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Abstract

Laser scanner intensity data provide valuable insights into material properties, enabling applications such as point cloud segment-
ation and material probing. However, extracting meaningful information is challenging due to the influence of the measurement
configuration represented by the angle of incidence (AOI) and distance. Although existing methods for radiometric calibration in
terrestrial laser scanning (TLS) exist, they rely on either overlapping scans from discrete positions or on manual segmentation. This
limits their applicability to mobile laser scanning (MLS), which typically produces very large datasets (requiring automation) with
little or no overlap, and from continuously changing positions. This study presents an approach for adapting an automatic in-situ
radiometric calibration method originally developed for TLS that applies to MLS. Building on our previous work, we introduce
techniques to estimate AOI and distance influence compensation functions with little or without overlap, as well as non-discrete
scan stations, and propose two strategies for AOI influence compensation - global and local. The global method computes one
best-fitting AOI compensation function for the entire scan. It uses local reflectance estimation, which relies on a modified filtering
technique, accommodating the unique characteristics of MLS data. The local method computes the best-fitting AOI compensation
function per segment, ideally containing a single material. We use machine learning for point cloud semantic segmentation with
additional instance segmentation to automatically obtain a material proxy segment. We evaluate the proposed methods on four
datasets captured by two different MLS systems, demonstrating their ability to reduce measurement configuration related influences
on intensities and enhance following point cloud segmentation.

1. Introduction

Laser scanners commonly record the intensity of the backs-
cattered signal as an auxiliary measurement. This intensity can
be related to material properties and used in various applica-
tions, e.g., point cloud segmentation and material probing (Har-
intaka and Wijaya, 2024; Li et al., 2024; Maru et al., 2023;
Viswanath et al., 2023; Pfreundschuh et al., 2024; Han et al.,
2022; Jin et al., 2021; Tan et al., 2020; Kaasalainen et al., 2010).
However, retrieving the material information from the recorded
intensity is not trivial, as measurement configuration related in-
fluences and other effects overlay this information (Pfeifer et
al., 2008). Therefore, mitigating these effects is necessary to
fully leverage the intensities for downstream tasks and, con-
sequently, numerous studies (e.g., Kashani et al. (2015), Sanchiz-
Viel et al. (2021)) have focused on understanding these effects
and developed methods to model and isolate them.

In terrestrial and mobile laser scanning (TLS and MLS), the
impact of the measurement configuration, represented by the
angle of incidence (AOI) and distance, has been identified as
the primary influence. Investigating and modeling the relation-
ship between intensity and measurement configuration was ini-
tially tackled over a decade ago (e.g., Kaasalainen et al. (2005),
and Pfeifer et al. (2007)). However, all methods available until
now require additional calibration scans or manual segmenta-
tion of areas with uniform surface and material properties. Fur-
thermore, most methods were designed for specific applications
and datasets, limited to only a few targets with different prop-
erties (often only one type).

Our recent study introduced a method for automatic in-situ ra-
diometric calibration of TLS intensity (Laasch et al., 2025).
This method compensates for the measurement configuration

globally using one best-fitting AOI and one distance compensa-
tion function for the entire point cloud, initially disregarding the
material-dependent characteristics of the AOI function. To ac-
count for this deficiency, we demonstrated how the method can
be additionally adapted to estimate local material-dependent
AOI compensation. Both of these approaches (global and local)
are not directly transferable to MLS data, as they rely on over-
lapping scans from multiple discrete scan stations. Motivated
by the increasing use of MLS, in this study we adapted both
the global and the local approach to accommodate the specific
requirements of MLS data. The proposed methods are evalu-
ated on four datasets captured by two different MLS systems,
demonstrating their ability to reduce measurement configura-
tion related influences on intensities and to enhance following
point cloud segmentation.

The remainder of this paper is structured as follows: Sec. 2
provides the theoretical background, explaining the physical
principles behind intensity and their relationship to material re-
flectance coefficients. Sec. 3 describes the original method and
the necessary adaptations for MLS. In Sec. 4, we present the
datasets used for evaluation. Sec. 5 discusses the results ob-
tained with the adapted method. Finally, Sec. 6 concludes the
paper with a summary of findings and potential future research
directions.

2. Theoretical Background

The LiDAR equation (Jelalian, 1992) establishes a relationship
between the received and emitted power by considering various
influencing factors. Among these is the measurement config-
uration, an aspect this work seeks to model and address. The
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LiDAR equation can be expressed as follows:

Pr =
PeD

2
r

4πβ2
eR4

4πAρ

Ω
ηAtmηSys + PBR. (1)

Here, Pr is the received power, Pe the emitted power Pe, Dr

the receiving aperture diameter, βe the beam divergence, R the
distance to the target surface, A the illuminated area, ρ the re-
flection coefficient of the target surface, Ω the scattering solid
angle of the target surface, ηAtm the atmospheric transmission,
ηSys the system transmission, and PBR the background radiation.

For MLS, as with TLS, several simplifying assumptions can
be applied, as, e.g., done in Laasch et al. (2025). This in-
cludes the assumptions that: (i) the target surface is signific-
antly larger than the laser beam width, allowing the illumin-
ated area to be approximated as A = R2β2

e
π
4

, and (ii) atmo-
spheric transmission and background radiation are negligible.
Furthermore, most instruments do not directly output the re-
ceived power; instead, they assign an intensity value to each
point in the point cloud. The relationship between intensity and
the received power can be linear, logarithmic, or more complex.
In this study we use the linear model as we validate our method
on MLS systems using Zoller+Fröhlich instruments for which
we have the confirmation by the manufacturer that the intensity-
power relationship is linear. By applying these simplifications,
Eq. 1 can be transformed into

Isr,j,k =
γPeD
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rη

s
R0

4
· π

Ω
matj
φ0

· η
s
R

R2
· ρmatj

φ0 , (2)

where Isr,j,k is the intensity of point j measured from posi-
tion k using the scanner s, γ is the linear scale of the intensity
vs. power relationship, ηs

R0
is the distance-independent part of

the system transmission at the reference distance R0, and ηs
R

is the distance-dependent part. Additionally, ρφ0 refers to the
reflection coefficient at the reference AOI φ0, and Ωφ0 is the
AOI-dependent scattering solid angle of the target surface for
φ0. More information about the individual components can be
found, e.g. in our previous work Laasch et al. (2025). What
is relevant for this work is that each part of Eq. 2 can be ex-
pressed as either a constant or a function. These functions are
separable, as they depend on different variables, allowing their
independent estimation. This can be expressed as:

Isr,j,k = κs
R0

· fmatj
φ0 (φj,k) · gsR0

(Rj,k) · ρ
matj
φ0 , (3)

where:

• κs
R0

is a constant specific to the scanner s and an arbitrarily
chosen reference distance R0.

• f
matj
φ0 (φj,k) describes AOI-dependent effects on intensity,

and depends on the target’s material properties matj , the
AOI φj,k, and an arbitrarily chosen reference AOI φ0.

• gsR0
(Rj,k) describes the distance-dependent effects and

depends on the scanner s, the distance between the meas-
ured point and scanner position, and on R0.

• ρ
matj
φ0 represents the reflection coefficient at φ0 determ-

ined by the target’s material properties matj .

In an ideal scenario, the terms κs
R0

, fmatj
φ0 (φj,k) and gsR0

(Rj,k)

can be estimated or are known, allowing ρ
matj
φ0 to be calculated.

However, in most practical cases, the system constant κs
R0

is
unknown. Consequently, κs

R0
and ρ

matj
φ0 can only be estimated

as a combined term. Following the approach of Laasch et al.
(2025), we refer to this combination as measurement configur-
ation independent intensity IsMCI,j,k:

IsMCI,j,k = κs
R0

· ρmatj
φ0 . (4)

The derived term IsMCI,j,k depends on the scanner and is neither
an exact nor a necessarily complete quantification of the ma-
terial’s reflection properties (fmatj

φ0 (φj,k) also depends on the
material). However, it is independent of the measurement con-
figuration and, hence, a valuable parameter for applications like
i) improving point cloud segmentation by facilitating the differ-
entiation of target materials and surfaces, and ii) monitoring the
changes in material properties (e.g., wetness) over time from
different viewpoints. In the following text, we briefly describe
the method for estimating IsMCI,j,k for TLS data that we in-
troduced in our previous work (Laasch et al., 2025), and sub-
sequently, we elaborate on changes done within this study to
adapt the method for MLS data.

3. Methods

3.1 TLS method

The original method by Laasch et al. (2025) for TLS comprises
three stages: Point cloud preprocessing, Cycle 1, and Cycle 2
(see Fig. 1). The point cloud preprocessing stage consists of
three steps. In the first step, essential parameters such as dis-
tance and AOI are computed for each point in the point cloud.
In the second step, each point is assigned a neighborhood patch
defined by a spherical region with a predefined radius (we used
10 cm, experimentally defined). The radius must be sufficiently
large to ensure an adequate number of points per patch while
remaining small enough to maintain the assumption of consist-
ent reflectance within the patch. Finally, in the third step, the
point cloud is filtered based on criteria such as surface variation
(i.e. roughness), maximal scanning distance, and the number
of different scan stations present within a neighborhood patch.
Cycle 1 involves iteratively estimating the AOI f

matj
φ0 (φj,k)

and distance gsR0
(Rj,k) compensation functions relying on the

least-squares best-fit of smoothing splines. The process takes
iteratively improved (”compensated”) intensities as the input,
bins them with a pre-defined number of bins over the entire
range of AOI or distance values, computes bin averages and
uses them as data points in the fitting procedure for computing
f
matj
φ0 (φj,k), and gsR0

(Rj,k). Cycle 2 includes Cycle 1 with ad-
ditionally iteratively estimating reflectance normalization val-
ues. These values are used to ”correct” the intensity values,
which helps to iteratively improve Cycle 1 estimates (explana-
tion follows).

The primary focus of the original work was on such global com-
pensation with reflectance normalization, in which a single AOI
compensation function is estimated for the entire dataset. This
process leverages the scan overlaps of multiple scan stations
to obtain iteratively refined reflectance estimates by averaging
the continuously ”compensated” intensities of multiple point
clouds within neighborhood patches. These reflectance estim-
ates are used as normalization coefficients applied to all related
points. This approach mitigates bias in modeling the relation-
ship between the intensity and the measurement configuration
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when the best-fit functions are estimated using the entire hetero-
geneous point cloud. This forms the foundation for radiometric
calibration. The reflectance estimation assumes: (i) neighbor-
ing points measured from different scan stations have similar
reflectance normalization values, (ii) sufficient variation in dis-
tances and AOIs exist within the predefined neighborhoods, and
it allows for decoupling of all relevant variables and prevents
misinterpreting these effects as reflectance variations.

Normalize intensities 
for reflectance

Compensate 
intensities for 

AOI

Compensate 
intensities for 

distance

Estimate global AOI 
function             .                            

Estimate distance 
function

Compensate intensities 
using final estimates of 

and

Estimate reflectance 
normalization

Calculate distance, 
surface normals, AOI, 

surface variation

Subsample merged point 
cloud and extract 

neighbors
Filter

point cloud

Point cloud preprocessing

Segment point cloud into 
segments with similar 

materials

repeat 
for each 
material

Until 
converged

Cycle 1

Cycle 2

Until 
converged

Estimate local AOI 
function             .                            

Local with reflectanceGlobal without reflectanceGlobal with reflectance

Figure 1. The original method by Laasch et al. (2025) for
automatic in-situ radiometric calibration, complemented with

adaptations for MLS data.

Moreover, in our previous work, we demonstrated the improved
radiometric calibration when the function modeling intensity-
AOI relationship was locally adapted for each material (see dot-
ted lines in Fig. 1). However, for that demonstration, we re-
lied on manually segmenting point clouds into segments with
uniform material properties. Further information about the ap-
proach and implementation for TLS can be found in Laasch et
al. (2025).

Adaptations for MLS are required since the method relies on
overlapping point clouds from multiple scan stations, which are
absent in MLS data. Additionally, we aim to avoid manual seg-
mentation by using a machine learning-based point cloud se-
mantic segmentation combined with instance segmentation.

3.2 Adaptation of the method for MLS

To adapt the method of Laasch et al. (2025) for MLS data, it is
necessary to account for the lack of discrete scan stations and
the reduced or no point cloud overlap. These differences in the
data affect the filtering of the point cloud and the estimation
of the reflectance normalization values, which are required to
ensure unbiased AOI and distance compensation functions es-
timates. Various approaches can be used to adapt the original
method for MLS data. We have developed three, suited for dif-
ferent datasets and applications, which are described in more
detail in the following paragraphs.

Global without reflectance estimation: A straightforward ap-
proach is by bypassing reflectance normalization (the only step

that explicitly relies on scans with high overlap taken from dis-
crete stations), and not filtering with the number of scan stations
present within a neighborhood patch (see solid lines in Fig. 1).
In this case, estimating distance and AOI compensation func-
tions relies on the assumption of uniform distribution of average
reflectance coefficients across the bins of distance and AOI val-
ues (see Sec. 3.1). This assumption is debatable, especially for
typical MLS datasets. For instance, a car-mounted MLS pre-
dominantly scans road surfaces at short distances, where lane
markings may appear predominantly within a limited number
of AOI and distance bins. Hence, the average reflectance, and
therefore intensity within these bins will be notably off from
the remaining values used in the fitting procedure, which can
bias the function estimates. Nonetheless, we implemented this
method, tested its efficiency, and evaluated the impact of non-
uniformly distributed reflectance coefficients.

Global with reflectance estimation: This approach follows the
original method described by Laasch et al. (2025), including
the neighborhood patch extraction (see dashed lines in Fig. 1).
However, the filtering step is modified since MLS data lacks
discrete scan stations. In the original method, the patches are
filtered based on the number of different scan stations contrib-
uting to a patch. For MLS data, we instead calculate the spread
of distance and AOI values within each patch, defined as the
difference between the 99th and 1st percentiles of the distance
and AOI values. Patches with a spread below a certain manually
defined threshold are excluded.

This modified filtering process ensures that the remaining
patches have sufficient variation in AOI and distance, which
reduces the coupling of these variables with the estimated re-
flectance normalization values. However, there is a trade-off
when choosing the threshold values. Although choosing the
smaller spread thresholds increases the risk of inadvertently
compensating for AOI or distance effects rather than the re-
flectance, choosing the larger thresholds reduces the number
of available patches, which can also negatively affect the estim-
ation of the AOI and distance compensation function. Hence,
these threshold parameters have to be selected with care based
on some prior knowledge about the dataset.

Local with reflectance estimation: To improve the precision
of the radiometric compensation, instead of estimating one best-
fit AOI compensation function for the entire point cloud, disreg-
arding different behavior of different materials, in this imple-
mentation, we estimate multiple locally best-fitting AOI com-
pensation functions (see dotted lines in Fig. 1). Ideally, this
requires segmentation of all point cloud points by common
material. However, we found no readily available algorithm
for such a segmentation that works effectively with our data-
set. Hence, to at least get a proxy for the material in an auto-
mated way, we adopted a machine learning model (Road 1.0, a
model implemented in Leica Cyclone 3DR software) that per-
forms object-related semantic segmentation. This model classi-
fies point cloud points into classes such as buildings, road sur-
faces, vegetation, and curbstones. Here, our assumption is that
the points related to a common semantic class are more likely
to share similar material properties and, hence, would require a
similar AOI compensation function.

To further improve the results, we additionally performed in-
stance segmentation within each semantic class to separate in-
dividual objects, since some classes, such as buildings, consist
of multiple objects that may not share the same surface charac-
teristics and material properties. For this step, we used the DB-
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Scan algorithm (Ester et al., 1996), and we additionally merged
all instances with fewer than a certain number of points (we
used 2’000, experimentally defined) to ensure sufficient data for
estimating the AOI and distance compensation functions. Apart
from the described adjustment in creating the correspondences
between data points and the appropriate f

matj
φ0 (φj,k) functions,

the algorithm remains unchanged from the original method.

4. Datasets

To evaluate our method, we used four different MLS datasets.
Tab. 1 provides an overview of these datasets. Datasets 1 to 3
were acquired using an MLS system mounted on a handcart
and consisting of a single 2d profiling laser scanner tilted by
−30◦ in the pitch direction, a surveying-grade GNSS receiver,
and a navigation-grade IMU. Dataset 4 was captured using an
MLS system mounted on a car. This system included two laser
scanners of the same type, tilted by −30◦ in pitch direction and
additionally by ±45◦ in yaw direction, a GNSS receiver and an
IMU of comparable quality to the previous MLS system.

(a)

(b)

(c)

(d)

Figure 2. Point clouds of the provided datasets colored by the
raw intensity: (a) Dataset 1, (b) Dataset 2, (c) Dataset 3, and (d)

Dataset 4.

None of the datasets were captured under ideal conditions for
radiometric calibration. Rather than adapting the data acquisi-
tion process, we chose to test the methods on existing datasets
to evaluate their applicability under unmodified normal work-
ing conditions. For instance, an ideal dataset would involve

capturing the same objects from various positions with differ-
ent distances and AOIs. This could be achieved by including
rotational maneuvers in the trajectories or conducting multiple
drives from different viewpoints. Among the datasets, only
Dataset 4 includes multiple drives over the same location. How-
ever, the drives were recorded along very similar trajectories,
introducing small additional distribution of AOI and distance
values. Specifically, the car traversed the same street twice in
both directions, resulting in two almost identical trajectories.
The two trajectory pairs are also similar, as they lie approx-
imately 4 m apart (small range of values relative to the instru-
ment’s measurement range of 119 m).

For each dataset, the trajectory of the MLS system was extrac-
ted from a Kalman-filter-based navigation solution relying on
the acquired IMU and GNSS data (using software that was
either in-house developed by the respective research groups
or provided by the MLS system manufacturer). Using the
timestamps associated with each point cloud point and ex-
pressed in a common time with the trajectory data (GPS time),
we linearly interpolated the trajectories to compute the scan-
ner’s positions at the time of each point acquisition. This posi-
tional information allowed us to calculate the distance and AOI
for each point.

The intensity data were exported differently across the datasets.
For Datasets 1 to 3, intensity values were provided as raw in-
tensity, whereas for Dataset 4, they were exported as reflectance
values, which are pre-compensated for distance by the manu-
facturer. Using the intensity values, along with the computed
distance and AOI, it is possible to estimate the distance and
AOI compensation functions. The following section presents
the results of the compensation applied to these four datasets.

5. Results

In this section, we present the performance of the methods
presented in Sec. 3 on the previously introduced datasets.
Visual evaluation is demonstrated using an exemplary part of
a retaining wall from Dataset 4 using the global method with
reflectance estimation (see Fig. 3). The other datasets and meth-
ods show comparable results. The related point cloud is colored
once with raw intensities (see Fig. 3b) and once using the es-
timated IsMCI,j,k (see Fig. 3c). Fig. 3b, which visualizes raw
intensity, reveals a gradient in intensity values from the top to
the bottom. This gradient arises because the distance and AOI
values decrease from the top to the bottom. In contrast, Fig. 3c,
where IsMCI,j,k is used, does not exhibit this gradient. Thus,
the implemented method successfully reduces the impact of the
measurement configuration. As a consequence, differences in
material properties within the wall segment become evident, al-
lowing for eventual segmentation based on the intensity values
(demonstration follows).

Furthermore, to quantitatively evaluate the results of the pro-
posed radiometric calibration methods, we defined distinct ho-
mogeneous areas within the scenes for analysis. In each dataset,
6 to 10 such areas were selected, each approximately 3 m long
and 1 m wide. This selection ensures that each area encom-
passes a range of distances and AOIs. Within these areas, all
points are expected to have the same or very similar IsMCI,j,k

values, resulting in a small spread of values. Hence, by analyz-
ing the distribution of uncorrected intensities and IsMCI,j,k val-
ues within these areas, we derived a statistical metric to assess
the performance of our method. Specifically, we considered the
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Dataset Scanners # points [·106] # Drives Scenery Source

1 1 Z+F Profiler 9012A 18 1 Rural village
(houses, street, meadow) Heinz (2021)

2 1 Z+F Profiler 9012A 47 1 University campus
(houses with shiny facades, street) Heinz (2021)

3 1 Z+F Profiler 9012A 23 1 Farm (large concrete wall,
barn, meadow, paved floor) Heinz (2021)

4 2 Z+F Profiler 9012 160 4 Overland road
(road, retaining wall) Kalenjuk et al. (2021)

Table 1. Overview of used datasets to evaluate the proposed methods.

(a) (b) (c)

Figure 3. Part of an almost vertical retaining wall of Dataset 4
shown as RGB image (a) and the corresponding point cloud

colored with the raw intensity (b) and the IsMCI,j,k (c).

coefficient of variation (CV). The CV is a standard measure for
assessing variability and is defined as the ratio of the standard
deviation to the mean of all values (intensities).

This metric was calculated for each selected area in each data-
set and then averaged within the datasets to produce a single
representative value per dataset. The metrics for each dataset
are shown in Tab. 2. It presents the three methods illustrated
in Fig. 1, and the local method is applied twice: first using
the instances obtained from the segmentation (see Sec. 3.2) and
then using the classes without instance segmentation. For each
dataset, one single distance compensation function is estimated,
even if the dataset contains multiple scanners from the same
type (e.g., Dataset 4).

Dataset
Method 1 2 3 4

Raw 0.25 0.47 0.47 0.22

Global
With refl. 0.16 0.28 0.18 0.19
Without refl. 0.19 0.23 0.18 0.27

Local
Classes 0.20 0.21 0.17 0.24
Instances 0.18 0.25 0.15 0.22

Table 2. CV of radiometric calibration. The best metrics are in
bold and blue, whereas the worst metrics are in red.

For the global methods, the metrics in Dataset 1-3 show a de-
crease compared to the one calculated from raw intensities.
This indicates that both global methods can achieve, to a cer-
tain degree, a radiometric compensation regardless of whether
they use reflectance estimation or not.

However, in Dataset 4, improved metrics are only observed

when reflectance estimation is incorporated. The worse value
observed for the method without reflectance estimation can be
attributed to the presence of some highly reflective objects in
Dataset 4 consistently measured at similar distances and AOIs,
see e.g. the lane marking example in Sec. 3.2 (see Fig. 2d).
This consistency creates a bias in the estimation of the distance
and AOI compensation functions and subsequently negatively
affects the radiometric calibration results.

In contrast, the improved value in Dataset 4 for the method with
reflectance estimation, relative to the without case, is achieved
partially due to the availability of multiple scanning trajector-
ies. These trajectories lead to sufficient variations in distance
and AOI values for the same objects, which enables the cal-
culation of the reflectance normalization values with sufficient
quality. Consequently, the addition of reflectance estimation
successfully reduces the bias due to the large differences in the
reflectivity of the objects used for distance and AOI compensa-
tion functions.

The metrics discussed so far are calculated using the entire
Dataset 4, which contains data collected from two scanners (see
Tab. 1). When these metrics are calculated separately for each
scanner, they match those obtained for the entire dataset, indic-
ating that both scanners share comparable distance compens-
ation functions. We compare the distance functions because
we assume that the AOI compensation functions are scanner-
independent and only dependent on the scanned objects.

To further assess whether separate distance compensation func-
tion estimations are necessary for each scanner, Fig. 4 depicts
the distance compensation functions estimated for the right,
left, and combined data from both scanners. Although some ar-
tifacts are noticeable at short distances and beyond 20 m, likely
due to the non-uniform distribution of averaged reflectance val-
ues (see Sec. 3), the estimated functions exhibit similar shapes,
likely indicating no significant differences. However, confirm-
ing this hypothesis would require further analysis. Addition-
ally, we would expect the distance compensation functions to
be smoother. The observed artifacts may result from an insuf-
ficient number of data points in these regions and/or an overly
weak smoothness constraint in the spline approximations. A
more in-depth investigation would be necessary to fully under-
stand these effects. However, such an ablation study is beyond
the scope of this work.

If we include the distance function estimated using the com-
bined Dataset 1-3 – where all three datasets are merged to
minimize the influence of non-uniformly distributed reflectance
values – we can better observe the difference between the manu-
facturer’s distance-compensated intensities (Dataset 4) and the
raw intensities (Dataset 1-3). This demonstrates that the ad-
apted method effectively handles both cases and reduces the
impact of measurement configuration. However, in the already
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distance-compensated intensities functions, a deviation remains
between the estimated function and the manufacturer’s com-
pensation function. Otherwise, the estimated function would
be a straight line. Further investigation is needed to determ-
ine whether this deviation results from systematic effects in the
applied method or from additional adaptations, as the manufac-
turer’s function may not generalize perfectly to all scenes.

Figure 4. Distance compensation function estimated with
Dataset 4 both scanners together, with only the right or left

scanner and with the combined Dataset 1-3.

Compared to the global methods, the local methods yield im-
proved metrics for Datasets 2 and 3. This is due to the ad-
vantage of locally adapted AOI compensation functions, which
assign distinct compensation functions to segments with sim-
ilar radiometric properties, allowing for better modeling of
material-specific radiometric behavior. However, the drawback
is the smaller quantity of data available for estimating AOI com-
pensation functions per segment, which can reduce estimation
accuracy.

In Dataset 2, the segmentation process enhances the estimation
of IsMCI,j,k, leading to improved metrics (see Table 2). This
dataset contains a diverse range of materials with varying re-
flectance properties that span large surfaces, providing suffi-
cient data points for reasonable estimates. In contrast, Dataset
4 predominantly features similar materials, resulting in limited
data per segment, which negatively impacts estimation quality
and diminishes the benefits of material-specific AOI compens-
ation. Additionally, Dataset 4 includes highly reflective sur-
faces, but the segmentation algorithm is unable to distinguish
them as separate semantic classes. For example, the road class
combines asphalt and road markings despite their distinct ra-
diometric behaviors. This likely explains why local radiometric
calibration noticeably underperforms in this case.

These observations highlight two key challenges: (i) the effic-
acy and robustness of our global compensation method and (ii)
the difficulty of automatically estimating material-dependent
AOI compensation functions.

Fig. 5 illustrates an example of material-dependent AOI com-
pensation functions for four selected segments for the instance
segmentation case of Dataset 2. These segments represent
structures such as buildings, roads, and light poles, the latter
are metallic and exhibit specular reflectance characteristics (see
Fig. 6). The AOI functions of the road and the light poles
are truncated due to high noise levels where insufficient data
is available. The variability of the functions emphasizes the
importance of segmentation and compensation for individual
materials.

Figure 5. Estimated material-dependent AOI functions for four
selected segments in Dataset 2.

Figure 6. Instance segmentation with the following segments:
blue: building 1, orange: building 2, green: street, red: light

poles. The segments are saturated with the raw intensity.

Enhancing the material segmentation algorithm could further
improve the results of the local methods. This can be achieved
by incorporating the globally compensated IsMCI,j,k values as
additional information. We demonstrate this in the example
of segmenting sinter in the retaining wall of Dataset 4. Here,
the sinter can be effectively segmented by applying a simple
threshold to the IsMCI,j,k values (see Fig. 7c). In contrast, us-
ing raw intensities makes such segmentation unfeasible. In this
case, not all sinter could be identified with a high threshold,
while with a low threshold, the lower part of the wall would be
incorrectly classified as sinter (see Fig. 7a and 7b).

We see this as a demonstration of how the classification of ma-
terials can significantly benefit from IsMCI,j,k values. However,
this creates a recursive challenge: Segmentation of different
materials using intensities requires accurate radiometric com-
pensation, and accurate compensation, in the case of the locally
adapted f

matj
φ0 (φj,k), relies on correct material segmentation.

This issue could be solved with an iterative approach. First,
IsMCI,j,k values could be estimated globally, enabling segment-
ation based on these values. Subsequently, material-specific
IsMCI,j,k values could be calculated, which in turn, would refine
the segmentation. This process could be repeated iteratively un-
til convergence is achieved. However, the development of such
an algorithm remains part of our future work.

6. Conclusion

This study adapts a previously developed in-situ radiometric
calibration method for TLS intensity values, extending it to
MLS data to compensate for measurement configuration (dis-
tance and angle of incidence, i.e., AOI). The method automat-
ically estimates a distance compensation function for the entire
dataset and an AOI compensation function estimated globally

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-845-2025 | © Author(s) 2025. CC BY 4.0 License.

 
850



(a) (b) (c)

Figure 7. Part of the retaining wall in Dataset 4 as in Fig. 3. The
point clouds are segmented into two parts to get the region with
sinter (orange) and without (blue) based on the raw intensity and
a high threshold (a), on the raw intensity and a low threshold (b)

and on the IsMCI,j,k values (c).

(for the entire dataset) or locally (per semantic class or indi-
vidual instances). Using the estimated compensation functions,
measurement configuration-independent intensities, IsMCI,j,k,
can be computed and used for the downstream tasks with im-
proved performance relative to original (raw) intensity values.

The applied method must account for varying radiometric prop-
erties across the scene. The global method leverages overlap-
ping regions to optionally normalize for reflectance, while the
local method compensates for these variations by estimating
separate functions for each segment. As a result, the global
method performs better in datasets with overlapping scan lines,
whereas the local approach is better suited in datasets with a
high diversity of surface and material types. Since the local
method estimates an individual AOI compensation function for
each segment, accurate segmentation based on material proper-
ties is crucial to ensure proper modeling.

To overcome the necessity of manual separation of the surfaces
of different materials and, thus, different radiometric proper-
ties, in the case of the local compensation method, we used
a semantic segmentation approach for 3d point clouds based
on an in-built machine-learning model within Leica’s Cyclone
3DR software. However, since this algorithm is designed for se-
mantic rather than material-related segmentation, the obtained
classes served only as proxies for the surfaces with common
radiometric properties (typically, one semantic class contains
multiple distinct materials). Additionally, separating a limited
amount of data into locally adapted estimation data sets im-
poses constraints on the quality of such locally estimated AOI
compensation functions. Hence, fully benefiting from this local
approach, these limitations have to be tackled either to im-
prove through integrating better-suited segmentation methods
or smarter incorporation of prior knowledge for the used AOI
functions.

Finally, by comparing the distance compensation functions es-
timated for scanners of the same type, we observed that these
functions can be jointly estimated, which can be relevant for
multi-scanner systems. In conclusion, the proposed method re-
duces the influence of the measurement configuration in MLS

intensity data. The derived IsMCI,j,k are particularly advantage-
ous for tasks such as segmentation, as demonstrated in a sim-
plified classification case.
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