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Abstract

3D Gaussian Splatting (3DGS) is a state-of-the-art technique for 3D scene rendering, offering high efficiency and excellent visual
quality. However, because 3DGS relies on an initial sparse point set from Structure-from-Motion (SfM) and view-dependent prop-
erties, it can suffer from geometric inaccuracies and visual artifacts, particularly in complex scenes. To address these challenges, we
propose an improved 3DGS approach that regularizes the optimization process by integrating geometric priors, including surface
normals and dense depth information. Surface normal regularization improves geometric consistency by aligning Gaussian cov-
ariance with local surface structures, while dense depth priors combined with an initial points from SfM enhance per-pixel depth
estimation, increasing accuracy and reducing ambiguities. These enhancements enable robust handling of diverse and complex
real-world scenarios, minimizing visual distortions and improving reconstruction quality across various environments. To validate
our method, we evaluate it on challenging datasets, including street-view scenes and highly reflective environments, while testing it
across multiple SfM pipelines. Our results demonstrate compatibility across diverse environments and highlight the robustness of
our approach. Experimental findings further show that our method enhances geometric accuracy and visual quality, establishing a
reliable solution for real-time 3D scene rendering in complex environments.

1. Introduction

3D rendering, which is the process of generating images for 3D
scene from a specific point of view, is one of the fundamental
research field in computer graphics, where high-quality and ef-
ficient scene synthesis is essential. It plays a key role in generat-
ing visually realistic environments while meeting real-time per-
formance requirements. However, achieving both high-quality
rendering and real-time efficiency remains a significant chal-
lenge. Thanks to the advancements in deep learning, Neural Ra-
diance Fields (NeRF) [Mildenhall et al., 2021], which represent
scenes by optimizing a neural network to learn a scene’s radi-
ance field, have been introduced. More recently, 3D Gaussian
Splatting (3DGS) [Kerbl et al., 2023] has been developed, sur-
passing NeRF in computational efficiency and rendering speed.

Unlike NeRF, which requires costly per-pixel inference and em-
ploys an implicit radiance field approach, 3DGS introduces a
point-based representation that explicitly models a scene as a
set of 3D Gaussians. By projecting these 3D Gaussians into
image space and rendering the scene through a tile-based ras-
terization and α blending process, 3DGS significantly reduces
computational cost and memory usage during training while en-
abling high-quality, real-time rendering. Due to its efficiency
and effectiveness, 3DGS is rapidly gaining traction in various
domains, including perception, content generation, 3D scene re-
construction and medical imaging applications (see [Chen and
Wang, 2024] and references therein).

However, 3DGS also has several inherent limitations. In par-
ticular, its ability to accurately reconstruct complex real-world
scenes is constrained by its reliance on an initial sparse point set
from Structure-from-Motion (SfM) [Schonberger and Frahm,
2016] and its view-dependent appearance. In cases of insuffi-
cient or inaccurate initialization, Gaussians may be placed ar-
bitrarily, resulting in spatial inconsistency. Furthermore, over-
constructed Gaussians, which often occur in regions with view-

dependent effects— such as highly reflective surfaces— can in-
troduce artifacts that degrade rendering quality, leading to in-
creased noise and instability in the reconstruction process.

To address the aforementioned challenges, we propose a method
that regularizes the optimization process of 3DGS by incorpor-
ating useful geometry information obtained from an off-the-
shelf monocular normal and depth estimator. We adjust the
parameters of 3D Gaussians in order to align the orientation
and anisotropic shape of 3D Gaussians to the underlying geo-
metry, represented by surface normals. By leveraging surface
normals, our method ensures consistent Gaussian placement in
scenes featuring shiny objects and specular surfaces, thereby re-
ducing artifacts and floater issues, leading to a more stable and
accurate surface reconstruction. Moreover, dense depth priors
combined with an initial points from SfM refine per-pixel depth
estimation, improving geometric accuracy and resolving ambi-
guities caused by sparse or noisy inputs. By maintaining con-
sistent depth cues and minimizing redundant Gaussian place-
ments, our regularization mitigates instability in regions with
repetitive patterns or low-texture surfaces.

To demonstrate the broad applicability of our enhanced 3DGS
method, we validate it using diverse datasets and a wide range
of SfM pipelines. Our experiments include the publicly avail-
able Tanks & Temples dataset [Knapitsch et al., 2017] as well as
challenging real-world data collected in complex environments.
Specifically, we evaluate street-view and indoor environments
captured with a Mobile Mapping System (MMS) or Ladybug6
camera system, which often exhibit repetitive patterns, strong
reflections, and low-texture characteristics. These experiments
confirm the effectiveness of our method across various chal-
lenging scenarios. To ensure accurate initialization and effect-
ive distribution of 3D Gaussians, we incorporate multiple SfM
pipelines, handcrafted feature-based methods as COLMAP [Schönber-
ger et al., 2016], deep feature-matching methods like Superpoint-
Superglue [DeTone et al., 2018, Sarlin et al., 2020], and direct
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feature-matching methods like LoFTR [Sun et al., 2021]. This
facilitates faster convergence to high-fidelity representations.

Consequently, the proposed dual-prior strategy effectively ad-
dresses the limitations of existing Gaussian Splatting, as demon-
strated through experiments with the aforementioned diverse
datasets and SfM pipelines. This approach leads to more stable
and photorealistic scene representations, making it highly suit-
able for real-world applications.

To summarize, our contributions are:

• Prior-driven Enhancements: We integrate surface nor-
mals and dense depth regularization into 3DGS, improving
its optimization process. This enhances spatial consistency
and reconstruction fidelity, resulting in more accurate and
visually coherent results.

• Robust Real-World Validation: The effectiveness and
adaptability of our method are demonstrated through ex-
tensive empirical evaluations on diverse datasets and mul-
tiple SfM pipelines. Our approach exhibits superior per-
formance in challenging environments including repetitive
patterns, reflective surfaces, and low-texture regions.

2. Related Works

2.1 3D Rendering

The advent of NeRF marked a paradigm shift in 3D rendering
by representing scenes as a continuous function parameterized
by a neural network. By leveraging a Multi-Layer Perceptron
(MLP) to map 3D coordinates and viewing directions to ra-
diance and volume density, NeRF enabled high-quality novel
view synthesis through differentiable volume rendering. How-
ever, its reliance on dense ray sampling and long training times
posed challenges for practical applications. To address these
limitations, several improvements have been proposed, includ-
ing Mip-NeRF [Barron et al., 2021] for reducing aliasing arti-
facts, Instant-NGP [Müller et al., 2022] for accelerating training
with multiresolution hash encoding, and Plenoxels [Fridovich-
Keil et al., 2022] for achieving real-time rendering without neural
networks by using a voxel-based representation. These advance-
ments significantly enhance NeRF’s efficiency by optimizing
memory usage and computational resources, making it more
practical for real-world applications. Despite these optimiza-
tions, NeRF remains constrained by its computationally intens-
ive volumetric sampling and the high cost of repeatedly query-
ing the neural network to predict color and density at multiple
3D coordinates. To overcome these limitations, alternative ap-
proaches have emerged to enhance rendering efficiency while
maintaining high quality, with 3DGS standing out as a compel-
ling solution.

3DGS mitigates NeRF’s computational overhead by adopting
a fundamentally different scene representation. Unlike NeRF,
which relies on an MLP to model scenes as an implicit func-
tion, 3DGS represents scenes with a set of 3D Gaussians, each
of which encodes spatial position, color, opacity, and an an-
isotropic covariance matrix. By leveraging this explicit repres-
entation, 3DGS avoids the need for dense volumetric sampling
and computationally expensive neural network evaluations. In-
stead of NeRF’s intensive rendering pipeline, 3DGS employs
rasterization-based rendering, where Gaussian splats are pro-
jected onto the image plane and composited using alpha blend-
ing. This method significantly reduces computational cost and

memory usage, enabling real-time rendering. Moreover, the
explicit point-based representation in 3DGS allows for direct
scene manipulation facilitating real-time editing and relight-
ing, which remains a major challenge for NeRF. Recently, vari-
ous follow-up studies have been introduced to enhance the ef-
ficiency and stability of 3DGS. [Kerbl et al., 2024] introduces
a hierarchical 3D Gaussian representation that dynamically ad-
justs detail levels based on scene complexity, optimizing memory
allocation while maintaining rendering quality. A pixel-error-
driven density control method is proposed, addressing opacity
handling biases and limiting unnecessary primitive generation
for a more efficient and stable densification process in [Bulò
et al., 2024]. Similar to [Bulò et al., 2024], [Kheradmand et
al., 2024] reinterprets 3DGS as a Markov Chain Monte Carlo
(MCMC) process, replacing heuristic densification and prun-
ing with a probabilistic state transition framework to enhance
robustness and reconstruction accuracy. Collectively, these ad-
vancements improve memory efficiency, computational stabil-
ity, and rendering performance, making 3DGS a scalable altern-
ative to traditional NeRF models.

2.2 Prior Regularization

3DGS often struggles with over-reconstruction due to poor rep-
resentation in sparse feature regions or highly reflective areas,
leading to geometric inaccuracies and visual artifacts. Prior
regularization plays a critical role in enhancing 3D geometry
reconstruction and rendering fidelity by integrating structural
constraints into optimization processes. Recent studies have
leveraged prior information to mitigate artifacts and enhance
reconstruction quality. Depth priors have been widely explored
in recent works due to advances in depth estimation such as
ZoeDepth [Bhat et al., 2023] and Metric3D [Yin et al., 2023],
leading to significant improvements in generalization and ac-
curacy in [Chung et al., 2024, Li et al., 2024a, Xu et al., 2024].
FreGS [Zhang et al., 2024] introduced a frequency regulariz-
ation method by modifying the densification strategy. To im-
prove geometric consistency, recent studies have investigated
incorporating surface normal priors into 3DGS by preserving
geometry in non-textured regions [Li et al., 2024b], enforcing
normal consistency [Gao et al., 2024], or aligning the covari-
ance of 3D Gaussians [Hwang et al., 2024].

2.3 Point Cloud Generation for 3D Rendering

For rendering tasks using 3DGS, well-established SfM pipelines,
like COLMAP, are widely used. These pipelines ensure high-
quality camera pose estimation and sparse point cloud recon-
struction, forming the foundation for Gaussian initialization.
SfM remains the preferred choice, particularly in applications
where camera motion is available. It reconstructs 3D structures
by detecting and matching feature points across multiple im-
ages to estimate both camera motion and scene geometry. Tra-
ditional hand-crafted methods, like COLMAP, offer robust fea-
ture detection and precise matching, ensuring reliable 3D recon-
struction. Despite the strengths of hand-crafted SfM pipelines,
their performance deteriorates in challenging scenarios, such
as environments with repetitive patterns or low-texture surfaces
causing errors in camera pose estimation or sparse reconstruc-
tion during the SfM phase. This degradation leads to poor input
for 3DGS, resulting in incorrect geometry of the scene and in-
troducing noise and artifacts that degrade rendering quality.

To address these limitations, deep feature-matching methods
such as SuperPoint-SuperGlue (SP-SG) [DeTone et al., 2018,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-891-2025 | © Author(s) 2025. CC BY 4.0 License.

 
892



Sarlin et al., 2020] and direct feature-matching methods like
Recurrent All-Pairs Field Transforms (RAFT) [Teed and Deng,
2020] and Local Feature Matching with Transformers (LoFTR)
[Sun et al., 2021] have been developed, offering significant ad-
vancements over traditional feature matching techniques. SP
utilizes a Convolutional Neural Network (CNN) for keypoint
detection and descriptor extraction, whereas SG employs a Graph
Neural Network (GNN)-based matcher to refine feature corres-
pondences. When integrated into SfM pipelines, this combin-
ation significantly enhances camera pose estimation and sparse
point cloud reconstruction, providing a more accurate founda-
tion for applications such as Gaussian initialization in 3DGS.
direct feature-matching methods, a detector-free feature match-
ing approach, eliminate the need for explicit feature matching.
RAFT utilizes a recurrent cost volume refinement approach,
while LoFTR employs Transformer-based global attention mech-
anisms to effectively model long-range dependencies. These
innovations reflect the continuous evolution of SfM techniques,
presenting promising opportunities to enhance Gaussian initial-
ization for challenging datasets, such as urban scenes with dy-
namic objects or natural landscapes with sparse features.

2.4 Concurrent Work

Recently, DN-Splatter [Turkulainen et al., 2025] leveraged multi-
prior constraints by combining depth and normal information to
address the geometric limitations of 3DGS, successfully demon-
strating precise reconstructions and mesh transformations in in-
door scenes. While our work also uses normal and depth con-
straints to mitigate 3DGS artifacts, it distinguishes itself by how
priors are applied during initialization and optimization, such as
in the loss term. Additionally, whereas DN-Splatter primarily
focuses on indoor reconstructions with a specific set of normal-
depth loss functions, our method introduces normal-depth con-
straints tailored for multiple SfM pipelines (COLMAP, SP-SG,
LoFTR), addressing a broader range of target scenarios. As a
result, our approach achieves significant improvements in visual
quality and robustness, even in more challenging environments,
such as outdoor street views and reflective or low-texture re-
gions. These advancements collectively contribute to enhan-
cing the generalizability and accuracy of 3DGS.

3. Method

3.1 Preliminaries for 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) is a novel point-based differen-
tiable approach that represents 3D geometric and radiometric
scene information using a collection of 3D Gaussians. Each
point is modeled as a 3D Gaussian distribution, defined as:

G(x;µ,Σ) = exp
(
− 1

2
(x− µ)⊤Σ−1(x− µ)

)
, (1)

where µ ∈ R3 denotes the Gaussian center, and Σ ∈ R3×3 is a
positive definite covariance matrix that encodes anisotropy and
orientation. To render a scene, 3DGS first projects 3D Gaus-
sians onto image planes, transforming them into 2D Gaussians
through splatting:

µ′ = Wµ, Σ′ = JWΣWTJT . (2)

Here, W represents the camera projection matrix, and the Jac-
obian matrix J models geometric distortions introduced by the
transformation.

After projection, the color contributions of 2D Gaussians are
composited through an α-blending procedure. Each 2D Gaus-
sian is associated with radiance attributes, including color c and
opacity o. The final color C(x) at a pixel x ∈ R2 is computed
as:

C(x) =
∑

i∈N (x)

αi(x)ci
∏
j<i

(1− αj(x)), (3)

where N (x) denotes the set of Gaussians that are projected onto
the pixel x, sorted by depth to ensure proper compositing. The
per-Gaussian blending weight αi is adjusted using the learned
opacity o:

αi(x) = o exp
(
− 1

2
(x− µ′)⊤Σ′−1(x− µ′)

)
, (4)

where µ′ ∈ R2, Σ′ ∈ R2×2 are the projected Gaussian para-
meters in 2D space, as defined in Eq. (2). These projected
Gaussians are then rasterized onto the image plane, forming a
set of anisotropic 2D ellipses for rendering. 3DGS is optimized
using Stochastic Gradient Descent (SGD) and leverages GPU-
accelerated frameworks for efficient computation.

3.2 SfM for 3D Gaussian Splatting

The optimization speed and final rendering quality of 3DGS
are strongly influenced by the quality of the initial Gaussians
derived from the 3D pointcloud and camera poses. To obtain
these initial Gaussians, SfM techniques are employed to gen-
erate a sparse point cloud and accurate camera poses. For ex-
ample, COLMAP, a widely used SfM solution, utilizes SIFT-
based feature detection and matching. However, its perform-
ance degrades in low-texture or repetitive-pattern regions, redu-
cing reconstruction quality. To address these challenges, SP-SG
enhances robustness in feature extraction and image matching
against lighting variations and image distortions using a graph
neural network. Yet, it still struggle in feature-sparse areas. In
contrast, LoFTR learns pixel-wise correspondences directly us-
ing Transformer-based architecture. By leveraging the global
receptive field of transformers, LoFTR excels in low-texture re-
gions where traditional feature detectors struggle. To evaluate
the impact of initial Gaussians generated via SfM on 3DGS per-
formance, this paper compares COLMAP, SP-SG, and LoFTR.

3.3 Normal Prior Regularization

Surface normals can be estimated using various methods, in-
cluding models like Omnidata [Kar et al., 2022], Metric3D [Yin
et al., 2023], and DSINE [Bae and Davison, 2024], which guide
the alignment of Gaussians with local surface geometry. Align-
ing Gaussians with surface normals improves their placement
on complex surfaces, ensuring the creation of more accurate
and well-aligned Gaussians that capture fine details and main-
tain geometric consistency. Incorporating surface normals en-
hances the accuracy of the geometric representation and ensures
improved visual fidelity. To achieve this, two key components
of Normal Prior Regularization are utilized:

1. Geometry-Aware Initialization: 3D Gaussians are ini-
tialized by aligning their orientation and scale with the pre-
dicted surface normals to reflect local surface variations.
This geometry-aware setup not only accelerates conver-
gence, but also enhances stability during optimization, provid-
ing a robust starting point for the process.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-891-2025 | © Author(s) 2025. CC BY 4.0 License.

 
893



2. Normal-Consistency Loss: This loss function is designed
to align the orientation and scale of covariance of Gaus-
sians with the underlying 3D surface geometry. Build-
ing on [Hwang et al., 2024], which shows that flatten-
ing covariance along the surface normal can reduce arti-
facts, we define the normal consistency loss as Lnormal =
λLaxis + (1 − λ)Lscale, where λ is a hyperparameter. The
orientation loss, Laxis, and the scale loss, Lscale, are defined
as follows:

Laxis =
1

N

N∑
i=1

∑
j∈{0,1,2}

∣∣∣(R̃(i)
G [:, j] · n(i)

)∣∣∣ (5)

Lscale =
1

N

N∑
i=1

∑
j∈{0,1,2}

s̃iG[j]
∣∣∣(R̃(i)

G [:, j] · n(i)
)∣∣∣ (6)

Here, N is the total number of Gaussians, and R̃
(i)
G [:, j]

and s̃
(i)
G [:, j] represent the orientation and scale of the jth

axis of covariance for i-th Gaussian, respectively. n(i)

is the surface normal estimated through normal prediction
network related to i-th Gaussian.

Through geometry-aware initialization and normal-consistency
loss, normal prior regularization improves the quality of the
covariance parameters of 3D Gaussians by aligning them with
surface geometry. This method effectively addresses challenges
posed by complex surfaces and occlusions, enhancing both geo-
metric fidelity and visual quality.

3.4 Depth Prior Regularization

Depth prior regularization enhances the representation of the
scene’s geometric structure by utilizing dense depth maps de-
rived from images. By capturing depth information for every
pixel, this approach allows for a more precise depiction of depth
compared to the sparse information typically used in conven-
tional Gaussian Splatting.

However, there is a scale issue with the depth map, Ddense, ob-
tained from the depth prediction network. To solve this, we use
the sparse depth map, Dsparse, which is generated by projecting
SfM points onto the images. By adjusting the scale of Ddense
to match Dsparse, similar to prior work [Chung et al., 2024], we
obtain the optimized depth map, Dguide, which serves as a reg-
ularized dense depth map.

Building on this, a depth-consistency loss is defined using L1
distance as follows: Ldepth = ∥(Dguide −D)∥

1
, where D is the

rendered depth map from Gaussian splatting.

4. Experiments

To evaluate the performance of our 3DGS method, we conduc-
ted experiments not only on the Tanks & Temples dataset but
also on additional datasets that exhibit challenging characterist-
ics such as repetitive patterns, reflections, and low-texture sur-
faces. Furthermore, we applied and compared multiple SfM
pipelines to quantitatively assess the impact of Gaussian ini-
tialization quality on the final reconstruction results. Through
extensive experiments across diverse environments and condi-
tions, we confirmed that our surface normal regularization ef-
fectively reduces geometric distortions, while our dense depth
map regularization improves depth estimation accuracy.

(a) Ladybug6 (b) Mobile Mapping System
(MMS)

Figure 1. Hardware for Data Collection

4.1 Experimental settings

Datasets We conduct our experiments on both publicly avail-
able datasets and custom indoor and outdoor scenes, which ex-
hibit unique characteristics and challenges. Specifically, we use
two scenes from the Tanks & Temples dataset [Knapitsch et al.,
2017] —Train and Horse—which are commonly used in 3DGS
research. Additionally, we use real-world data, which we cap-
tured ourselves, to demonstrate the superior performance of our
method in both indoor and outdoor environments. We first col-
lected data in underground parking lots using a Ladybug6 cam-
era system shown in Figure 1a, which captures images with six
cameras (see [Ladybug6, 2025] for more information). Among
them, we utilized the three cameras positioned at the front and
sides to construct the dataset. Each image has a resolution of
2992 × 4096 and a field of view (FOV) of 85.9 degrees. Im-
ages are captured at 1 FPS and post-processed to correct image
distortion. Our indoor dataset presents significant challenges
due to low-texture surfaces, reflections, and varying illumina-
tion. Additionally, we collected outdoor scene data by captur-
ing street-view environments using a Mobile Mapping System
(MMS) mounted on a moving vehicle.

Our MMS shown in Figure 1b simultaneously captures rect-
angular images using six cameras at fixed distance intervals.
The collected images are processed to generate equirectangu-
lar images, then we extract seven rectangular images from each
equirectangular image, with each having a 90° (deg) field of
view (FOV). These extracted images are positioned at 45° (deg)
intervals, covering all directions except the rear. The final ex-
tracted images have a resolution of 1080 × 1080. Since these
street-view scenes include dynamic obstacles, such as cars and
pedestrians, and repetitive patterns, such as road markings and
similar building facades, feature matching and pose estimation
become challenging, leading to an inaccurate and sparse point
cloud.

Evaluation metrics To compare results across multiple SfM
pipelines, we use the mean reprojection error (MRE) as a met-
ric to evaluate geometric consistency. Additionally, we assess
reconstruction quality using three standard evaluation metrics:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Learned Perceptual Image Patch Similar-
ity (LPIPS). These metrics provide a comprehensive analysis
by capturing both objective accuracy and perceptual fidelity,
demonstrating the improvements achieved over the baseline.

Implementation Details In this study, we establish conven-
tional 3DGS [Kerbl et al., 2023] as the baseline for comparison.
We also analyze the impact of different SfM methods on initial
Gaussian placement and optimization by comparing COLMAP,
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COLMAP SP-SG LoFTR

Datasets Method MRE↓ PSNR↑ SSIM↑ LPIPS↓ MRE↓ PSNR↑ SSIM↑ LPIPS↓ MRE↓ PSNR↑ SSIM↑ LPIPS↓

Train 3DGS 0.75 21.10 0.802 0.218 1.40 21.10 0.750 0.282 0.79 20.97 0.767 0.274
Ours 21.97 0.799 0.252 21.32 0.749 0.287 21.11 0.759 0.291

Horse 3DGS 0.71 24.18 0.889 0.239 1.31 21.01 0.802 0.239 0.80 23.39 0.870 0.174
Ours 25.50 0.903 0.153 21.12 0.801 0.246 24.80 0.881 0.165

Parking lots 3DGS Invalid - - - 1.37 28.08 0.828 0.424 0.64 29.33 0.842 0.410
Ours - - - 28.37 0.829 0.427 29.07 0.840 0.414

Street-view 3DGS Invalid - - - 1.09 18.33 0.468 0.410 0.56 22.28 0.729 0.331
Ours - - - 19.00 0.479 0.492 22.49 0.722 0.340

Table 1. Quantitative comparison of 3DGS, Our Method, and SfM-Rendering Correlation - A lower Mean Reprojection Error (MRE)
generally corresponds to a higher PSNR and SSIM, while its correlation with LPIPS is relatively weak. Among the SfM pipelines,
COLMAP and LoFTR achieve relatively low MRE, whereas SP-SG exhibits a higher MRE. For the parking lot and street-view
datasets, SfM with COLMAP failed to reconstruct the scenes, resulting in invalid outputs. The proposed method demonstrates
improved PSNR and SSIM performance across the COLMAP, SP-SG, and LoFTR approaches.

SP-SG, and LoFTR. For our experiments, we use their official
implementations. To obtain priors for regularizing the optim-
ization process, we utilize the pre-trained Metric3D [Yin et al.,
2023] network for monocular depth and normal estimation. Our
final optimization loss function is defined as:

L = (1− λ1)Lcolor + λ1LD-SSIM + λ2Lnormal + λ3Ldepth (7)

where the first two loss terms, Lcolor and LD-SSIM, correspond to
the original 3DGS losses in [Kerbl et al., 2023]. We set λ1, λ2,
and λ3 as 0.2, 0.01, and 0.01 respectively.

4.2 Results

SfM on Gaussian Initialization and 3DGS We first compare
the Mean Reprojection Error (MRE) of point clouds generated
across multiple SfM pipelines, as shown in Table 1. The res-
ults indicate that a lower MRE consistently corresponds to a
higher PSNR and SSIM, while its correlation with LPIPS is
relatively weak. COLMAP achieves relatively low MRE on of-
ficial benchmark datasets such as Train and Horse; however, it
fails to generate a point cloud for parking lot and street-view
datasets. These findings suggest that COLMAP performs well
in feature-rich environments but struggles in datasets with wide
baselines and reflective surfaces, where its performance sig-
nificantly deteriorates. In contrast, both SP-SG and LoFTR
successfully reconstruct point clouds for our collected datasets,
demonstrating greater robustness in SfM tasks, despite produ-
cing slightly lower-quality results on the Train and Horse data-
sets. These experiments highlight that LoFTR, as direct feature-
matching methods, could serve as a strong alternative for chal-
lenging scenarios where COLMAP struggles to perform SfM.

Quantitative Comparison Our method consistently achieves
higher PSNR than 3DGS across multiple datasets and SfM pipe-
lines. As shown in Table 1, for the Train dataset with COLMAP,
our method improves PSNR from 21.10 to 21.97, and for the
Horse dataset, PSNR increases from 24.18 to 25.50. Simil-
arly, for the Street View dataset with LoFTR, PSNR improves
from 22.28 to 25.49. These results suggest that the optimized
depth and normal estimation in our approach more accurately
recovers image intensities, reducing numerical differences from
the ground truth. However, for the parking lots dataset with
LoFTR, PSNR degrades from 29.33 to 29.07. This decline
is primarily attributed to light blurring, where artificial light-
ing reflections on surfaces such as floors introduce distortions,

negatively impacting performance. In most cases, SSIM re-
mains comparable, indicating that both methods maintain sim-
ilar structural integrity in the rendered images. Since SSIM
measures how well structural details, edges, and textures are
preserved, the results suggest that the normal and depth estim-
ated by Metric3D do not capture fine details in rendered scenes
as effectively. Additionally, an increase in LPIPS in some cases
suggests a slight degradation in perceptual quality, as higher
LPIPS values indicate greater perceptual differences from the
ground truth. The use of low-quality normal and depth estima-
tions can oversmooth high-frequency details, such as grass, fo-
liage, gravel, and clouds. Furthermore, since LPIPS considers
perceptual similarity, even slight deviations in shading and re-
flections can increase LPIPS. This effect is exacerbated when
Gaussians are too large or overly smooth, leading to the loss
of small texture variations. While 3D Gaussians blend color
and opacity smoothly, which is beneficial for noise reduction,
this process can also lead to texture oversmoothing. Never-
theless, scene structures, edges, and object placements remain
well-preserved, as evidenced by high PSNR and SSIM scores.

Qualitative Comparison As shown in Figure 2, our approach
demonstrates a notable visual improvement in rendering qual-
ity compared to 3DGS. In particular, by leveraging surface nor-
mals as a prior to guide the alignment of Gaussians on flat sur-
faces (e.g., roads and walls), Gaussians are distributed more
distinctly, leading to improved rendering accuracy. Moreover,
with the well-aligned Gaussians, the road markings in the Street
View dataset and the edges of walls in the Parking Lots dataset
are rendered more clearly. Notably, in the Horse dataset, our
approach exhibits significant improvements in the representa-
tion of distant surfaces, such as buildings located far from the
camera viewpoint. These improvements suggest that the incor-
poration of normal and depth information significantly influ-
ences the quality of rendered scenes, leading to more accurate
geometry representation and improved visual fidelity.

5. Conclusion

In this paper, we introduced a prior-driven enhancement ap-
proach for 3D Gaussian Splatting (3DGS) by incorporating sur-
face normals and dense depth priors to improve geometric ac-
curacy and visual quality. Our method regularizes the optimiza-
tion process by aligning Gaussian covariance with local surface
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GT
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& Depth
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Figure 2. Qualitative comparison of 3DGS and our method - Our method demonstrates improved rendering quality over 3DGS by
leveraging surface normals and dense depth as prior information. This prior information enhance Gaussian alignment and depth
representation. Normal & Depth information for parking lots and street-view, flat surfaces, is represented appropriately.

structures and refining per-pixel depth estimation. These en-
hancements effectively reduce artifacts, improve reconstruction
consistency, and enable more robust handling of complex real-
world scenes. Through extensive evaluations on challenging
datasets, including highly reflective environments and street-
view scenes, and across multiple SfM pipelines, our approach
demonstrates superior performance in terms of geometric con-
sistency and rendering quality. Experimental results confirm
that our method enhances accuracy, stability, and adaptability,
making 3DGS a more reliable solution for real-time 3D scene
rendering in diverse environments.
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