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Abstract 

 

Recent efforts on geospatial data processing showed a good potential for machine learning, particularly deep learning, tools in the 

automatic semantic interpretation of a 3D scene. Machine understanding of the surrounding environment is of great importance for 

several applications, including in particular the development of effective autonomous vehicles. Focusing on the specific case of 

autonomous driving vehicles, this work considers the problem of automatic segmentation and classification of urban point clouds. To 

be more specific, this paper considers a mixed approach, where, once properly removed ground points, 3D data segmentation is 

based on the Euclidean distance, whereas the classification of objects is based on a two-step procedure: first, PointNet++ is used for 

an initial soft-classification. Then, classification probabilities outputted by PointNet++ are used in combination with some additional 

geometric features extracted from the point cloud as inputs for a Random Forest classifier. The proposed approach is tested on a 

dataset collected in Sesto Fiorentino (Italy), showing quite promising performance. Interestingly, the employed tools are available as 

open-source software. 

 

 

1. Introduction 

3D data acquisition, processing and management are 

fundamental tasks in many applications, ranging from 

Geomatics to Robotics, Virtual Reality, Cultural Heritage and 

Autonomous Driving (Blaszczak-Bak et al., 2024; Fernandes et 

al., 2021; Conti et al., 2024). Thanks to recent technological 

advancements in sensors and processing techniques, recent 

systems allow to quickly acquire huge amounts of 3D data, 

using both photogrammetry and mobile laser scanning 

(Dominici et al., 2016; Masiero et al., 2018; Toschi et al., 2015; 

Aminti et al., 2022; Aricò et al., 2023; Tucci et al., 2018). In 

this scenario, point clouds play a key role, being the raw 3D 

information provided by both photogrammetry and laser 

scanning. Automatic understanding of such raw data typically 

involves the use of semantic segmentation tools (Hu et al., 

2020; Guo et al. 2018; Pellis et al., 2022; Fiorini et al., 2024). 

Focusing on the mobile laser scanning case, MMS (Mobile 

Mapping System) solutions allow real-time dense point cloud 

reconstruction (up to millions of points per second (Wong et al., 

2021) of the surrounding environment during the acquisitions, 

i.e. while the acquisition platform is moving, thanks to the use 

of high-end remote/proximity sensing and localization sensors 

such as GNSS (Global Navigation Satellite System) and IMU 

(Inertial Measurement Unit). 

Similarly to MMS, self-driving vehicles are provided with both 

localization and remote sensors, despite usually being cheaper 

with respect to those used in MMS. Considering autonomous 

driving, the quest for precise and reliable perception systems 

and accurate localization remains at the forefront of the required 

technological advancements (Levinson et al., 2011). 

Information extraction from point cloud data garnered from 

state-of-the-art LiDAR (Light Detection and Ranging) sensors, 

stands as a crucial enabler for understanding the complexity of a 

vehicle's spatial neighbourhood. Modern mobile laser scanning 

systems allow to obtain accurate, high-resolution, and geo-

referenced descriptions of a vehicle’s surrounding environment 

independently from lighting and weather conditions (Wu et al., 

2018), making this kind of systems well suitable in a wide range 

of operating conditions and hence quite ideal for being used in 

self-driving vehicles, where the autonomous driving system is 

supposed to work in any (or almost any, depending on the 

automation level) scenario.  

To be more specific, the employment of LiDAR technology in 

autonomous driving applications regards two levels of 

development. The first level regards its contribution to the 

vehicle’s positioning system: indeed, LiDAR can be used in 

order to generate HD-maps and to support determining the 

vehicle location, both relative to its previous positions and with 

respect to a previously generated map (Wen et al., 2019). This 

aspect is of particular interest whenever the vehicle needs to 

move in a challenging scenario for the GNSS. Secondly, 

LiDAR can be effectively used for real-time sensing the 

surrounding environment, to obtain a proper interpretation of 

the vehicle’s neighbourhood, e.g. detecting objects and persons 

(Wu et al., 2023). 

A suitable interpretation of the surrounding environment usually 

requires the execution of the following activities: 3D data 

acquisition, 3D point cloud segmentation, object detection and 

classification (Li et al., 2022). Given the high acquisition rate, 

LiDAR datasets are usually voluminous. While providing a 

proper interpretation of the environment from LiDAR data is 

useful both for generating HD-maps and for the real-time tasks 

in autonomous vehicles, when considering the latter data 

understanding can be even more complicated, because only an 

incomplete description of the objects is usually available. These 

factors (huge data size, incomplete object representations and 

real-time analysis) make obtaining effective segmentation of 

such data into semantically meaningful categories a formidable 

challenge.  

As autonomous vehicles navigate diverse and unpredictable 

environments, the demand for robust point cloud segmentation 

algorithms led to the employment of Artificial Intelligence (AI)-

based methods, such as Deep Learning (DL) approaches 

(Zamanakos et al., 2021). In an epoch of transportation 

innovation, the fusion of AI and autonomous driving 
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technologies has ushered in a new era of mobility, promising 

safer and more efficient roadways. At the heart of this 

transformation lies DL, a paradigm-shifting subset of artificial 

intelligence that has emerged as a cornerstone for endowing 

vehicles with the cognitive abilities essential for navigating 

complex environments (Grigorescu et al., 2019). The 

application of DL algorithms finalized for segmentation, 

detection, and classification in autonomous driving led to 

several problems and challenges regarding data acquisition and 

DL models. Considering the data typically acquired by a mobile 

laser scanning system, the diversified point density (that 

depends on the distances between LiDAR sensor and objects), 

the noise, and the incomplete nature of mobile acquisitions all 

contribute to making point cloud understanding quite 

challenging (Kumar et al., 2019). At the same time, big data 

acquisition generates high computation and time-consuming 

effort during DL operations (Liu et al., 2019). 

This paper presents part of the work developed within the Spoke 

9 of the Italian National Sustainable Mobility Center (MOST), 

part of the NextGenerationEU plan. More specifically, it deals 

the development of effective strategies in order to properly 

extract information from MMS data, with the goal of supporting 

the automatic generation of HD-maps and the characterization 

of the road environment. To be more specific, the paper will 

present the results obtained by using some recently developed 

deep learning tools, such as PointNet++, for properly detecting 

several objects of interest in an ad hoc collected dataset, in the 

city center of Sesto Fiorentino (Florence, Italy). 

The organization of the article considers in the second section 

the description of the work inside the context of the MOST 

project, then, the proposed workflow is presented in the third 

section, whereas the obtained classification performance on the 

MMS urban dataset of Sesto Fiorentino is shown in the fourth 

section. Finally, conclusions and some discussion on future 

developments and open scenarios are drawn in the last section, 

highlighting both the current and future contribution of deep 

learning open source solutions for MMS urban 3D data 

processing and the possible future scenarios and potential 

improvements. 

 

2. Case study 

Contemporary society is characterized by a continuous change 

in the urban context, where the experimentation of new green 

mobility and, more generally, sustainable solutions define the 

new territorial asset of modern towns.  

In this scenario, the design and management of mobility is a 

topic that does not only involve transport systems but other 

multidisciplinary fields of research as well, including social 

studies and geographical and urban analysis. The MOST project 

starts from this holistic approach, and, with its 14 different 

Spokes, it aims at the development of inclusive and sustainable 

mobility solutions (Alberti et al., 2023). Spoke 9 is focused on 

Urban Mobility and addresses developing and implementing 

innovative solutions to improve urban mobility. Its goal is to 

integrate advanced technologies such as Artificial Intelligence 

and Big Data to optimise public transport and reduce traffic 

congestion. Key initiatives include developing intelligent 

transport systems (ITS), promoting sustainable means of 

transport such as electric bikes and scooters, and creating digital 

platforms for traffic management. Focusing the interest on 

urban analysis, this work offers a scientific contribution to 

Spoke 9, investigating the use of possible open-source solutions 

to automatically classify 3D point clouds of the urban 

environment, collected by MMS systems, allowing specialists 

the possibility to make faster low-cost transport and 

infrastructural analysis inside the city centers.  

The first results of this research outlined acceptable initial 

results, based on the use of PoinNet++, with room for future 

improvements (La Guardia et al., 2024). While the approach in 

(La Guardia et al., 2024) was mostly based on an open-source 

implementation of PointNet++, this paper combines such 

network with an additional machine learning module, as 

described in the following section, leading to a remarkable 

improvement in the obtained classification results. 

 

3. From raw 3D data to Classified objects 

The solution adopted in this experimentation implemented 

open-source modules for 3D point cloud classification based on 

deep and machine learning algorithms. The classification 

process was applied to the 3D urban datasets collected in an 

MMS survey on the streets of Sesto Fiorentino (Italy). The 

MMS was an integrated system composed of a LiDAR (ChcNav 

AU20), an Inertial Measurement Unit (IMU), a GNSS receiver 

and a Ladybug5+ high-resolution panoramic camera. The path 

of acquisition allowed to collect a 3D geospatial dataset 

reasonably representing different urban geospatial conditions, 

e.g. low and high-density urban areas, parks, etc (Figure 1). 

        
 

Figure 1. Different urban density areas collected in survey operations. 
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First, the entire dataset was spatially partitioned in subsets, 

where each of them is composed by a point cloud of size 

30×30×50 m. Additionally, each of such clouds was spatially 

uniformly subsampled at 0.025 m (Figure 2). Then, the point 

clouds were segmented employing freely available Python tools 

(Figure 3). To be more specific, the implemented segmentation 

approach is composed of two steps: 1) ground detection and 

removal, 2) Euclidian distance-based point clustering. Despite 

several tools can be used to implement such steps, first step was 

implemented by using a RANSAC (Random Sample 

Consensus)-based planar surface detection, and object 

clustering with Euclidean Cluster Extraction. The segmentation 

process was carried out using Open3D, NumPy and matplotlib 

open-source libraries using the Anaconda platform.  

 

The use of RANSAC algorithm guarantees to identify, inside a 

3D point cloud environment, a wide subset of inliers that fit a 

proper mathematical model considering a fixed tolerance, 

separating it from the outliers (Schabel et al., 2007; Yang et al., 

2022). Given the typical regularity of road surfaces in urban 

environments, it can be effectively implemented to detect 

ground points in the considered dataset. Nevertheless, different 

methods can be used to improve the ground point detection 

performance in other working conditions (Zeybek et al., 2019). 

Large vertical (and horizontal) surfaces, typically building 

surfaces, were similarly detected and removed as well. 

Then, off-ground points are clustered in different objects by 

applying Euclidean Cluster Extraction (Liu et al., 2021), i.e. 

segmenting objects based on their Euclidean inter-object 

distance. Such segmentation is clearly computationally quite 

effective, while not optimal in certain conditions. For instance, 

depending on the chosen threshold distance, different objects 

very close to each other could be clustered together. 

 

The workflow, proposed for processing each of the subsets 

extracted from the overall dataset, is summarized in Figure 3. 

 

 

 

 

 

 

 
Figure 3. Proposed workflow. 

 

The segmentation process was carried out using Open3D, 

NumPy and matplotlib open-source Python libraries. The final 

script was applied using Anaconda platform integrating the 

entire segmentation process in a single script file (Figure 4). 

The combination of the mentioned algorithms allowed to quite 

quickly automatically separate ground, building surfaces, and 

most of the remaining objects. 

Initial object classification was performed by analyzing the 

previously segmented objects with the PointNet++ neural 

network, employing an open-source version of such network 

developed in Python, compliant with Pytorch libraries (Yan et 

al., 2021). 

 

 

    
 

Figure 2. A subsampled portion of the MMS dataset (left), and the corresponding segmentation results (right). 
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Figure 4. Example of simple Python script for point cloud 

segmentation. 

 

The algorithm, initially evaluated for classification using the 

ModelNet10/40 dataset (comprising multiple categories of 

generic 3D objects) was adapted to ensure compatibility with an 

external 3D point cloud dataset. The training and testing 

datasets were structured to include typical object classes of 

interest in the urban environment. In particular, eight classes 

were considered: barriers, cars, motorcycles/bicycles, 

pedestrians, pillars, light poles, traffic signs, and trees (Figure 

5). 

 

The training dataset was partially derived from point clouds 

extracted from the Sesto Fiorentino dataset, and partially from 

data originated from other datasets, obtained through Mobile 

Mapping System (MMS) acquisitions, publicly available 

(Bayrak et al., 2024; De Deuge et al., 2013). Conversely, the 

testing dataset was exclusively composed of objects extracted 

only from the Sesto Fiorentino dataset. 

To ensure the effective application of the algorithm, each point 

cloud within the dataset was pre-processed according to some 

specific criteria. In particular, the point cloud data was 

customized in order to include only positional coordinates (x, y, 

z) and the corresponding normal vectors (Nx, Ny, Nz) for each 

point.  

Additionally, uniformity in the number of points per cloud was 

maintained, with each point cloud standardized to contain 

exactly 1000 points. This standardization was achieved through 

automated oversampling or subsampling procedures using 

dedicated Python scripts. 

The classification process was optimized to enhance 

classification accuracy while mitigating the risk of overfitting 

and reducing computational processing time (Table 1). 

Training and testing datasets were significantly larger with 

respect to (La Guardia et al., 2024), as shown in Table 2. 

 

Random forest was implemented using as inputs 1) the 

classification probabilities outputted by PointNet++ and 2) 

additional geometric features extracted from the object point 

clouds. To be more specific, in this implementation just features 

related to the point cloud sizes were considered. 100 prediction 

trees were used in the Random forest classifier. 

 

 

 
 

Figure 5. Object classes considered in this work. 

 

 

PointNet++ parameters train test 

Batch size 8 24 

Epochs 200 n 

Point number 1000 1000 

Learning Rate 0.001 n 

Optimizer Adam n 

Decay Rate 0.0001 n 

Table 1. Parameters adopted in PointNet++. 

 

dataset training testing 

Barrier 59 51 

Car 56 60 

Motorcycle/bicycle 46 41 

Pedestrian 79 51 

Pillar 56 41 

Light pole 63 42 

Traffic sign 38 46 

Tree 35 44 

Table 2. Objects in the training and testing dataset. 

 

 

4. Results and discussion 

The classification results shown in this section distinguish 

between two cases: the use just of PointNet++ (A) and its 

combined use with Random Forest (B). The results are shown in 

Figure 6 for case (A), and Figure 7 for (B). Results are shown as 

percentages, normalized with respect to the number of objects in 

the real categories. Results refer to the test dataset of Table 2. 

 

Once trained with at least 35 object samples per category (see 

Table 2, column “training”) PointNet++ allows to obtain quite 

decent results (Figure 7), even if with some errors, in particular 

misclassifying cars as motorcycles/bikes, poles as traffic signs, 

and traffic signs as pedestrians or pillars. Overall classification 

accuracy (total number of correct classifications/number of 

objects) was 81.1% (approach (A)). 
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Instead, in approach (B) 99.5% overall accuracy was reached, 

with few errors mostly misclassifying cars as motorcycles, 

motorcycles as traffic signs, and trees as motorcycles. Results in 

case (B) were much better than in case (A), with few elements 

outside of the main diagonal. 

Despite the quite apparent improvement from (A) to (B), it may 

be possible to further reduce the remaining errors by 

introducing some other geometric feature in the Random Forest-

based classification process. 

 

 
 

Figure 6. PointNet++ classification results: percentages, 

normalized with respect to the number of objects in a real class. 

 

 
 

Figure 7. PointNet++ followed by Random Forest classification 

results: percentages, normalized with respect to the number of 

objects in a real class. 

 

It is worth noting that, while in this work the segmentation and 

classification tasks were considered separately, several recent 

works considered semantic segmentation as a unique step, often 

implementing directly PointNet++ or other recently developed 

networks to such aim (Zhao et al., 2021). Despite our current 

results in this direction are less worthy than those obtained with 

the presented procedure, our future work will also be dedicated 

to further investigation on the joint solution of segmentation and 

classification problems. 

 

5. Conclusions 

This work considered the problem of segmenting and 

classifying urban point clouds, acquired using proper MMS 

platforms. The proposed approach was based on separately 

implementing such two steps. While such a separate solution is 

different from some joint strategies, implemented in some 

recent semantic segmentation works, it still allowed to obtain 

quite solid classification results. 

To be more specific, first, ground and large planar surfaces were 

detected with RANSAC and removed from the point cloud. 

Then, best classification results were obtained on the considered 

urban dataset, collected in Sesto Fiorentino (Italy), by 

combining the use of PointNet++ and Random Forest, where 

the latter has been applied using as inputs the soft-classification 

probabilities outputted by the first and some additional 

geometric features, related to the size of the objects. Overall, the 

implemented procedure is quite fast and effective. 

Future investigations will be dedicated to checking the 

performance of the proposed approach on a larger object dataset 

and investigating the development of alternative approaches, i.e. 

based on semantic segmentation implemented as a single step 

procedure. 
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