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Abstract 
 
Accurately forecasting disaster impacts before they occur is crucial for effective emergency preparedness and response. This study 
presents a dual approach utilizing the Pix2Pix conditional Generative Adversarial Network (cGAN) to leverage pre-disaster satellite 
imagery for enhanced disaster risk management. Firstly, we employ Pix2Pix to predict post-disaster damage levels from pre-disaster 
satellite images. By training on the xBD dataset, the model learns to generate spatially distributed damage predictions, enabling 
proactive planning and resource allocation in high-risk areas. Secondly, Pix2Pix is used to generate synthetic post-disaster images from 
pre-disaster inputs, allowing for scenario visualization without reliance on actual post-disaster imagery. The model's performance is 
evaluated using accuracy, precision, recall, and F1-score for damage prediction, achieving an accuracy of 79% and an F1-score of 
76%. For synthetic image generation, structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) are used, 
yielding average values of 0.57 and 23.5, respectively. These results indicate the potential of our framework in anticipating disaster 
damage and generating realistic post-disaster visualizations. The framework's performance depends on the quality and availability of 
pre-disaster satellite imagery, which may affect prediction reliability. Further evaluation across different disaster types, including 
earthquakes, and wildfires, is needed to assess robustness and generalizability. This study demonstrates the potential of generative AI-
based approaches in enhancing disaster preparedness by providing both damage forecasting and post-disaster image generation. The 
proposed framework supports decision-makers in emergency response, urban resilience planning, and risk mitigation strategies, 
contributing to more effective disaster management. 
 
 

1. Introduction 

Disasters continue to threaten communities and cause widespread 
destruction despite the technological advancements and efforts to 
build resilience communities (Chaudhary and Piracha, 2021; 
Rutgersson et al., 2021). Hurricanes are among the most 
devastating disasters, generating strong winds, heavy rainfall, 
and storm surges that lead to severe flooding, infrastructure 
collapse, and widespread displacement (Bender et al., 2010; Van 
Oldenborgh et al., 2017). This study focuses on hurricane-
induced post-disaster damage forecasting and image generation, 
specifically analyzing the impacts of Hurricanes Florence, 
Harvey, Michael, and Matthew. 
 
The selected hurricanes represent significant events that caused 
catastrophic damage across multiple regions including the United 
States and the Caribbean. Hurricane Florence (2018) produced 
record-breaking rainfall and severe flooding, particularly in 
North Carolina, with estimated damage exceeding $25 billion 
(Paul et al., 2019). Hurricane Harvey (2017) was one of the 
costliest hurricanes in U.S. history, causing $125 billion in 
damage, primarily due to extreme flooding in Texas (Omranian 
et al., 2018). Hurricane Michael (2018) struck the Florida 
Panhandle as a Category 5 storm, causing $25 billion in damage 
and widespread structural destruction (Sweeney et al., 2022). 
Hurricane Matthew (2016) triggered severe flooding across the 
southeastern U.S., particularly in North and South Carolina, with 
damages estimated at $7 billion (Ahmed and Memish, 2017). 
 
Accurate disaster planning is crucial to minimizing the adverse 
effects of disaster-induced damage and enhance post-disaster 
response and long-term recovery efforts (Alexander, 2015). 
Following disasters, manual data collection is often inefficient, 
labor-intensive, and slow, making it unsuitable for large-scale 

disasters where timely action is critical (Deng and Wang, 2022; 
Kaur et al., 2023). Remote sensing data provides a more efficient 
alternative, offering wide-area coverage and insights without the 
need for on-the-ground surveys (Ghaffarian et al., 2018; 
Ghaffarian and Kerle, 2019). However, post-disaster remote 
sensing images are often delayed, unavailable, or expensive, 
limiting their immediate applicability.  
 
Traditional damage assessment methods rely on post-disaster 
remote sensing images and manual interpretation, which are 
time-consuming and require significant human effort (Yu et al., 
2018). To address this, automated machine learning models have 
been developed for post-disaster damage detection (Ghaffarian et 
al., 2019). For example, Cooner et al. (2016) applied machine 
learning methods such as Random Forests to earthquake damage 
following 2010 Haiti earthquake by using high-resolution 
multispectral and panchromatic imagery and achieved over 77% 
of accuracy. Rahnemoonfar et al. (2021) evaluated the 
performance of deep learning (DL) methods, including 
InceptionV3, ResNet50, and Xception, for post-disaster damage 
detection by using a high-resolution UAV-based dataset 
collected following Hurricane Harvey (FloodNet), and achieved 
over 95% accuracy on the testing data. Using high-resolution 
satellite images from Maxar, Planet, and other sources, 
Hacıefendioğlu et al. (2024) evaluated four segmentation 
models: U-Net (Universal Network), LinkNet (Linking 
Network), PSPNet (Pyramid Scene Parsing Network), and FPN 
(Feature Pyramid Network) for detecting collapsed buildings 
following the 6 February 2023 Türkiye earthquakes (Mw 7.7 and 
Mw 7.6 in Kahramanmaraş) and FPN achieved the highest 
accuracy (97.3%) and specificity (99.5%). Moreover, Gupta et al. 
(2019) developed the xBD dataset, a large-scale dataset 
containing pre- and post-disaster images of earthquakes, 
hurricanes, floods, and wildfires, has been widely used in post-
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disaster damage assessment studies. Ahmadi et al. (2024) 
proposed BD-SKUNet (Selective-Kernel UNets) for building 
damage assessment using high-resolution satellite images from 
the xBD dataset and achieved an F1-score of 75.8%. Despite their 
efficiency, these methods still depend on the availability of actual 
post-disaster images, restricting their use in proactive disaster 
planning. 
 
Generative Adversarial Networks (GANs) has been used in post-
disaster damage detection domain to address various challenges. 
Park et al. (2020) proposed a cycle-consistent generative 
adversarial network (CycleGAN) based data augmentation 
method to enhance wildfire detection by addressing data 
imbalance issue between wildfire and non-wildfire images. The 
study achieved the highest accuracy of 98.27% and an F1-score 
of 98.16% in wildfire damage detection by generating synthetic 
wildfire images from non-fire mountain landscapes using 
CycleGAN. Shim et al. (2022) proposed a super-resolution and 
semi-supervised learning approach using GANs for road damage 
detection. The study utilized Super-Resolution GAN (SRGAN) 
to enhance image clarity and adversarial learning to improve 
detection performance with limited labeled data and achieved an 
average mean Intersection over Union (m-IoU) of 81.54% and an 
F1-score of 79.23%, outperforming baseline supervised models 
(m-IoU: 78.81%, F1-score: 75.40%). Tilon et al. (2020) proposed 
an Anomaly Detecting Generative Adversarial Network 
(ADGAN) for unsupervised building damage detection, using 
only pre-disaster images to learn normal building conditions and 
detect anomalies in post-disaster images. The model was trained 
on the xBD dataset and a UAV-based earthquake dataset, 
achieving an F1-score of 0.74 for earthquake damage detection 
and 0.87 for wildfire damage detection. However, the ability of 
GANs to predict post-disaster damage levels by only using pre-
disaster images remains underexplored. 
 
This study presents an approach leveraging the Pix2Pix 
conditional Generative Adversarial Network (cGAN) to address 
critical gaps in post-disaster damage forecasting. By utilizing 
pre-disaster satellite imagery, this method aims to forecast post-
disaster damage levels and generate realistic synthetic post-
disaster images before they occur, providing an innovative tool 
for risk assessment and emergency response planning. Unlike 
traditional deep learning models that depend on actual post-
disaster imagery, this approach facilitates proactive disaster 
preparedness by forecasting potential damage scenarios before a 
disaster occurs. This dual-model framework not only enhances 
quantitative and qualitative damage assessments but also serves 
as a decision-support tool for emergency responders, urban 
planners, and policymakers in resource allocation, infrastructure 
resilience, and disaster mitigation strategies. Through this work, 
we aim to bridge the gap between predictive analytics and 
actionable disaster management, contributing to more effective, 
timely, and informed disaster response efforts. 
 

2. Methods and Materials 

2.1 Study Area and Dataset 

This study utilizes a subset of xBD dataset specifically focusing 
on hurricane-induced disasters. The dataset includes pre- and 
post-disaster satellite images for four major hurricanes: Florence 
(2018), Harvey (2017), Michael (2018), and Matthew (2016) 
(Gupta et al., 2019). The satellite images in the xBD dataset were 
collected from Maxar’s WorldView constellation, providing 
high-resolution remote sensing data (Figure 1). Each image is a 
1024 × 1024 RGB (Reg, Green, and Blue) image, with a spatial 
resolution ranging from 0.3m to 3m, allowing for detailed 

analysis of post-disaster damage. The dataset includes paired pre- 
and post-disaster images, and their post-disaster damage levels, 
enabling models to learn the transformation between undamaged 
and damaged structures. Post-disaster damage labels for 
buildings categorized into four classes in the xBD dataset: no 
damage, minor damage, major damage, and destroyed.  
 
Table 1: Damage level descriptions in Gupta et al., 2019. 

Damage Level Structure description 
No Damage Undisturbed. No sign of water, structural 

or shingle damage, or burn marks. 
Minor Damage Building partially burnt, water 

surrounding structure, roof elements 
missing, or visible cracks. 

Major Damage Partial wall or roof collapse or surrounded 
by water/mud. 

Destroyed Scorched, completely collapsed, 
partially/completely covered with 
water/mud, or otherwise no longer 
present. 

 
For this study, we reclassified the original dataset into two 
damage levels to enhance emergency response prioritization: 
 
- Undamaged: Includes buildings labeled as “No Damage” and 
“Minor Damage” in the original dataset. 
 
- Damaged: Includes buildings labeled as “Major Damage” and 
“Destroyed” in the original dataset. 
 
This binary classification helps distinguish areas that will require 
prompt emergency response following disasters, allowing 
decision-makers to efficiently allocate resources for rescue, 
relief, and recovery efforts. 
 

 
Figure 1: Selected disasters from xBD dataset 
 
2.2 Hurricane-induced post-disaster damage forecast using 
Pix2Pix 

This study introduces a framework utilizing Pix2Pix cGANs to 
address the limitations of traditional damage detection methods 
that depend on post-disaster satellite imagery. ModelA predicts 
post-disaster damage levels using only pre-disaster satellite 
images, identifying buildings that are likely to be damaged based 
on learned spatial patterns (Figure 2). ModelB generates 
synthetic post-disaster satellite images, providing a visual 
approximation of expected damage to aid in scenario planning 
and response efforts. By leveraging pre-disaster data, this 
framework enhances proactive disaster preparedness, enabling 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-861-2025 | © Author(s) 2025. CC BY 4.0 License.

 
862



 

more effective risk assessment and resource allocation before an 
actual disaster occurs. 

 
Figure 2: Methodology 
 
Pix2Pix conditions its generation process on an input image, 
allowing the network to learn structured transformations between 
pre-disaster and post-disaster images. This is achieved through a 
conditional adversarial loss, defined as follows: 
 

ℒcGAN(𝐺𝐺,𝐷𝐷) = 𝔼𝔼(𝑥𝑥,𝑦𝑦)[log𝐷𝐷(𝑥𝑥,𝑦𝑦)]
+ 𝔼𝔼𝑥𝑥,𝑧𝑧 �log �1− 𝐷𝐷�𝑥𝑥,𝐺𝐺(𝑥𝑥, 𝑧𝑧)��� , 

      (1) 
 

ℒ𝐿𝐿1(𝐺𝐺) = 𝔼𝔼𝑥𝑥,𝑦𝑦,𝑧𝑧[‖𝑦𝑦 − 𝐺𝐺(𝑥𝑥, 𝑧𝑧)‖1],                     (2) 
 
 
where 𝑥𝑥 represents the pre-disaster image, 𝑦𝑦 is the actual post-
disaster image from the dataset, 𝐺𝐺(𝑥𝑥, 𝑧𝑧) denotes the generated 
post-disaster image,  𝐷𝐷(𝑥𝑥,𝑦𝑦) evaluates whether the given pair 
(𝑥𝑥,𝑦𝑦) originates from real-world data (Isola et al., 2017). 

 
The first equation represents the conditional adversarial loss, 
which drives the generator to produce realistic post-disaster 
images (or damage levels) while allowing the discriminator to 
distinguish between real and generated images. 𝐿𝐿1 loss 
minimizes the absolute difference between the generated image 
𝐺𝐺(𝑥𝑥, 𝑧𝑧) and the real post-disaster image or damage level 𝑦𝑦, 
ensuring that the generator does not just focus on fooling the 
discriminator but also closely reconstructs the actual post-
disaster scene.  
 
The generator’s ultimate goal is to jointly minimize both losses, 
ensuring that its outputs are both realistic and structurally 
accurate. ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝐷𝐷) forces the generator to produce images 
that fool the discriminator into classifying them as real. 𝜆𝜆ℒ𝐿𝐿1(𝐺𝐺) 
ensures that the generated images closely match the real post-
disaster images on a pixel level. The weighting factor  𝜆𝜆 controls 
the trade-off between these two objectives. 
 

𝐺𝐺∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐
 𝑚𝑚𝑚𝑚𝑥𝑥
𝐷𝐷

 ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝐷𝐷) + 𝜆𝜆ℒ𝐿𝐿1(𝐺𝐺),         (3) 
 

ModelA predicts structural damage at a pixel level rather than 
classifying entire buildings. Each pixel is assigned a category as 
undamaged or damaged, enabling fine-grained damage 
estimation. Since building footprints are known, the mode of all 
pixels within each building footprint is calculated to determine 
the final damage level for that structure. This approach ensures 
that buildings are classified based on the dominant damage 
category across their pixels, reducing noise and enhancing 
reliability in damage assessments. Figure 3 shows that the 
generator follows a U-Net architecture, leveraging skip 
connections between encoder and decoder layers to retain spatial 

details. The discriminator uses a PatchGAN structure, classifying 
small regions (patches) of the damage map rather than evaluating 
the entire image, leading to enhanced local accuracy. ModelB 
builds upon the same Pix2Pix framework but generates RGB 
satellite images instead of damage maps. This model provides a 
realistic visualization of expected destruction, which is valuable 
for urban planners, emergency responders, and policymakers. 
 
For computational efficiency, the 1024 x 1024 images were 
mosaiced into smaller 256 x 256 patches, ensuring that high-
resolution details were preserved while making training 
computationally efficient. The models were optimized using the 
Adam optimizer (β1=0.5) with a learning rate of 0.0002, trained 
for 1000 epochs, and evaluated based on adversarial loss (binary 
cross-entropy) and L1 loss (mean absolute error). The adversarial 
loss was assigned a weight of 1, while the L1 loss was given a 
weight of 100, ensuring a strong emphasis on structural accuracy 
while maintaining adversarial realism. 
 

 
Figure 3: Pix2Pix model architecture. 
 
2.3 Accuracy Assessment 

Evaluating the performance of the proposed models requires 
different assessment metrics based on their respective outputs. 
Since ModelA focuses on building-level damage classification, it 
is evaluated using standard classification metrics: Accuracy, 
Precision, Recall, and F1-score. 
 

Accuracy =
TP + TN 

TP + TN + FP + FN
 ,                   (4) 

 

Precision =
TP

TP + FP
 ,                                         (5) 

 

Recall =
TP 

TP +  FN,                                       (6) 
 

F1 score = 2 ∗
Precision ∗ Recall 
Precision + Recall

,              (7) 
 
where TP is true positives, TN is true negatives, FP means false 
positives, and FN represents false negatives. 
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ModelB generates synthetic post-disaster satellite images, 
requiring image quality metrics such as Structural Similarity 
Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) 
to assess spatial and pixel-level accuracy. SSIM measures how 
structurally similar the generated image is to the actual post-
disaster image. 
 

SSIM(𝑥𝑥,𝑦𝑦) =
�2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦 + 𝐶𝐶1��2𝜎𝜎𝑥𝑥𝑦𝑦 + 𝐶𝐶2�

�𝜇𝜇𝑥𝑥2 + 𝜇𝜇𝑦𝑦2 + 𝐶𝐶1��𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝐶𝐶2�
 , (8) 

 
where 𝑥𝑥 and 𝑦𝑦 are the generated and real post-disaster images, 
respectively. 𝜇𝜇𝑥𝑥  and 𝜇𝜇𝑦𝑦 represent the mean intensity values of 
images 𝑥𝑥 and 𝑦𝑦. 𝜎𝜎𝑥𝑥2 and 𝜎𝜎𝑦𝑦2 are the variance values of the two 
images. 𝜎𝜎𝑥𝑥𝑦𝑦 is the covariance between the two images. Finally, 
𝐶𝐶1 and 𝐶𝐶2 are small constants added to avoid division by zero and 
stabilize calculations. 
 
PSNR measures the pixel-level accuracy of the generated image 
by comparing its intensity values to those of the real post-disaster 
image. 
 

PSNR = 10 ⋅ log10 �
MAX2

MSE � ,                        (9) 

 
where MAX is the maximum possible pixel intensity value. MSE 
(Mean Squared Error) is calculated as:  
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁�  

𝑐𝑐

𝑖𝑖=1

(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 

,                      (10) 
 

where 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖 are the pixel values of the generated and real 
images, respectively, and 𝑁𝑁 is the total number of pixels. 
 

3. Results and Discussion 

3.1 Building Damage Prediction 

The performance of the modelA is evaluated using standard 
classification metrics: accuracy, recall, and F1-score (Figure 4). 
The modelA achieved an accuracy of 79% and a precision of 
72%, demonstrating a reasonably high capability to forecast post-
disaster damage levels based on pre-disaster imagery. The recall 
score of 80% indicates that the modelA successfully identified 
most of the actual damaged buildings. The F1-score, which 
balances precision and recall, stands at 76%, reflecting a well-
rounded performance in classifying building damage. 
 

 
Figure 4: Confusion matrix 

 
To further assess the performance of ModelA, we present a visual 
comparison between ground-truth post-disaster damage levels 
and the model’s forecasted damage levels (Figure 5). The top-left 
image represents the pre-disaster RGB satellite image, while the 

top-right image displays the corresponding ground-truth damage 
classification, where blue indicates undamaged buildings and 
orange denotes damaged buildings. The bottom-left image shows 
the post-disaster RGB satellite image, which serves as a reference 
for actual structural changes. The bottom-right image visualizes 
the model’s forecasted damage levels. 
 
The comparison highlights that the model captures large-scale 
damage patterns effectively, particularly in areas with high 
building density and clear visibility. However, false 
classifications are more frequent in zones with mixed land use, 
possibly due to occlusions or variations in building materials that 
were not sufficiently learned by the model. 
 
These results highlight the potential of deep learning models in 
forecasting disaster impacts before they occur, allowing for 
proactive disaster management strategies. However, some 
misclassifications still persist, which could be attributed to 
inherent limitations in the model’s ability to distinguish subtle 
structural vulnerabilities in pre-disaster images.  
 

 
 
Figure 5: Example comparison of forecasted and ground-truth 
post-disaster damage levels. 
 
3.2 Post-Disaster Image Generation 

ModelB focuses on generating post-disaster imagery from pre-
disaster images using Pix2Pix. The performance is evaluated 
using PSNR and SSIM, where the model achieved an average 
PSNR of 23.5 and an average SSIM of 0.57. These scores suggest 
that while the generated images maintain a fair level of structural 
similarity to actual post-disaster imagery, there are still notable 
discrepancies. 
 
Figure 6 presents examples of generated post-disaster images 
from pre-disaster images compared to their corresponding 
ground-truth post-disaster images. Rows a, b, and c demonstrate 
successful predictions where the model accurately generated 
flooding impacts, closely matching the actual post-disaster 
conditions. However, the model failed to predict flooding in rows 
d and e, likely due to limitations in learning complex 
hydrological patterns. It is shown in Rows f and g that the model 
mistakenly predicted damage as structural destruction rather than 
flood-related impact. This misclassification suggests that the 
model has biases towards certain damage types and struggles to 
differentiate between structural collapse and water-induced 
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damage. Also, the model could not generate successful post-
disaster images for highly dense slum areas as shown in Row h. 
This may be due to challenges in capturing fine-grained structural 
details and the variability of informal settlements in the dataset. 
 

 
Figure 6: Pre-disaster images, post-disaster images, generated 
images. 
 
The results indicate that leveraging pre-disaster imagery for post-
disaster image generation provides a valuable tool for early 
disaster preparedness. By identifying vulnerable structures 
before a disaster strikes, urban planners and emergency 

responders can prioritize interventions, allocate resources more 
efficiently, and mitigate potential losses. 
 
Despite the promising performance, the models exhibit certain 
limitations. Firstly, false positives (False Damaged) may lead to 
unnecessary resource allocation, while false negatives (False 
Undamaged) could result in critical areas being overlooked. 
Additionally, the model’s reliance on visual features alone means 
that non-visual factors (e.g., construction materials, structural 
integrity) are not directly accounted for, potentially affecting 
prediction accuracy. Incorporating supplementary data, such as 
building metadata or past damage records, could enhance model 
performance. 
 

4. Conclusions 

This study introduced a dual-model framework utilizing Pix2Pix 
conditional Generative Adversarial Networks (cGANs) for post-
disaster damage forecasting and synthetic image generation. By 
leveraging only pre-disaster satellite imagery, ModelA was 
designed to predict structural damage levels, while ModelB 
generated synthetic post-disaster imagery. The results 
demonstrated that both models provide valuable insights into 
disaster impact estimation and visualization, offering a potential 
tool for proactive disaster preparedness and response planning. 
 
The findings of this study have significant implications for 
disaster risk management. Accurate forecasting of damage levels 
can help emergency response teams prioritize high-risk areas, 
allocate resources more efficiently, and improve evacuation 
planning. Moreover, the ability to generate synthetic post-
disaster images allows decision-makers to conduct scenario 
analyses in regions where actual post-disaster imagery is 
unavailable. For instance, government agencies can utilize such 
models to estimate potential damage in hurricane-prone coastal 
areas, enabling preemptive infrastructure reinforcements. 
Similarly, humanitarian organizations can identify critical zones 
requiring immediate assistance, improving relief coordination 
efforts. Generating synthetic images also eliminates the need for 
purchasing high-resolution satellite imagery and removes delays 
associated with satellite tasking and data acquisition, making 
disaster assessment faster and more cost-effective. Beyond 
damage prediction, the proposed framework provides a flexible 
and scalable solution adaptable to different disaster response and 
recovery needs by replicating the benefits of actual remote 
sensing imagery. 
 
Despite its potential, this research presents several limitations. 
The models rely solely on visual features from satellite imagery, 
without incorporating additional contextual data such as 
socioeconomic factors, building materials, or structural integrity 
assessments. This limitation can lead to misclassifications, 
especially in cases where structural damage is visually subtle. 
Moreover, the dataset used in training may not generalize well 
across different disaster types or geographic locations, 
potentially reducing the model’s reliability in unfamiliar regions. 
Additionally, challenges in predicting flood-related damage and 
structural damage in highly dense slum areas highlight the need 
for further refinement in damage differentiation. 
 
 
Future research should focus on refining the model’s ability to 
differentiate between damage types, particularly distinguishing 
flood-induced damage from structural destruction. Incorporating 
post-disaster temporal sequences into the Pix2Pix framework 
could enhance the model’s ability to simulate progressive 
damage or recovery patterns. Additionally, improving the 
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resolution of generated post-disaster images by modifying the 
training strategy and loss functions could result in more realistic 
damage representations. Another potential avenue is to fine-tune 
the models with region-specific disaster datasets to enhance 
transferability across different geographic contexts. Leveraging 
domain adaptation techniques to reduce model bias in 
underrepresented disaster scenarios could also improve 
generalizability and robustness in real-world applications. 
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