
GIS Analysis Model Integration and Service Composition Prospects 

Lei Ding1, Peiru Cai2, Wei Huang1, Hongping Zhang1, Fei Ding3, Wenhao Zhao1, Dejin Tang1, Zhen Wang1  

1 National Geomatics Center of China, 100830 Beijing, China - (dinglei, huangwei, zhanghongping, zhaowenhao, tangdejin, 

wangzhen)@ngcc.cn 
2 China Logistics Co., Ltd, 100070 Beijing, China - caipeiruu@163.com 

3 Shanghai InTone Network Technology Co., Ltd, 201914 Shanghai, China - dingfei@intonead.com 

Keywords: GIS, Model integration, Geospatial web service, Service composition 

Abstract 

In the context of rapidly evolving geospatial technologies, this study provides a comprehensive review of GIS model integration and 

service composition, emphasizing their critical roles in enhancing spatial analysis accuracy, decision-making efficiency, and cross-

domain interoperability. Model ensemble techniques, rooted in machine learning and data mining, address limitations of single models 

by combining predictions from multiple base learners, thereby improving robustness and reducing overfitting. GIS model integration 

involves combining diverse spatial algorithms—such as buffer analysis, network analysis, spatial regression, and machine learning 

models—to tackle multifaceted geographic challenges. Key algorithms are systematically integrated to optimize outcomes in urban 

planning, disaster management, and precision agriculture. For instance, land-use change prediction synthesizes spatial regression, 

machine learning, and remote sensing, while natural disaster systems merge meteorological models with post-disaster assessments. 

The fusion of industry-specific models with GIS enhances location-based decision support by embedding spatial variables into domain 

workflows. Cloud-native architectures and AI-driven automation emerge as pivotal trends, offering scalable, real-time GIS solutions 

via platforms like serverless computing and SaaS. These innovations promise self-learning agents capable of automated spatial pattern 

recognition, real-time alerts, and optimized resource allocation. Despite progress, challenges persist in model selection, interpretability, 

and robustness. Future research directions emphasize large language model (LLM)-powered agents for intelligent geospatial processing, 

cloud-GIS hybrid platforms for elastic resource management, and industry-tailored SaaS solutions. By bridging traditional GIS tools 

with intelligent service ecosystems, this evolution aims to drive digital transformation, enhance cross-sector competitiveness, and 

unlock new potentials in spatial decision-making. 

1. Introduction

1.1 General Instructions 

In the fields of machine learning and data mining, model 

ensemble has gained widespread attention and application in 

recent years as an effective technique to improve prediction 

performance. Single predictive models often fail to achieve ideal 

results due to data complexity, noise, or the limitations of the 

model itself. To address this issue, model ensemble methods 

combine the predictions of multiple base learners to significantly 

enhance prediction accuracy, improve model robustness, and 

reduce overfitting. The core idea behind model ensemble is 

derived from the concept of "wisdom of crowds," which suggests 

that the combination of multiple relatively simple individual 

models can yield a result superior to that of any single model. 

Early ensemble methods, such as Bagging (Bootstrap 

Aggregating) and Boosting, have already achieved notable 

success in various applications by combining models in different 

ways. For example, Random Forest improves classification and 

regression accuracy by constructing multiple decision trees, 

while AdaBoost combines multiple weak classifiers with 

weighted adjustments to create a strong classifier. With the 

development of deep learning and big data technologies, more 

complex and computationally intensive models have emerged, 

making ensemble learning an indispensable part of many real-

world applications. In recent years, ensemble methods have not 

only been widely applied to traditional machine learning tasks 

but have also expanded into GIS field  (LI et al., 2016, Yue et al., 

2024). 

However, despite the significant improvement in prediction 

accuracy achieved through model integration, effectively 

selecting integrated models, reducing computational costs, and 

improving model interpretability remain key challenges in 

practical applications. In recent years, many new ensemble 

methods have been proposed, such as stacking and adaptive 

ensemble methods, which aim to flexibly select model 

combinations and reduce unnecessary computational overhead 

through optimization algorithms (Wang et al., 2011, Zeng et al., 

2021). 

2. GIS Model Integration

Model integration is an important research direction in the field 

of artificial intelligence, involving the combination of multiple 

different models or algorithms to improve predictive accuracy, 

enhance performance, or deal with complex problems. With the 

increase in data scale and the improvement of computing power, 

model integration techniques have been widely applied (LI et al., 

2016, Noorollahi et al.,2008, Batty et al.,2011). Model 

integration involves forming a whole from multiple different 

models to enhance performance or address complex issues.  

2.1 GIS Algorithm Model 

The GIS algorithm model is a mathematical model and program 

used for processing and analyzing geospatial data. It is widely 

applied in Geographic Information Systems (GIS) to solve 

various spatial problems. Common algorithms include buffer 

analysis, distance measurement, topological relationship 
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judgment, spatial interpolation, network analysis, and 

geographically weighted regression. as shown in the table below: 

1. Buffer algorithm: Used to determine the buffer zone range

of geographic features. Based on geographic features such

as points, lines, and areas, it generates buffer polygons

according to a set distance. For example, a buffer with a

radius of 5 kilometers can be generated for a factory as a

point feature to analyze the pollution impact range of the

factory; a buffer of 50 meters on each side can be generated

for a river as a linear feature to define the scope of a river

ecological protection zone.

2. Overlay analysis algorithm: Multiple spatial data layers

are overlaid to perform operations such as intersection,

union, and erasure of spatial features to extract new

information. For example, polygon overlay algorithm, by

overlaying two or more polygon layers, can obtain the

intersection, union, and difference results between polygons.

It is commonly used in land use planning to analyze the

overlap and change areas of different land use types.

3. Network analysis algorithm: Analysis is conducted in

various network data such as transportation and

communication networks. For example, the Dijkstra

algorithm is used to find the shortest path in a network and

can be applied in navigation systems to plan the best driving

routes; the Floyd-Warshall algorithm can calculate the

shortest paths between all pairs of nodes in a network and is

often used to analyze the accessibility and shortest distances

between nodes in a transportation network.

4. Slope and Aspect Calculation Algorithm: Calculates the

slope and aspect of the terrain based on Digital Elevation

Model (DEM) data. Commonly used algorithms include

differential methods based on a 3×3 window. By performing

differential calculations on the elevation values surrounding

each grid point in the DEM data, the slope and aspect

information for that point can be obtained. This provides

fundamental data for topographic and geomorphologic

analysis, as well as land use planning.

5. Watershed Analysis Algorithm: Determines the

boundaries of a watershed and the distribution of its

hydrological network. For example, watershed and

hydrological network extraction algorithms based on DEM

data involve steps such as depression filling, flow direction

calculation, and flow accumulation calculation. These steps

help identify the boundaries of watersheds and the

distribution of hydrological networks, which are crucial for

water resource management and flood control and disaster

reduction.

6. Line-of-Sight Analysis Algorithm: Determines whether

there is a clear line of sight between two points or between

a point and an area. Based on DEM data, it calculates the

intersection points of the line of sight with the terrain surface

to determine visibility. This is commonly used in fields such

as military lookout point selection and communication base

station siting.

7.Coordinate Transformation Algorithm: Used for

converting between different coordinate systems, such as

the transformation between geographic coordinates (latitude

and longitude) and plane rectangular coordinates, as well as

between different projected coordinate systems. Common

algorithms include the Gauss-Kruger projection

transformation algorithm and the UTM projection 

transformation algorithm, which enable the unified 

expression and analysis of spatial data in different 

geographic frameworks. 

8. Data Interpolation Algorithm: When the spatial data

values of a limited number of discrete points are known and

it is necessary to infer the values of unknown points,

interpolation algorithms are used. For example, the Inverse

Distance Weighting (IDW) algorithm assigns weights to

known points based on their distance from the interpolation

point, with closer points having greater weights. The

Kriging interpolation algorithm, on the other hand, takes

into account the spatial autocorrelation of the data and

performs interpolation based on the theory of the variogram,

which can more accurately reflect the trends in spatial data

changes. It is commonly used for interpolating

meteorological and soil data.

9. Data Compression Algorithm: To reduce the storage and

transmission volume of spatial data and improve data

processing efficiency, data compression algorithms are

employed. For example, the Douglas-Peucker algorithm

simplifies curves by removing points that have a smaller

impact on the shape of the curve, thereby reducing the data

volume while maintaining the basic shape of the curve. Run-

length encoding is another method that encodes sequences

of repeated values by representing them with a single value

and a count of repetitions, and it is often used for

compressing raster data.

10. Spatial Regression Algorithm: Spatial regression

analysis algorithms are designed to model and analyze

spatial data while accounting for spatial dependence and

heterogeneity. Unlike traditional regression models that

assume independence among observations, spatial

regression models consider the spatial relationships between

data points. such as Spatial Autoregressive (SAR) Model

and Geographically Weighted Regression (GWR).

11. Spatial Clustering Algorithm: Spatial clustering analysis

algorithms group spatial data points into clusters based on

their spatial proximity and similarity in attributes. These

algorithms help identify spatial patterns and hotspots in the

data. Such as, K-Means Clustering, DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) and

Hierarchical Clustering.

In addition, machine learning algorithms such as Support Vector 

Machines (SVM), Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN), Random Forests, and 

Decision Trees, especially deep learning models based on neural 

networks, have become important development directions in GIS 

applications. Neural networks have demonstrated excellent 

performance in tasks such as remote sensing image processing, 

land use classification, and vegetation type identification.  

2.2 Model Integration 

Model integration is a commonly used technique that combines 

multiple different analytical models to better handle the 

complexity and diversity of geographic spatial data. Therefore, 

model integration in GIS usually requires a comprehensive 

consideration of factors such as the spatial attributes of the data, 

heterogeneous data sources, and analytical objectives (Goodchild 

et al.,1994) . 
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Integration of Multiple GIS Analytical Models: GIS algorithm 

integration involves combining different types of spatial analysis 

algorithms to fully leverage the strengths of each algorithm in 

processing spatial data, thereby enhancing the accuracy and 

efficiency of spatial analysis and decision-making (Karimi et al., 

1996, Ungerer et al., 2002). Commonly used algorithms in GIS 

include spatial analysis, spatial interpolation, network analysis, 

spatial statistics, and geographically weighted regression, each 

with unique application scenarios and advantages. By integrating 

different algorithms, more comprehensive and precise analysis 

results can be obtained. In GIS, it is often necessary to use various 

spatial analysis methods to solve practical problems. For example, 

land use change prediction can simultaneously utilize spatial 

regression models, machine learning algorithms, image 

recognition models, and other tools. Model integration can 

effectively combine the results of these different methods, 

thereby improving the reliability of the analysis (Zeng et al., 

2021). In natural disaster early warning systems, traditional 

meteorological analysis models, geographic spatial models, and 

post-disaster assessment models can be integrated. The 

integrated results can be used to predict the likelihood of disasters 

and provide accurate emergency response information to 

decision-makers. 

Integration of Industry-specific Models with GIS: Industry-

specific models are designed to meet the business needs of 

particular industries or fields. By integrating and analyzing 

industry-specific data, they help industry practitioners optimize 

decision-making and improve management efficiency (Engel et 

al.,1993). These models typically incorporate a wide range of 

industry-specific knowledge and experience, enabling the 

simulation, prediction, or optimization of various scenarios 

within the industry. The integration of industry-specific models 

with GIS combines spatial data with industry data to provide 

more precise analysis and decision support. GIS (Geographic 

Information System) visualizes spatial data, helping industry 

experts gain a deeper understanding of various geographical 

phenomena and business processes, thereby achieving business 

optimization based on geographical location (Fedra et al.,1993, 

Srinivasan et al.,1994). For example, urban planning models use 

GIS to analyze land use and traffic flow, precision agriculture 

models combine GIS for land suitability analysis, and water 

resource management optimizes resource allocation through GIS 

analysis of water distribution and watershed information. The 

application fields of this integration are very broad, including but 

not limited to urban planning, transportation, environmental 

monitoring, agricultural management, disaster emergency 

response, real estate analysis, and energy management. In these 

fields, the combination of industry-specific models and GIS 

significantly enhances the precision and efficiency of business 

operations, helping decision-makers make more scientific 

judgments. Through in-depth analysis of spatial data, industry-

specific models can optimize resource allocation and improve 

management levels while providing decision support, ultimately 

achieving a dual improvement in economic and social benefits. 

3. GIS Service Composition

Encapsulate the analytical model as a reusable component or 

service for easy sharing and invocation in different GIS 

applications. The networked service of spatial data is an 

important development direction, so spatial service composition 

is a networked application of model integration. Spatial service 

composition involves describing existing services semantically 

and dynamically combining them to offer more complex 

functions to solve real-world problems. Spatial service 

composition mainly includes two parts: data flow and control 

flow. The data flow defines the input and output of the data, while 

the control flow consists of numerous operator models that form 

the smallest units of spatial services and support the dynamic 

selection of operator models (WANG et al., 2011, Argent et al., 

2004).  

Workflow  Building

Algorithm Model Library

Service Composition

Input

Buffer analysis

Overlay analysis

Network analysis

Clustering Analysis  ...

Semantics

Agent

Algorithm1 Algorithm2

Algorithm3 ...

Output

Figure 1. GIS service composition workflow 

3.1 GIS Service 

GIS services are a web-based software application model that 

allows users to access and use geospatial data and related 

geographic analysis functions through the Internet or other 

network connections via standard protocols and interfaces, 

without the need to install a complete GIS software locally (Tsou 

et al., 2002). It publishes the functions and data of GIS in the 

form of services for different users and applications to share and 

invoke, achieving the sharing, interoperability, and integration of 

geographic information. It is widely used in many fields such as 

urban planning, resource management, environmental protection, 

transportation, and disaster early warning. 

Common GIS services include OGC's Web Map Service (WMS), 

Web Feature Service (WFS), and OGC Web Map Tile Service 

(WMTS). WMS provides online services for map images, 

allowing users to obtain information such as map layers, styles, 

and resolutions. The service returns map images (PNG, JPEG) 

for display and browsing. WFS provides access to vector data, 

enabling users to obtain the original geographic information of 

map data (such as points, lines, and polygons) for analysis, 

querying, or editing. WMTS provides tiled map services, 

allowing users to quickly load maps at different zoom levels 

using tiled images. Users access and utilize GIS services through 

web browsers or dedicated GIS clients for data querying, 
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visualization, and analysis. The server side provides GIS data and 

processing capabilities through web servers and database 

management systems. These servers use standard service 

protocols (such as WMS, WFS, WMTS, etc.) to respond to user 

requests. Spatial data is stored in geographic databases (Post GIS) 

and queried and processed through database management 

systems. GIS services are typically based on protocols such as 

RESTful API and SOAP, providing web service interfaces to 

support remote calls and data interaction. 

The description of the service includes basic information, 

functional description, and input and output parameters. The 

basic information includes the service name, version number, 

publisher, and service type. The functional description provides 

a detailed explanation of the specific functions that the service 

can offer, such as geographic data query, spatial analysis, buffer 

analysis, and overlay analysis. Input and output parameters: 

Clearly specify the data types, formats, and parameters required 

by the service, as well as the type, format, and content of the 

output results. For example, for a place name query service, the 

input parameter might be a place name keyword, and the output 

could be geographic feature data containing place name 

coordinates, address information, etc. 

3.2 Service Composition 

Service composition involves combining multiple geographic 

information services into a service chain according to specific 

business requirements, following a certain order and logic to 

achieve complex spatial data processing and analysis. At the 

same time, the service composition is dynamically adjusted and 

optimized based on changes in user requirements and the 

operating environment to enhance the flexibility and 

performance of the system (Gui et al., 2008, Ma et al., 2008). 

Semantic service composition has emerged in the context of the 

Semantic Web, introducing semantic information into the service 

composition process (Chen et al., 2003). First, detailed semantic 

annotations of various aspects of services are made using 

languages such as the Web Service Semantic Description 

Language (OWL-S) and the Semantic Annotation Language 

(WSDL-S). These annotations cover the service's functionality, 

the data types and semantic meanings of input and output 

parameters, preconditions for service execution, and 

postconditions, thereby endowing services with machine - 

understandable semantic information. Second, domain 

ontologies are constructed to define concepts, relationships, and 

rules within a domain, such as hierarchical relationships, 

equivalence relationships, and dependency relationships. These 

ontologies provide a semantic foundation and logical basis for 

service composition (Lutz et al., 2007). Different services can be 

semantically described based on the same ontology. By 

leveraging the semantic descriptions of services and the rules 

defined in the ontology, automatic reasoning and matching can 

be achieved, enabling more accurate identification of services 

that meet user requirements. 

An Agent is an intelligent entity that possesses characteristics 

such as autonomy, interactivity, reactivity, and proactivity. It can 

perceive changes in the environment, reason and make decisions 

based on its own goals and knowledge, and take corresponding 

actions to influence the environment (Crooks et al., 2011). In the 

context of service composition, each Agent can be regarded as a 

software entity with specific functions and tasks, responsible for 

interacting with other Agents or external systems to achieve the 

goals of service composition (Talebirad et al., 2023, Huang et al., 

2024, Hong et al., 2024). Service composition based on Agents 

involves encapsulating various basic services (such as data query 

services, data analysis services, file processing services, etc.) into 

different Agents. When a complex business function needs to be 

implemented, the task is first decomposed into multiple sub - 

tasks, each of which corresponds to one or more specific services. 

These services are then combined according to certain logic and 

processes to form a new service system that can accomplish more 

complex tasks or meet specific business requirements. The 

Agents communicate and collaborate with each other through a 

certain communication mechanism (message passing). The 

selected Agents execute the corresponding tasks according to the 

predefined rules and processes, and return the execution results. 

This forms a new service system that can accomplish more 

complex tasks or meet specific business requirements. 

4. Conclusion and Outlook

This research reviews the commonly used GIS algorithm models, 

discusses the necessity and methods of model integration, 

introduces methods for multi-model integration and the 

integration of industry models with GIS, constructs a toolchain 

for integrating multiple models oriented towards business needs, 

and ultimately applies it through the integration of GIS services. 

It is pointed out that GIS services built on cloud-native GIS and 

industry SaaS platforms, as well as AI-driven automation, will 

have significant application potential in GIS service composition. 

Although model integration technology has a broad application 

prospect, it also faces some challenges, such as model selection, 

model interpretation, and model robustness. How to choose the 

best model or model combination, how to interpret the predictive 

results of model integration and fusion, and how to enhance the 

robustness of model integration and fusion are all hot topics in 

current research.  

In the future, with the development of large language model 

technology, the application prospects of AI-driven automation in 

the GIS service field are broad. In the future, GIS service Agent 

tools based on large language models will become an important 

engine for automated spatial data processing and decision support. 

These intelligent Agents will have powerful self-learning 

capabilities. Through deep integration with GIS platforms, they 

will be able to efficiently analyze and process massive amounts 

of spatial data and automatically identify complex geographical 

patterns and trends. 

GIS services built on cloud-native GIS and industry-specific 

SaaS platforms will bring unprecedented flexibility, scalability, 

and intelligence to various industries. The introduction of cloud-

native architecture enables GIS applications to run efficiently in 

the cloud environment, fully leveraging the elasticity and 

distributed resources of cloud computing to drive GIS services 

towards higher levels of automation, intelligence, and real-time 

performance. GIS services based on cloud-native GIS and 

industry SaaS will have the ability to self-learn and make 

decisions. They will be able to automatically generate analysis 

reports, provide real-time alerts, optimize resource scheduling, 

and support decision-making, significantly enhancing the 

intelligent decision-making capabilities of various industries. By 

integrating with industry-specific SaaS platforms, the unique 

needs of different industries will be precisely met, and service 

delivery will become more efficient and convenient. This will 

provide more efficient, intelligent, and flexible spatial data 

analysis and decision support across industries, promoting digital 

transformation and enhancing business competitiveness, truly 

achieving a leapfrog development from traditional GIS tools to 

an intelligent service platform for the entire industry. 
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