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Abstract 
 
Access to very high-resolution (HR) satellite imagery is often limited, delayed, or cost-prohibitive, restricting accurate and timely post-
disaster damage detection and recovery monitoring (PDDRM). Additionally, class imbalance in disaster classification datasets further 
complicates deep learning (DL)-based assessments. This study addresses these challenges by leveraging ESRGAN to enhance low-
resolution (LR) satellite imagery, thereby improving damage classification accuracy and the ability to monitor post-disaster recovery 
over time with three state-of-the-art DL models: Vision Transformer (ViT), ConvNeXt, and MaxViT for PDDRM classification across 
four key recovery states: Not Damaged, Not Recovered, Recovered, and New Buildings. To generate super-resolution (SR) images, 
LR images were first paired with HR images to train ESRGAN. Numerical evaluations using Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index Measure (SSIM) between SR and HR images confirm that ESRGAN effectively reconstructs high-
resolution features, with Not Damaged (PSNR: 29.2, SSIM: 0.78) and New Buildings (PSNR: 30.3, SSIM: 0.81) exhibiting the highest 
reconstruction quality. ESRGAN-generated SR images were then compared against LR images in terms of classification accuracy and 
reliability. The results demonstrate that SR improves classification accuracy and precision, particularly for ViT and ConvNeXt, with 
ViT achieving an accuracy of 84% and ConvNeXt 82% on SR images, compared to 79% and 78% on LR images. We also employed 
Grad-CAM++ visualizations to interpret model predictions, which highlighted reliability improvements in certain classes. This study 
demonstrates that SR is a scalable and cost-effective alternative to very high-resolution satellite imagery, reducing dependency on 
expensive data sources while improving classification accuracy for PDDRM.  
 
 

1. Introduction 

The growing frequency and intensity of disasters highlight the 
urgent need for accurate and timely assessment of both post-
disaster damage and recovery (Lallemant et al., 2017). This 
comprehensive assessment is critical to minimizing the adverse 
effects of the disasters and improving community resilience by 
ensuring effective emergency response, resource allocation, and 
desired long-term recovery outcomes (Sheykhmousa et al., 
2019). Remote sensing data, particularly satellite imagery, has 
emerged as a powerful tool for post-disaster damage detection 
and recovery monitoring (PDDRM) by proving large-scale, high-
frequency observations that enable systematic assessments 
across vast geographic areas (Ghaffarian and Emtehani, 2021). 
However, conventional damage detection studies focus solely on 
immediate post-disaster conditions, often neglecting the 
subsequent recovery phase. This narrow approach limits the 
ability to evaluate long-term resilience and prevents a full 
understanding of recovery processes, as it overlooks the gradual 
restoration of urban areas. By extending post-disaster damage 
detection to include recovery monitoring, it becomes possible to 
track progress, identify areas lagging in reconstruction, and 
support evidence-based strategies for resilient recovery 
(Ghaffarian and Emtehani, 2021). 

 
Accurate and timely PDDRM present several challenges, 
particularly when relying on satellite imagery. One of the primary 
obstacles is the scarcity of very-high resolution satellite imagery 
immediately after disasters. Very-high resolution satellite data is 
often expensive, difficult to acquire in real-time, or subject to 
cloud cover and operational delays, restricting the ability to 
perform precise and timely assessments (Hodgson et al., 2010). 
Another critical challenge is class imbalance, as certain recovery 

states, such as newly constructed buildings, are underrepresented 
in datasets (Ren et al., 2020). This imbalance might skew model 
predictions, leading to biases where less frequent recovery 
patterns may be misclassified or overlooked entirely. The 
temporal complexity of recovery monitoring further complicates 
the task as it requires tracking structural and environmental 
changes across at least three key time frames: before the disaster, 
at the event time, and after the disaster (Ghaffarian and Emtehani, 
2021). Identifying and distinguishing between damage, ongoing 
recovery, and new construction over these time frames demands 
more sophisticated feature extraction techniques. Moreover, the 
role of image resolution in detecting fine-grained damage and 
recovery states remains unexplored. While very-high resolution 
images provide greater detail, their availability is inconsistent, 
and their actual impact on model performance has not been 
thoroughly investigated. 
 
PDDRM requires robust, scalable, and efficient methodologies to 
process vast amounts of satellite imagery. Conventional 
approaches, such as manual interpretation and classical machine 
learning techniques, often struggle with the high volume of data 
and the complexity of identifying structural changes across 
multiple time frames (Sublime and Kalinicheva, 2019). To 
address these limitations, DL models have emerged as a powerful 
solution for automating post-disaster damage detection efforts. 
These models can learn hierarchical representations of satellite 
imagery, enabling the detection of subtle structural damage and 
reconstruction patterns that may not be easily identifiable through 
conventional methods (Chaudhuri and Bose, 2020). However, 
despite their accuracy and efficiency, DL models are often 
regarded as black boxes, providing little transparency into how 
decisions are made (Rai, 2020). This lack of interpretability poses 
challenges, particularly in post-disaster response and recovery 
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scenarios where trust and accountability are critical (Ghaffarian 
and Taghikhah, 2023). Explainable AI (XAI) methods aim to 
address interpretability and reliability issues of DL models by 
offering insights into model predictions, allowing decision-
makers to understand which image features influence 
classification outcomes (Ghaffarian and Taghikhah, 2023; 
Kakogeorgiou and Karantzalos, 2021). 
 
DL techniques have been widely used in post-disaster damage 
detection due to their ability to handle complex spatial patterns 
and automate large-scale classification tasks (Wang et al., 2024). 
For example, Rahnemoonfar et al. (2023) introduced RescueNet, 
a high-resolution UAV dataset for post-disaster semantic 
segmentation, featuring images collected after Hurricane 
Michael. The study evaluated PSPNet, DeepLabv3+, Segmenter, 
and Attention U-Net, with Attention U-Net achieving the highest 
mean Intersection over Union (mIoU) of 98.47%. Safavi and 
Rahnemoonfar (2022) evaluated real-time semantic 
segmentation models on FloodNet, a high-resolution UAV 
dataset collected after Hurricane Harvey (2017), containing 
images with pixel-level annotations for flood-related damage. 
The study compared encoder–decoder models (e.g., UNet, 
HarDNet, SegFormer) and two-pathway models (e.g., BiSeNet, 
DDRNet, PIDNet) for flood damage segmentation, and 
SegFormerB0 achieved the highest mIoU of 61.6% and pixel 
accuracy of 89.5%. Gupta et al. (2019) introduced xBD with 
severe class imbalance, the largest publicly available dataset for 
building damage assessment from pre- and post-disaster satellite 
imagery, covering 19 disasters, including hurricanes, wildfires, 
floods, tsunamis, earthquakes, volcanic eruptions, and tornadoes. 
The study implemented a U-Net-based localization model, 
achieving an IoU of 0.66 for buildings, and a ResNet50-based 
classifier obtaining an overall weighted F1 score of 0.2654. 
However, most previous DL research focuses on damage 
detection, which is crucial for immediate response, and long-term 
recovery tracking with DL remains underexplored.  
 
XAI techniques have gained attention in remote sensing 
applications, offering greater interpretability for AI-driven 
models. Cheng et al. (2022) developed an uncertainty-aware 
convolutional neural network (CNN) for AI-assisted post-
disaster damage assessment, trained on UAV-based DoriaNET 
and satellite-based xBD datasets. To enhance explainability, 
Grad-CAM was applied, revealing that the models primarily 
focus on roof damage and structural failures in high-wind 
disasters. Kakogeorgiou and Karantzalos (2021) evaluated ten 
Explainable AI (XAI) techniques for multi-label classification in 
remote sensing, using DenseNet and ResNet trained on 
BigEarthNet and SEN12MS datasets. Their study found that 
Occlusion, Grad-CAM, and LIME provided the most reliable and 
interpretable explanations, with Grad-CAM achieving the lowest 
Max-Sensitivity score (0.14) and AUC-MoRF (23.62) for 
SEN12MS. Even though there have been advancements in 
applying XAI to post-disaster damage detection, its application 
to post-disaster recovery states, where structural conditions 
evolve over time, remains an underexplored area with significant 
potential. 
 
SR techniques have been extensively researched in remote 
sensing to improve image quality, particularly when high-
resolution data is unavailable (Wang et al., 2022). SRGAN, a 
class of DL models based on Generative Adversarial Networks 
(GAN), have demonstrated remarkable success in enhancing 
satellite imagery by reconstructing fine details lost in LR images. 
Xiong et al. (2020) developed an Improved SR GAN (ISRGAN) 
for remote sensing image SR to enhance the generalization 
capability across different locations and satellite sensors. The 

model demonstrated strong generalization across geographic and 
sensor variations, achieving PSNR of 35.82 and SSIM of 0.99 in 
cross-location tests, and PSNR of 38.09 and SSIM of 0.99 in 
cross-sensor tests. Dou et al. (2020) developed a 3D Attention-
based SR Generative Adversarial Network (3DASRGAN) for 
hyperspectral image SR, addressing the spectral distortion 
problem by integrating 3D convolution layers and an attention 
mechanism. Compared to traditional SR methods and CNN-
based approaches, 3DASRGAN achieved the highest PSNR 
(32.27) and SSIM (0.97) for the Washington DC Mall dataset and 
PSNR (33.27) and SSIM (0.91) for the Urban dataset. Moreover, 
Fu et al. (2022) proposed an SRGAN-based end-to-end 
framework for enhancing post-disaster damage detection 
performance using the xBD dataset, specifically using the 2018 
Sunda Strait tsunami and 2018 Sulawesi earthquake and tsunami 
events. The SR module enhanced image quality, with PSNR up 
to 36.22 and SSIM reaching 0.939, demonstrating that SRGAN 
can generate high-quality damage maps when high-resolution 
imagery is unavailable. Efforts to implement SRGAN techniques 
for post-disaster damage detection have been limited, and 
research on their application to post-disaster recovery monitoring 
remains entirely absent. 
 
This study advances the field of post-disaster damage detection 
and recovery monitoring by addressing key challenges in remote 
sensing, DL, Explainable AI, Generative AI.  

• This research extends the post-disaster damage 
detection analysis to include post-disaster recovery 
monitoring. By tracking structural changes over time, 
the study offers a more comprehensive understanding 
of recovery dynamics, shedding light on how affected 
areas transition from damaged to recovered.  

• ESRGAN-generated SR images significantly improve 
classification performance compared to LR images, 
particularly for challenging and underrepresented 
recovery classes, such as new construction and 
recovery stages. These enhancements help overcome 
the limitations of LR imagery in PDDRM. 

• By training and evaluating models on both LR and HR 
images, this study systematically examines how image 
resolution affects classification accuracy. This analysis 
helps determine whether SR techniques truly enhance 
model performance or if high resolution is only 
beneficial in specific cases. 

• The study integrates Explainable AI (XAI) techniques, 
such as Grad-CAM++, to analyze how DL models 
interpret damage and recovery states across different 
resolutions. This approach enhances model 
transparency and reliability, ensuring that AI-driven 
PDDRM are based on interpretable and meaningful 
visual features rather than unintended biases. 

 
2. Methods and Materials 

2.1 Study Area and Dataset 

Typhoon Haiyan (locally known as Yolanda) was one of the most 
powerful tropical cyclones ever recorded, making landfall in the 
Philippines on November 8, 2013. With storm surges exceeding 
5 meters, it caused widespread devastation, particularly in 
Tacloban, Leyte and resulted in over 7,000 fatalities and massive 
destruction of infrastructure, displacing millions and severely 
impacting coastal settlements (van Loenhout et al., 2018). Figure 
1 shows the effects of Typhoon Haiyan on Tacloban, Leyte, and 
the subsequent recovery process. The left panel presents a 
regional map of the Philippines, showing Leyte Island and 
Tacloban City, a heavily affected area. The storm's trajectory and 
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impact zone are overlaid, with a red line marking the typhoon’s 
path and varying shades indicating the intensity of damage across 
affected regions. The right panel comprises three very-high 
resolution satellite images, illustrating Tacloban’s landscape at 
three key time points: pre-disaster (October 18, 2013), event time 
(November 27, 2013), and post-disaster (September 18, 2015).  
 
 

 
Figure 1: Map showing Typhoon Haiyan and pre-disaster, event 
time, and post-disaster satellite imagery. 
 
These satellite images provide crucial insights into the damage 
extent and recovery patterns following Typhoon Haiyan. To 
systematically classify post-disaster conditions, areas are 
categorized into four classes based on the visually determined 
damage ratio at the event time (T1) and the level of recovery at a 
later period (T2) compared to pre-disaster conditions (T0): 
 

• Not damaged: areas where the visually determined 
damage ratio is below 50% at T1 (event time), 
indicating minimal or no structural impact. 

•  
• Not recovered: areas where the damage ratio exceeded 

50% at T1 but remained below 50% recovery at T2, 
indicating slow or stalled reconstruction efforts. 

•  
• Recovered: areas where the damage ratio exceeded 

50% at T1 but experienced over 50% recovery by T2 
(post-disaster recovery period), showing significant 
reconstruction efforts. 

•  
• New buildings: areas where completely new structures 

have been constructed after the disaster, representing 
land-use changes and new developments. 

 
Figure 2 presents example images from the dataset. These 
samples illustrate how satellite imagery captures varying levels 
of structural impact and reconstruction across different regions. 
The visual distinctions between the classes highlight the 
progression of disaster damage and recovery patterns, 
emphasizing the necessity of accurate classification methods for 
PDDRM. 
 
Table 1 shows that the dataset exhibits a noticeable class 
imbalance, with the “Not damaged” class containing the highest 
number of training images (625), while the “New buildings” class 
is the least represented, with only 180 training samples. This 
imbalance poses a challenge for DL models, as underrepresented 
classes may lead to biased predictions, where the model favors 
more frequent classes. 
 

 
Figure 2: Example images from the dataset representing four 
classes: “not damaged”, “not recovered”, “recovered”, and “new 
buildings”. 
 
Table 1: Distribution of training and test images across PDDRM 
classes. 

Class Training images Test images 
Not damaged 625 100 
Not recovered 275 100 
Recovered 450 100 
New buildings 180 100 

 
2.2 Methodology 

The proposed framework integrates ESRGAN and DL models to 
improve PDDRM. The first stage is data preparation, where 
multi-temporal satellite images, with three bands: Red, Green, 
and Blue, are collected and categorized into three timeframes: T0 
(Pre-disaster), T1 (Event time), and T2 (Post-disaster). These 
images are then processed into low-resolution (LR) (75×75×3) 
from high-resolution (HR) (300×300×3) patches for model 
training and evaluation. In the second stage, SR enhancement is 
performed using ESRGAN. LR images are input into the 
ESRGAN model, which consists of convolutional layers, residual 
blocks, and an upsampling layer to reconstruct HR images. The 
accuracy of the generated super-resolved images is evaluated 
using Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM). The third stage involves 
PDDRM using DL models. Both LR and generated HR images 
are used to train separate DL models, allowing for direct 
comparison of classification accuracy across different 
resolutions. The final stage is accuracy and reliability assessment. 
The classification performance of the DL models is assessed 
using Precision and Accuracy. To ensure model reliability, XAI 
technique Grad-CAM++ is applied, highlighting the critical 
image regions used in model decision-making. 
 
ESRGAN is an improved version of SRGAN, designed to 
generate high-resolution images from LR inputs by enhancing 
fine textures and reducing artifacts (Wang et al., 2018). The 
ESRGAN framework consist of two components: generator 𝐺𝐺, 
that takes a LR image 𝐼𝐼𝐿𝐿𝐿𝐿 as input and produces a super-resolved 
image 𝐼𝐼𝑆𝑆𝐿𝐿, and discriminator 𝐷𝐷, distinguishes between generated 
SR images 𝐼𝐼𝑆𝑆𝐿𝐿 and ground truth high-resolution images 𝐼𝐼𝐻𝐻𝐿𝐿. The 
generator function can be expressed as: 
 

𝐼𝐼𝑆𝑆𝐿𝐿 = 𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿;𝜃𝜃𝐺𝐺) ,                                    (1)  
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where 𝜃𝜃𝐺𝐺  represents the learnable parameters of the generator. 
The discriminator function follows the relativistic average GAN 
approach by comparing real and fake images instead of simply 
classifying them as real or fake: 
 

𝐷𝐷(𝐼𝐼𝐻𝐻𝐿𝐿, 𝐼𝐼𝑆𝑆𝐿𝐿) = 𝜎𝜎(𝐶𝐶(𝐼𝐼𝐻𝐻𝐿𝐿) − 𝔼𝔼[𝐶𝐶(𝐼𝐼𝑆𝑆𝐿𝐿)]) ,            (2)  
 

where 𝜎𝜎 is the sigmoid function and 𝐶𝐶 represents the 
discriminator's feature extraction function. To improve 
perceptual quality, ESRGAN optimizes a multi-component loss 
function comprising adversarial loss, perceptual loss, and pixel 
loss as explained in Wang et al. (2018).  
 

 
Figure 3: Overview of the Methodology. 
  
For PDDRM classification, this study employs three state-of-the-
art DL architectures: Vision Transformer (ViT) (Dosovitskiy, 
2020), MaxViT (Tu et al., 2022), and ConvNeXt (Liu et al., 
2022). These models leverage different architectural designs to 
extract spatial and structural features from satellite imagery, 
enhancing classification performance.  
 
2.3 Accuracy Assessment 

For ESRGAN model, two standard image quality metrics are 
applied to assess the quality of the super-resolved images: PSNR 
and SSIM. PSNR evaluates the pixel level accuracy of a 
generated high-resolution image 𝐼𝐼𝑆𝑆𝐿𝐿 by measuring the 
reconstruction error compared to the ground truth image 𝐼𝐼𝐻𝐻𝐿𝐿. A 
higher PSNR value indicates better image quality, meaning the 

super-resolved image closely resembles the original high-
resolution reference. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑀𝑀𝑀𝑀𝑀𝑀2

𝑀𝑀𝑃𝑃𝑀𝑀 � ,                        (3) 

 
where 𝑀𝑀𝑀𝑀𝑀𝑀 represents the maximum possible pixel value (255 
for 8-bit images) and MSE (Mean Squared Error) is given by: 
 

𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑃𝑃
�  
𝑁𝑁

𝑖𝑖=1

(𝐼𝐼𝐻𝐻𝐿𝐿 − 𝐼𝐼𝑆𝑆𝐿𝐿)2,                       (4) 

 
SSIM evaluates the perceptual similarity between the super-
resolved image and the ground truth by considering luminance, 
contrast, and structure. SSIM values range from 0 to 1, with 1 
indicating perfect similarity.  
 

𝑃𝑃𝑃𝑃𝐼𝐼𝑀𝑀(𝐼𝐼𝐻𝐻𝐿𝐿, 𝐼𝐼𝑆𝑆𝐿𝐿) =
(2𝜇𝜇𝐻𝐻𝐿𝐿𝜇𝜇𝑆𝑆𝐿𝐿 + 𝐶𝐶1)�2𝜎𝜎𝐻𝐻𝐿𝐿,𝑆𝑆𝐿𝐿 + 𝐶𝐶2�

(𝜇𝜇𝐻𝐻𝐿𝐿2 + 𝜇𝜇𝑆𝑆𝐿𝐿2 + 𝐶𝐶1)(𝜎𝜎𝐻𝐻𝐿𝐿2 + 𝜎𝜎𝑆𝑆𝐿𝐿2 + 𝐶𝐶2) , 

     (5) 
 

where:  
• 𝜇𝜇𝐻𝐻𝐿𝐿, 𝜇𝜇𝑆𝑆𝐿𝐿 are the mean intensities of the images. 
• 𝜎𝜎𝐻𝐻𝐿𝐿2 ,𝜎𝜎𝑆𝑆𝐿𝐿2  are the variances of the images. 
• 𝜎𝜎𝐻𝐻𝐿𝐿,𝑆𝑆𝐿𝐿 is the covariance between the images. 
• 𝐶𝐶1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶2 are small constants to avoid instability. 

The DL models used for PDDRM are assessed using two widely 
used classification metrics: Accuracy and Precision. 
 

Precision =
TP

TP + FP ,                                         (6) 
 
 

Accuracy =
TP + TN 

TP + TN + FP + FN ,                   (7) 
 
 
where TP is true positives, TN is true negatives, FP means false 
positives, and FN represents false negatives. 
 
2.4 Reliability Assessment 

To ensure the reliability of DL models for PDDRM this study 
employs Gradient-weighted Class Activation Mapping++ (Grad-
CAM++). Grad-CAM++ is an improved version of Grad-CAM, 
which enhances visualization precision by considering pixel-
wise importance weights rather than relying solely on coarse 
feature maps and particularly useful for multi-class classification 
tasks (Chattopadhay et al., 2018). 
 

3. Results and Discussion 

3.1 ESRGAN for Satellite Image Resolution Enhancement  

The ESRGAN-generated SR images are evaluated in terms of 
PSNR and SSIM (Table 2). These metrics quantify the quality of 
the super-resolved images by comparing them to high-resolution 
ground truth images. Higher PSNR values indicate lower 
reconstruction error, while higher SSIM values reflect more 
significant structural similarity to the original images.  
 
The Not Damaged class achieved an average PSNR of 29.2 and 
an average SSIM of 0.78, suggesting that ESRGAN effectively 
restores fine details in areas with minimal structural changes. The 
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New Buildings class exhibited the highest PSNR (30.3) and 
SSIM (0.81), indicating that newly constructed structures were 
well-reconstructed with a high degree of similarity to the ground 
truth. These results suggest that the ESRGAN model performs 
particularly well in regions with clear, well-defined structures. 
 
Table 2: Quantitative evaluation of ESRGAN-generated SR 
images. 

Class PSNR SSIM 
Not damaged 29.2 0.78 
Not recovered 24.7 0.72 
Recovered 26.6 0.74 
New buildings 30.3 0.81 

Average 27.7 0.76 
 
In contrast, the Recovered and Not recovered classes yielded 
lower PSNR and SSIM values, with PSNR values of 26.6 and 
24.7, respectively, and SSIM values of 0.74 and 0.72. The lower 
scores in these classes suggest that ESRGAN faces greater 
difficulty in reconstructing areas with visible structural damage 
or complex textures, such as debris, partially collapsed buildings, 
or areas undergoing repair. The Not recovered category, in 
particular, had the lowest PSNR and SSIM values, which may be 
attributed to the presence of mixed textures resulting from 
disaster damage and ongoing reconstruction, making the SR 
process less effective in generating highly accurate 
reconstructions. 
 
Overall, the average PSNR and SSIM values across all categories 
were 27.7 dB and 0.76, respectively. Despite effectively 
enhancing LR images, the performance of the ESRGAN model 
varies across different damage and recovery categories. The 
relatively high PSNR and SSIM values for Not Damaged and 
New Buildings suggest that ESRGAN performs well in stable 
environments with clearly defined structures. However, the lower 
values for Not Recovered and Recovered indicate that complex 
post-disaster environments, characterized by debris and 
incomplete structures, present challenges for SR reconstruction. 
 
Figure 4 presents a visual comparison of satellite images at three 
different resolutions: Low-Resolution (LR), Super-Resolution 
(SR), and High-Resolution (HR). Each row (labeled a–h) 
represents a different example, highlighting how SR 
reconstruction compares to original LR and HR imagery. Row a 
and b shows that the LR images in Not damaged category exhibit 
pixelation and blurriness, making it difficult to distinguish fine 
structural details such as rooftops and road boundaries. The SR 
images, generated by ESRGAN, significantly improve clarity, 
restoring building edges and preserving color consistency, 
demonstrating the model's ability to reconstruct fine textures with 
high fidelity. Row g and h demonstrate that the SR images 
effectively restore the shapes and colors of new buildings, 
providing clearer outlines of rooftops and construction patterns. 
A comparison with HR images reveals that ESRGAN-generated 
SR outputs closely match the true HR data, indicating that SR can 
be a valuable tool for detecting new developments in post-
disaster recovery analysis. 
 
Row c, d, e, and f shows that the SR images provide a better view 
of damaged structures; however, the model face challenges in 
generating finer details such as debris of the buildings. Despite 
these challenges, the model enhances damage visibility and 
improves clarity in SR images, which is particularly useful for 
PDDRM. 
 

 
Figure 4: Comparison of example LR, SR, and HR images. 
 
3.2 PDDRM Classification with DL Models 

Table 3 presents the classification accuracy and precision of three 
DL models when trained on LR images and ESRGAN-generated 
SR images. The results demonstrate the effectiveness of SR 
enhancement in improving classification performance, with 
notable variations across models. For ViT, the classification 
accuracy improved from 0.79 (LR) to 0.84 (SR), while precision 
increased from 0.80 to 0.84, suggesting that ESRGAN model 
successfully enhances the model’s ability to distinguish between 
PDDRM classes. Similarly, ConvNeXt exhibited an increase in 
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accuracy from 0.78 to 0.82 and in precision from 0.79 to 0.83. In 
contrast, MaxViT showed no significant improvement in 
classification accuracy, remaining at 0.74 for both LR and SR, 
with only a marginal increase in precision from 0.75 to 0.76. This 
suggests that MaxViT, despite its hybrid architecture integrating 
convolutional and transformer-based mechanisms, does not 
leverage SR information as effectively as ViT or ConvNeXt for 
this particular task.  
 
Table 3: Classification performance of DL models on LR and SR 
images. 

Model 
Accuracy Precision 

LR SR LR SR 
ViT 0.79 0.84 0.80 0.84 
ConvNeXt 0.78 0.82 0.79 0.83 
MaxViT 0.74 0.74 0.75 0.76 

 
Figure 5 presents confusion matrices comparing the classification 
performance of ViT, ConvNeXt, and MaxViT on LR and SR 
images. Each confusion matrix shows the number of correctly 
classified and misclassified instances across four PDDRM 
classes, enabling an assessment of how SR influences 
classification accuracy.  
 

 
Figure 5: Confusion matrices for LR and SR images across DL 
models (1: Not damaged, 2: Not recovered, 3: Recovered, and 
4: New buildings). 
 
For ViT, the SR-enhanced model demonstrates an increase in 
correct classifications across some classes. The most notable 
improvement occurs in class 4 (New Buildings), where correct 
predictions increase from 85 (LR) to 96 (SR), reducing 
misclassifications in other classes. Additionally, class 1 (Not 
Damaged) benefits significantly, with correct classifications 
improving from 78 (LR) to 86 (SR), indicating that ESRGAN-
generated SR images improve ViT's ability to differentiate new 

buildings and undamaged structures from other classes. 
However, no significant improvement is observed in class 2 (Not 
Recovered) and class 3 (Recovered), suggesting that SR does not 
substantially aid ViT in distinguishing between different levels 
of damage and recovery.  
 
For ConvNeXt, SR images lead to consistent improvements 
across all classes. The correct classification of class 2 increases 
from 76 (LR) to 83 (SR), reducing misclassifications into other 
categories. Class 1 (Not Damaged) improves from 72 (LR) to 78 
(SR). The relatively small misclassification rates suggest that 
ConvNeXt benefits from spatial detail enhancement, particularly 
in distinguishing damaged and undamaged structures. Unlike 
ViT and ConvNeXt, MaxViT shows minimal improvements with 
SR. The model still struggles with distinguishing between 
damaged and recovered structures. 
 
Figure 6 presents Grad-CAM++ visualizations for three DL 
models applied to LR and ESRGAN-enhanced SR (SR) images 
across different PDDRM classes. Grad-CAM++ highlights the 
image regions that contribute most to the model’s decision-
making process, with warmer colors (red) indicating high 
attention areas and cooler colors (blue) representing less 
significant regions. These visualizations help assess how SR 
influences model reliability and focus. 
 
For ViT, the Grad-CAM++ visualizations reveal a clear 
improvement in attention when using SR images. For Not 
damaged category, the model exhibits weak and scattered 
activations, failing to effectively capture structural integrity in 
the LR case. With SR images, the model learns to systematically 
compare all three temporal frames (pre-disaster, event time, and 
post-disaster) to assess whether a structure has remained intact. 
In the New Buildings category, ViT’s attention in LR images is 
dispersed and unfocused, with activations failing to highlight 
defining structural features. When SR is applied, the model learns 
to directly focus on newly constructed structures in the post-
disaster frame, effectively identifying areas where reconstruction 
has occurred. This shift in attention suggests that ViT leverages 
SR to enhance its ability to detect buildings that have not suffered 
damage across different time periods, and new urban 
developments in post-disaster scenarios, leading to improved 
classification performance. However, for Not Recovered and 
Recovered categories, the Grad-CAM++ visualizations show no 
significant improvement with SR images, aligning with the 
confusion matrix results. The model continues to struggle with 
distinguishing between partially damaged, unrepaired, and 
recovered structures, as activations remain diffuse and 
inconsistent across both LR and SR cases. 
 
For ConvNeXt, the Grad-CAM++ visualizations reveal that the 
model learns to focus more effectively on damaged areas when 
using SR images, particularly in Row b, which corresponds to the 
Not Recovered category. In the LR case, the model's attention 
appears scattered and inconsistent, with activations failing to 
highlight key structural damages such as collapsed roofs, debris, 
and missing infrastructure in event time. With SR images, the 
model shifts its attention towards damaged regions, focusing 
more precisely on structural deformations that indicate 
unrepaired buildings in event time and post-disaster period. This 
improved focus explains ConvNeXt’s superior performance in 
distinguishing Class 2 (Not Recovered) when using SR images, 
as confirmed by the increase in classification accuracy and 
precision observed in the confusion matrix. However, despite 
these improvements, ConvNeXt still exhibits some limitations 
when using SR images. In some cases, misclassifications persist 
between Not Recovered and Recovered categories, indicating 
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that the model struggles to distinguish between ongoing 
reconstruction and persistent damage. Its activations remain 
overly concentrated in certain areas, sometimes neglecting 
overall structural context as shown in Row a.  
 
For MaxViT, the Grad-CAM++ visualizations reveal minimal 
improvement in attention distribution when SR images. Unlike 
ViT and ConvNeXt, which show clear benefits from SR, 

MaxViT’s activations remain scattered and inconsistent across 
both LR and SR inputs. These findings suggest that MaxViT’s 
multi-scale spatial attention mechanism does not fully utilize the 
additional details provided by ESRGAN-generated images, 
leading to limited performance gains compared to ViT and 
ConvNeXt. 
 

 
Figure 6: Grad-CAM++ visualizations for ViT, ConvNeXt, and MaxViT on LR and SR images across different PDDRM classes. 
 

4. Conclusions 

This study demonstrates that ESRGAN technique provide a cost-
effective and scalable solution for PDDRM, particularly when 
very high-resolution satellite imagery is unavailable, delayed, or 
expensive. By leveraging ESRGAN-generated SR images, DL 
models can enhance classification accuracy without requiring 
additional high-resolution data sources, making this approach 
valuable for real-time disaster response and long-term recovery 
assessments. The ability to reconstruct fine structural details from 
LR images ensures that critical decisions related to damage 
assessment, resource allocation, and rebuilding efforts can be 
made more efficiently, even in resource-constrained settings. 
 
The findings confirm that SR imagery improves DL-based 
classification models, particularly ViT and ConvNeXt, by 
enhancing feature extraction and structural clarity. Numerical 
evaluations using PSNR and SSIM indicate that ESRGAN 
effectively restores high-resolution features, with the highest 
reconstruction quality observed in Not Damaged and New 
Buildings categories. The confusion matrix analysis shows that 
SR improves classification accuracy and precision, for ViT and 
ConvNeXt.  
 
The Grad-CAM++ visualizations further reveal how SR 
influences model decision-making. ViT learns to analyze all 
three temporal frames (pre-disaster, event time, and post-
disaster), enhancing its ability to detect intact structures and 
newly built areas, suggesting that the model leverages SR to 
improve its temporal reasoning when assessing structural 
changes. ConvNeXt, in contrast, focuses more effectively on 
damaged regions, improving its ability to distinguish unrepaired 

buildings, which aligns with its improved classification 
performance for Not Recovered structures in the confusion 
matrix results. However, these improvements were not consistent 
across all classes, raising reliability concerns about these models 
despite their performance improvements. 
 
A key limitation of this study is its exclusive reliance on optical 
satellite imagery, which may not fully capture structural damage 
in areas with dense urban environments, cloud cover, or debris 
accumulation. Despite better image clarity and classification 
performance, the improvements are not uniform across all 
damage and recovery categories, particularly in distinguishing 
partially damaged from recovered structures. Additionally, the 
study focuses on single-timeframe classification, limiting the 
ability to assess longitudinal recovery trends. Future research 
should focus on enhancing model reliability through 
explainability-driven training strategies, such as attention 
refinement techniques or uncertainty-aware learning, to ensure 
that classification decisions align more closely with meaningful 
disaster-related features. Furthermore, incorporating temporal 
modeling techniques, such as spatiotemporal transformers or 
recurrent neural networks, could improve the ability to track 
recovery trajectories over time, making the approach more 
applicable for long-term disaster monitoring and policy planning. 
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