as prolonged drought. 

Other interventions, such as mowing and chemical 

treatment, showed mixed results depending on timing and 

intensity. Grazing by sheep led to complete eradication in 

some areas, whereas cattle grazing was not effective at all. 

These findings emphasize the need to tailor management 

strategies to specific site conditions and invasive species 

growth dynamics. 

To further validate the use of UAVs in monitoring 

management success, long-term observation is necessary. 

While previous studies have suggested the feasibility of 

remote sensing for this purpose, extended monitoring 

efforts with definitive conclusions remain scarce. The 

permanent plots established in this study provide a 

valuable foundation for continuous assessment of species 

persistence and eradication success. Future UAV 

campaigns at multiple time points will enhance detection 

methodologies, ensuring the integration of remote sensing 

into effective and adaptive invasive species management 

strategies. 
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