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Abstract 
 
Electro-Optical (EO) images are limited in that they can only be captured during daylight and under clear weather conditions, which 
restricts their usability in certain environments. In contrast, Synthetic Aperture Radar (SAR) images have the distinct advantage of 
being able to capture high-quality data regardless of the time of day or weather conditions. This makes SAR images highly valuable 
across various fields such as national defense, remote sensing, and disaster monitoring. However, despite their advantages, SAR 
images often suffer from lower resolution due to artifacts like speckle noise, which can significantly degrade image quality. 
To address this issue, numerous efforts have been made to enhance the resolution of SAR images through the use of SAR Super-
Resolution (SR) techniques. However, research in this area is limited, primarily due to the high cost associated with acquiring real 
SAR data. Some existing studies in SAR SR have even resorted to using synthetic images that combine speckle noise with regular 
camera images, which do not accurately represent real SAR data. In response to this, our paper proposes a solution by constructing a 
dataset based on actual Capella SAR satellite imagery and introducing a novel SAR Super-Resolution model. 
For our experiments, we collected real SAR images from the Capella satellite, used them as high-resolution references, and 
generated low-resolution counterparts by down-sampling. By modifying state-of-the-art image restoration models for the SR task, we 
demonstrate through a series of experiments that our proposed model outperforms existing SR methods in both quantitative and 
qualitative assessments. 
 
 

1. Introduction 

1.1 Differences between Electro-Optical (EO) images and 
SAR images 

Electro-Optical (EO) imagery has a significant limitation in that 
it can only be captured under specific environmental 
conditions—specifically during daylight hours and when the 
weather is clear. This dependency on external lighting and 
atmospheric conditions restricts its usability in scenarios where 
continuous monitoring or data collection is required. On the 
other hand, Synthetic Aperture Radar (SAR) imagery offers a 
substantial advantage because it can be acquired regardless of 
the time of day or prevailing weather conditions. This capability 
makes SAR imaging a highly valuable tool in various 
applications, including national defense, remote sensing, 
disaster monitoring, and many other fields that require reliable 
and consistent image acquisition. 
 
1.2 Problems of other SAR SR studies 

Despite the numerous advantages of Synthetic Aperture Radar 
(SAR) imagery, it still has certain limitations, particularly in 
terms of resolution. Various artifacts, such as speckle noise, can 
degrade image quality, making it challenging to extract fine 
details from SAR images. To address this issue, researchers 
have explored techniques for enhancing SAR image resolution, 
commonly referred to as SAR Super-Resolution (SR). However, 
due to the high cost associated with acquiring real SAR data, 
only a limited number of studies have been conducted in this 
area. In fact, some existing research on SAR SR relies on 
artificially generated images that simulate SAR characteristics 
by introducing speckle noise into conventional optical images, 
rather than utilizing actual SAR imagery. To overcome this 
limitation, this paper constructs a dataset using real SAR images 

captured by the Capella satellite and proposes a novel SAR 
Super-Resolution model to enhance the resolution and quality 
of SAR imagery. 
 
1.3 Contribution Points 

The key contributions of our paper can be summarized as 
follows:  
- First, unlike many previous studies that rely on synthetic SAR 
images, we use real SAR imagery to ensure that our model is 
trained and evaluated on data that accurately reflects real-world 
conditions, thereby enhancing the authenticity of our results.  
- Second, we present a comprehensive set of both quantitative 
and qualitative experiments, demonstrating the effectiveness of 
our approach from multiple perspectives and providing a 
thorough evaluation of its performance.  
- Lastly, we show that our proposed model outperforms existing 
state-of-the-art Super-Resolution (SR) models, achieving 
superior results in terms of both objective metrics and visual 
quality, thus establishing the efficacy and robustness of our 
method in comparison to other leading techniques in the field 
 
1.4 Contents 

- Section 2 provides an overview of various studies related to 
deep learning-based Super-Resolution (SR) techniques, 
extending to those specifically focused on SAR SR, 
highlighting the key advancements and methodologies in these 
areas. 
- Section 3 introduces the baseline model, detailing its structure 
and performance, and also explains the modifications made to 
adapt it for the specific challenges of SAR SR, ensuring it is 
suited for high-quality SAR image enhancement. 
- Section 4 presents a comprehensive analysis of the 
experimental results, demonstrating the superior performance of 
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our proposed model compared to existing approaches, with a 
focus on key metrics and qualitative assessments. 
- Section 5 offers a conclusion that summarizes the findings of 
the study and outlines potential directions for future research 
and improvements in the field of SAR Super-Resolution. 
 
 

2. Related Works 

In this section, we will offer a detailed overview of the 
development and evolution of Super-Resolution (SR) 
techniques, with a particular focus on how deep learning 
approaches have contributed to significant advancements in the 
field. We will explore the key milestones in SR research, 
shedding light on the progression of methodologies and the 
innovations that have driven improvements in image resolution. 
Additionally, we will delve into the specific challenges and 
difficulties encountered when applying SR techniques to 
Synthetic Aperture Radar (SAR) images. These challenges 
include the unique characteristics of SAR data, such as noise, 
speckle, and resolution limitations, which make SAR SR a 
particularly complex task. By addressing these issues, we aim to 
highlight the distinctive obstacles faced in SAR Super-
Resolution and the specific considerations that must be taken 
into account when developing models for this domain. 
 
2.1 Deep learning based Super-Resolution 

(Dong, 2014) were the first to introduce a deep learning-based 
approach to Super-Resolution, presenting a model known as 
SRCNN. This pioneering method utilizes convolutional neural 
networks (CNNs) to establish a direct end-to-end mapping 
between low-resolution (LR) and high-resolution (HR) images, 
effectively learning how to enhance image quality through data-
driven techniques. The architecture of SRCNN is structured into 
three distinct stages: patch extraction, where small regions of 
the input image are extracted for processing; non-linear 
mapping, which applies deep learning techniques to transform 
these patches into higher-quality representations; and 
reconstruction, where the enhanced patches are merged to 
produce the final high-resolution output. Following the 
introduction of SRCNN, numerous subsequent studies have 
been inspired by this three-stage framework, leading to the 
development of more advanced and refined deep learning-based 
Super-Resolution models. 
Following the introduction of SRCNN, subsequent research 
efforts primarily focused on increasing the size and complexity 
of Super-Resolution (SR) models to achieve better performance. 
(Kim, 2016) introduced the VDSR model, which was inspired 
by the VGG-Net (Simonyan, 2014) architecture originally 
designed for ImageNet classification. Unlike SRCNN, which 
utilized only 3 weight layers, VDSR significantly expanded the 
network depth by successfully incorporating 20 weight layers, 
demonstrating the effectiveness of deeper networks in SR tasks. 
Later, (Lim, 2017) proposed the EDSR model, which leveraged 
residual blocks to improve stability during the training of large-
scale SR models. Their work was an extension of SRResNet 
(Ledig, 2017), and they further enhanced EDSR’s performance 
by removing batch normalization layers, which were present in 
SRResNet. Building on these advancements, (Zhang, 2018) 
introduced RCAN, which utilized residual-in-residual structures, 
enabling the stacking of an even greater number of deep layers. 
Additionally, they incorporated channel attention mechanisms 
to capture and exploit the interdependencies between different 
channels, further enhancing the model’s ability to refine image 
details effectively. 

While some Super-Resolution (SR) studies have primarily 
focused on reducing pixel-wise differences between generated 
images and their corresponding ground-truth images, others 
have shifted their attention toward generating perceptually high-
quality images that appear more visually realistic. (Wang, 2018) 
introduced the ESRGAN model, which leveraged generative 
adversarial networks (GAN) to enhance the perceptual quality 
of Super-Resolution outputs. Their work was an improvement 
upon SRGAN (Ledig, 2017), and they refined ESRGAN by 
eliminating batch normalization layers, which helped enhance 
the model's overall performance. Additionally, they 
incorporated residual-in-residual dense blocks, allowing for the 
construction of deeper networks capable of capturing more 
complex image details and textures. 
Subsequently, numerous researchers began exploring the use of 
transformer models in Super-Resolution (SR) research. (Liang, 
2021) introduced SwinIR, which leveraged the Swin 
Transformer—an architecture commonly utilized in object 
detection—to enhance SR performance. Additionally, other 
researchers have focused on reducing the computational cost 
associated with self-attention mechanisms, aiming to make 
transformer-based SR models more efficient and scalable. 
In recent times, a number of innovative deep learning models, 
such as the diffusion model (Rombach, 2022) and Mamba (Cu, 
2023), have been introduced, gaining significant attention in the 
research community due to their advanced capabilities. As a 
result, many researchers are increasingly adopting these cutting-
edge models in an effort to achieve state-of-the-art performance 
in Super-Resolution (SR) tasks, pushing the boundaries of 
image restoration and enhancement by leveraging the strengths 
of these new architectures. 
 
2.2 SAR Super-Resolution 

In recent years, an increasing number of studies have 
investigated the application of deep learning techniques to 
enhance the resolution of Synthetic Aperture Radar (SAR) 
images, commonly referred to as SAR Super-Resolution (SAR 
SR). Among these studies, (Mastriani, 2016) proposed a 
wavelet transform-based method designed to improve both SAR 
super-resolution and despeckling, aiming to reduce noise while 
enhancing image clarity. Similarly, (Wu, 2016) employed a 
back-propagation neural network alongside a non-local mean 
filter to achieve super-resolution in SAR images, leveraging 
deep learning to refine image quality. 
Although these research efforts have contributed valuable 
insights into SAR SR, a common limitation among them is their 
reliance on synthetic SAR images rather than real-world data. 
 
 

3. Method 

In this section, we present a comprehensive explanation of the 
proposed Super-Resolution (SR) model, detailing both its 
architecture and the loss function employed during the training 
process. To begin, we provide an in-depth overview of the 
baseline model, describing its fundamental structure and the 
underlying principles that govern its operation. Following this, 
we elaborate on the specific modifications introduced to tailor 
the model for Synthetic Aperture Radar Super-Resolution (SAR 
SR), ensuring its effectiveness in handling the unique 
characteristics of SAR images. 
Furthermore, this section covers the methodology used to obtain 
real SAR imagery, highlighting the sources of data and the 
criteria for selecting high-quality SAR images. In addition to 
data acquisition, we describe the step-by-step process of 
constructing the dataset for SR, including preprocessing 
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techniques, the generation of low-resolution and high-resolution 
image pairs, and the partitioning of data into training and testing 
sets. By providing these detailed explanations, this section aims 
to offer a clear understanding of the overall workflow, from 
data collection to model adaptation, ensuring a solid foundation 
for the subsequent experimental analysis. 
 
3.1 Model 

 
Figure 1. Architecture of Restormer. This image is originated 

from (Zamir, 2022) 
 
In this study, we utilize the Restormer model (Zamir, 2022) to 
perform Super-Resolution (SR) on SAR images. Restormer has 
shown exceptional, state-of-the-art performance across a variety 
of image restoration tasks, making it a suitable choice for our 
application. The following sections will provide a detailed 
explanation of the Restormer model and describe how we 
applied it specifically to address our SR task. 
 
1) Overall Process: Given an input image , the 
model begins by applying a convolutional layer to extract low-
level features. In this context, the image has a height and width 
denoted as H and W, respectively, and C represents the number 
of channels in the image. These low-level features 

 are then passed through a series of 4-level 
encoder-decoder layers, which are based on the architecture of 
UNet (Weng, 2021). This process transforms the features into 
deeper, more abstract representations . Each 
level within the encoder-decoder structure consists of multiple 
transformer blocks, and the number of blocks increases 
progressively as we move from the higher levels of the encoder 
to the lower levels of the decoder. 
In the encoder portion, starting from the high-resolution input, 
the spatial size of the image is progressively reduced, while the 
channel dimension is expanded to capture more complex 
features. In contrast, the decoder takes these low-resolution 
latent features and works to increase the spatial size, while 
simultaneously reducing the number of channels to refine the 
image details. For down-sampling the features in the encoder 
and up-sampling them in the decoder, pixel-unshuffle and pixel-
shuffle operations (Shi, 2016) are applied, respectively. These 
operations play a key role in maintaining the integrity of the 
image resolution during the transformation process. More 
detailed explanations of each of these processes can be found in 
(Zamir, 2022), where the specifics of the architecture and 
operations are further elaborated. 
 
2) Transformer Block: The primary computational bottleneck in 
transformer models arises from the intensive self-attention 
computation, which becomes particularly challenging as the 
model size increases. To address and alleviate this issue, the 
authors introduce a novel approach called multi-Dconv head 
transposed attention (MDTA), which is illustrated in Figure 1(a). 
The central innovation behind MDTA is the application of self-
attention not along the spatial dimension, as is traditionally 
done, but rather across the channel dimension. This key 
modification allows the model to focus its attention on the 

relationships between different channels of the feature map, 
rather than on spatial interactions between pixels. By doing so, 
MDTA computes the cross-covariance across channels, which is 
then used to generate an attention map that implicitly captures 
the global context of the input data. This method significantly 
reduces the computational complexity compared to traditional 
self-attention mechanisms, making it more efficient while still 
preserving the ability to capture long-range dependencies and 
global context within the model. 
 
Starting from a normalized tensor , the MDTA 
mechanism first generates three key components: the query , 
key  and value  projections. These projections are 
created through a two-step process that begins with the 
application of 1×1 convolutions, which are designed to 
aggregate the pixel-wise context across the different channels of 
the tensor. This is followed by 3×3 depth-wise convolutions, 
which serve to capture the spatial context along the channel 
dimension, thus encoding both channel-wise and spatial features 
within the tensor. Once these projections are generated, the next 
step involves reshaping the query and key projections in a 
specific way that allows their dot-product interaction to produce 
a transposed-attention map, denoted as A. Unlike traditional 
self-attention mechanisms, which typically produce a spatial 
attention map of size , the transposed-attention map A 
is of a different size , specifically designed to represent the 
interactions across channels rather than across spatial locations. 
This innovative method helps to significantly reduce 
computational complexity while still capturing important 
relationships within the data. For a more in-depth understanding 
of the Transformer Block and its architecture, further details can 
be found in (Zamir, 2022). 
 
3) Gating mechanism: The gating mechanism in our model is 
designed as the element-wise product of two separate parallel 
paths that each consist of linear transformation layers. One of 
these paths is further processed by the GELU non-linearity 
(Hendrycks, 2016), which helps to introduce non-linearity and 
improve the model’s ability to capture complex patterns. This 
approach enables the gating mechanism to selectively control 
the flow of information across different stages of the model. As 
a result, the GDFN, as illustrated in Figure 1(b), plays a crucial 
role in regulating the information flow through the various 
hierarchical levels within our pipeline. By doing so, the GDFN 
ensures that each level can focus on processing specific, fine-
grained details that complement the information captured by the 
other levels, facilitating a more effective and comprehensive 
representation of the input data. For a more detailed 
understanding of the gating mechanism and its implementation, 
please refer to the explanation provided in (Zamir, 2022). 
 
4) Changes from Restormer: One of the limitations of the 
Restormer model is that its output dimension is identical to the 
input dimension, meaning that it cannot directly be applied to 
Super-Resolution (SR) tasks without modification. To 
overcome this, we made adjustments to the original Restormer 
model to make it suitable for SR applications. Specifically, we 
added a nearest neighbor up-sampling technique after the final 
convolutional layer of the Restormer network, which serves to 
increase the resolution of the input images. This nearest up-
sample module, which enlarges the input images by replicating 
pixel values, is a common technique that has been widely used 
in various SR studies and has proven effective for enhancing 
image resolution. By incorporating this module, we enable the 
Restormer model to generate higher-resolution images, making 
it capable of handling SR tasks effectively. 
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3.2 Loss function 

To assess the performance of the model, we use structural 
similarity (SSIM) and peak signal-to-noise ratio (PSNR) as 
evaluation metrics. To facilitate the training of the model, we 
employ the L1 loss function. The L1 loss function is 
mathematically defined as follows: 
 

,   (1) 

	
where   = number of training images 
  = low- and high-resolution image 
  = SR model 
  = SR model parameters 
 
In Section 4, we will present both quantitative and qualitative 
results to evaluate the performance of our model using the loss 
function discussed earlier. The quantitative results will include 
numerical metrics, while the qualitative results will focus on 
visual assessments of the model’s output. This will help provide 
a comprehensive evaluation of our model’s effectiveness. 
 
3.3 Dataset 

In this subsection, we will provide a detailed explanation of the 
process for obtaining real SAR imagery, as well as the steps 
involved in preparing the data for use in our experiments. This 
includes the methods used to acquire authentic SAR images and 
the procedures followed to ensure that the data is properly 
organized and formatted for optimal use in the training and 
evaluation of our model. 
 
1) SAR Satellite: For constructing our dataset, we utilize 
authentic Synthetic Aperture Radar (SAR) images that are 
captured by the Capella satellite. These real-world SAR images, 
obtained directly from the Capella satellite, serve as the 
foundation for our dataset, ensuring that the data is not 
artificially generated or simulated. By using actual SAR 
imagery, we aim to capture the true characteristics and 
complexities of SAR data, which allows us to create a more 
realistic and accurate dataset for our study. This approach 
provides a more reliable representation of the conditions and 
challenges typically encountered in SAR image processing, as 
opposed to relying on synthetic or overly simplified data. 
 
2) Dataset preparation process: Initially, we gather high-
resolution Capella SAR images from the Capella SAR archives. 
These images, which have a ground sampling distance (GSD) of 
0.5 meters, serve as the high-resolution (HR) images in our 
dataset. To create the corresponding low-resolution (LR) images, 
the HR images are bicubically downsampled. Afterward, we 
perform patch extraction on both the LR and HR images, 
generating HR patches of size 1024x1024 and LR patches of 
size 512x512. These pairs of SAR patches are then split into 
training and testing datasets, with an 80:20 ratio (training: test). 
As a result, the final dataset consists of 22,951 pairs for training 
and 5,760 pairs for testing. 
 
3.4 Implementation details  

Our proposed model utilizes a 4-level encoder-decoder 
architecture, where each level is designed with a specific 
configuration to enhance the Super-Resolution process. At each 
level, the number of Transformer blocks varies as follows: [4, 6, 
6, 8] from level 1 to level 4. Additionally, the attention heads in 
the Multi-Dimensional Transformer Attention (MDTA) 

mechanism increase progressively at each level, with values of 
[1, 2, 4, 8], allowing for more complex attention patterns as the 
network deepens. The number of channels at each level also 
increases as the model progresses through the layers, with the 
values being [64, 128, 256, 512] for each respective level. 
In the refinement stage, which aims to fine-tune the output of 
the encoder-decoder, we include 4 specialized blocks designed 
to improve image quality. The Channel Expansion Factor (γ) in 
the Generative Deep Feature Network (GDFN) is set to 4, 
allowing for enhanced feature learning and image resolution 
improvements. 
To train the model, we use the AdamW optimizer with the 
following parameters: β1=0.9, β2=0.999, and a weight decay of  

. The training is conducted over 300,000 iterations, starting 
with an initial learning rate of , which is gradually reduced 
to  through cosine annealing, as described in (Loshchilov, 
2016). During training, the input patch size is set to 64x64, and 
the batch size is 12 per GPU. For the training process, we utilize 
a total of 4 A6000 GPUs, while a single A6000 GPU is 
employed during testing. 
 
 

4. Experiments 

In this Section, we will present both quantitative and qualitative 
results that demonstrate the performance of our proposed 
method when evaluated using this specific loss function. These 
results will be analyzed to provide a comprehensive 
understanding of how effectively the model performs in terms 
of numerical metrics as well as visual quality, offering a well-
rounded evaluation of its capabilities. The quantitative results 
will include objective performance measures, while the 
qualitative results will focus on the perceptual aspects of the 
images generated by the model, highlighting any improvements 
or notable features observed through visual inspection. 
 
4.1 Quantitative performance evaluation 

We utilize Structural Similarity Index (SSIM) and Peak Signal-
to-Noise Ratio (PSNR) as the primary metrics for evaluating the 
performance of our model. These metrics are essential for 
assessing the quality of the generated images in comparison to 
the ground-truth images. The datasets used for both training and 
testing are the same as those described in Section 3.3. As shown 
in Table 1, our proposed model achieves state-of-the-art 
performance in terms of both SSIM and PSNR, outperforming 
previous methods. In the table, the bolded values represent the 
best performance across all models tested. For the purpose of 
performance comparison, we have included several well-known 
models in the field, including EDSR (Lim, 2017), ESRNet 
(Wang, 2018), RCAN (Zhang, 2018), and SwinIR (Liang, 2021), 
which serve as benchmarks to demonstrate the effectiveness of 
our approach. 
 

Table 1. Performance Comparison for Various Super-
Resolution models 

 EDSR ESRNet RCAN SwinIR Proposed 
PSNR 27.07 27.00 27.09 27.08 27.16 
SSIM 0.8888 0.8878 0.8896 0.8896 0.8891 

 
As can be seen in Table 1, our proposed model achieves the 
highest score when evaluated based on Peak Signal-to-Noise 
Ratio (PSNR), demonstrating its superior ability to enhance the 
quality of the generated images in terms of pixel-level accuracy. 
However, when evaluating using the Structural Similarity Index 
(SSIM), other models such as RCAN and SwinIR outperform 
our proposed model by a small margin. Despite this, the 
difference in SSIM scores between our model and the top-
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performing models is relatively minor, indicating that our 
approach still achieves competitive results in terms of 
perceptual image quality. 
 
4.2 Qualitative performance evaluation 

The figure provided below illustrates the qualitative 
performance of our proposed SAR Super-Resolution (SR) 
model. This visual representation highlights how well our 
model enhances the resolution and quality of SAR images, 
showcasing improvements in clarity, detail, and overall image 
quality. By comparing the results with those of existing 
methods, it is possible to observe the superior performance of 
our approach, particularly in terms of accurately reconstructing 
fine details and minimizing artifacts that are often present in 
lower-resolution SAR images. These qualitative results offer a 
clear visual validation of the effectiveness of our model in 
addressing the challenges inherent in SAR Super-Resolution 
tasks. 
 

 
Figure 2. Original and zoom-in version of SAR images. (a) LR 
image, (b) Result of proposed SAR SR model, (c) HR image. 
 

 
Figure 3. Original and zoom-in version of SAR images. (a) LR 
image, (b) Result of proposed SAR SR model, (c) HR image. 
 

 
Figure 4. Original and zoom-in version of SAR images. (a) LR 
image, (b) Result of proposed SAR SR model, (c) HR image. 
 
As illustrated in Figure 2, the images exhibit a noticeable 
improvement in sharpness after applying our proposed SAR 
Super-Resolution (SAR SR) model. This enhancement is 
particularly evident as the resolution of the images increases, 
with more intricate details being successfully reconstructed, 
resulting in a clearer and more detailed representation of the 
original scene. The same general trend is also observed in 
Figure 3 and 4, where the higher the resolution, the more 
refined the image becomes, showcasing the model's 
effectiveness in enhancing both the visual clarity and the 
structural details of the SAR images. 
 
 

5. Conclusion 

In this paper, we gather a diverse set of Capella SAR images to 
create a comprehensive SAR Super-Resolution (SAR SR) 
dataset, ensuring that the dataset is representative of real-world 
SAR imaging conditions. To achieve high performance in SAR 
SR, we modify a state-of-the-art image restoration model, 
tailoring it to effectively handle the unique challenges of the SR 
task. Looking ahead to future work, we aim to eliminate any 
synthetic processes involved in the creation of high-resolution 
(HR) and low-resolution (LR) image pairs. Specifically, we 
plan to directly collect authentic HR and LR pairs, without 
relying on the conventional method of using bicubic 
downsampling to generate LR images, thereby ensuring that the 
data used for training and evaluation is entirely representative of 
real SAR imagery. 
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