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Abstract 

 

The segmentation of buildings from the background in high-resolution remote sensing images faces several challenges, including 

difficulties in extracting multi-scale information, insufficient capture of long-range contextual information, and the underutilization of 

multi-scale features. Existing methods often struggle to effectively capture features at different scales, which limits the segmentation 

accuracy. Furthermore, long-range contextual information is frequently overlooked, hindering model’s ability in understanding the 

global structure of buildings. Additionally, balancing low-level details with high-level semantic information poses challenges in 

effectively fusing multi-scale features from high-resolution imagery. To address these issues, this paper proposes the Multi-Scale Multi-

Kernel Building Extraction Network (MMAENet), which significantly enhances the capability to capture multi-scale features through 

the integration of Poly Kernel Inception Network (PKINet), and improves the capture of long-range contextual information. The 

Panoramic Feature Pyramid (PFP) structure is introduced to ensure the full integration of both high-level and low-level information. 

Performance evaluation on the WHU Aerial dataset demonstrates that the model achieves superior accuracy in building segmentation 

compared to Convnext, PSPNet, and Swin Transformer. 

 

1. Introduction 

Accurate building extraction from remote sensing images is 

critical for urban planning, urban evaluation, urban governance, 

and automated mapping (Y. Liu et al., 2022). The advancement  

of high spatial resolution imaging technologies has enhanced 

surface details, facilitating more refined and automated building 

extraction. However, the complexity of high-resolution imagery 

continues to present significant challenges in accurate building 

extraction. 

Traditional building extraction methods primarily rely on 

spectral indices and classic machine learning algorithms to 

enhance extraction performance. Commonly used indices, such 

as the Normalized Difference Building Index (NDBI), 

Normalized Difference Vegetation Index (NDVI), Soil-Adjusted 

Vegetation Index (SAVI), Modified Normalized Difference 

Water Index (MNDWI), and Global Environmental Monitoring 

Index (GEMI), have been widely applied in building extraction 

from remote sensing imagery(Puttinaovarat and Horkaew, 2017). 

These indices effectively differentiate between various land 

cover types, such as buildings, vegetation, and water bodies. In 

addition, machine learning techniques such as Artificial Neural 

Networks (ANN), K-Nearest Neighbors (KNN), and Support 

Vector Machines (SVM)(Li et al., 2022) have also been 

employed to further enhance extraction accuracy. While these 

traditional methods have improved accuracy to some extent, they 

still face significant challenges in complex urban environments 

and multi-scale conditions in the high-resolution scenario, 

particularly in extracting buildings in dense urban areas or small-

scale buildings. 

Recent advances in deep learning (DL) t have substantially 

improved the extraction of small-scale, high-density buildings 

from high-resolution remote sensing imagery. In particular, the 

development of Convolutional Neural Networks (CNN)(Zhou et 

al., 2022) and Vision Transformers (ViT) (Dosovitskiy et al., 

2020) has yielded significant progress in this area. Within the 

CNN framework, Li et al. (2019) proposed a U-Net-based 

semantic segmentation approach, leveraging the advantages of 
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CNNs in local feature extraction and hierarchical modeling to 

achieve efficient building extraction. Qiu et al. (2023) further 

refined this approach by introducing Refine-UNet, which 

enhances skip connections and employs depthwise separable 

convolutions to improve the capture of building details. Fan et 

al. (2023) incorporated residual modules (BasicBlock) and a 

spatially enhanced attention mechanism (SEAE) into the U-Net 

structure, further improving the model's fitting ability. However, 

CNNs are inherently limited in capturing global context. Hu et 

al. (2021) integrated a squeeze-and-excitation (SE) attention 

mechanism to dynamically emphasize critical regions, yet the 

constrained receptive fields of CNNs still hinder effective 

modeling of long-range spatial relationships. Conversely, ViTs 

leverage global self-attention mechanisms to enhance feature 

representation. Liu et al. (2021) proposed the Swin Transformer, 

which uses a hierarchical architecture and shifted window 

mechanism to process features at multiple scales, effectively 

balancing both local and global information. Similarly, Wang et 

al. (2022) utilized a dual-path structure in combination with 

linear multi-head attention to encode spatial details and capture 

global dependencies in high-resolution imagery. Nevertheless, 

Transformer architecture requires considerable computational 

resources and struggles to balance detail and global structure in 

large-scale scenarios. 

Despite these notable achievements in accuracy, robustness, 

and efficiency, challenges in building extraction persist. In 

particular, the extraction of multi-scale features remains 

problematic, and the modeling of long-range dependencies is 

still inadequate. To address these issues, this paper introduces the 

MMAENet, which enhances the capture of multi-scale features 

through PKINet (Cai et al., 2024). By extracting building 

features at different scales, MMAENet improves its ability to 

adapt to buildings of varying sizes, shapes, and textures. 

Additionally, the introduction of a Context Anchors Attention 

(CAA) module enables the model to capture long-range 

contextual information. To further optimize the use of multi-

scale information extracted by PKINet, MMAENet incorporates 

a PFP structure (Kirillov et al., 2019), seamlessly integrating 

high-level semantic and low-level detail information, thereby 

improving the robustness of building extraction. 

The main contributions of this paper are as follows: 

1. Introduction of the PKINet Block within PKINet, which 

enhances the ability to capture multi-scale features of 

buildings. 

2. Incorporation of the CAA module within the PKINet Block, 

enabling MMAENet to capture long-range contextual 

information. 

3. Construction of the PFP structure, allowing MMAENet to 

fully integrate high-level semantic information with low-level 

details, thus balancing local features and global context to 

improve the robustness of building extraction. 

 

2. Methodology 

The overall architecture of MMAENet is presented in FIG. 1, 

consisting of a four-stage encoder and a PFP-based feature 

fusion structure. In the encoding phase, a Stem layer is employed 

to reduce the model's parameter count, thereby improving 

efficiency. The processed feature maps are then subjected to two 

distinct operations along the channel dimension following 

subsampling and convolution. One operation utilizes a simple 

feedforward network (FFN), while the other applies a Poly 

Kernel Inception (PKI) Block. Within the PKI Block, the PKI 

Module and CAA Module are integrated to fuse the feature maps 

produced by the two operations, and subsequently output the 

combined features. The PFP structure is then applied, enabling 

the comprehensive utilization and fusion of multi-scale 

information, thereby enhancing the model's ability to handle 

complex spatial dependencies and improve feature 

representation across varying scales. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-905-2025 | © Author(s) 2025. CC BY 4.0 License.

 
906



 

FIG. 1 General framework of the model 

2.1 PKI Module 

 

FIG. 2 PKI Module 

The PKI Module is shown in FIG. 2. The PKI Module employs 

3×3 depthwise convolution (DWConv) to extract local detail 

features of buildings, enhancing the representation of small 

buildings and edge information. A parallel structure is 

introduced with DWConv of varying receptive fields (5×5, 7×7, 

9 ×9, 11× 11) to capture multi-scale contextual information, 

ensuring the comprehensive representation of spatial features of 

buildings across different scales. Additionally, 1×1 convolutions 

are used to integrate features from different scales, capturing 

local contextual information within building features at each 

scale, thereby improving the completeness and accuracy of 

building extraction. The multi-scale calculation formula is 

shown in formula 1. 

  DWConv ( ), 1, ..., 4.i i
k kiOutPut F i


= =    (1) 

In formula 1, DWConv i ik k  is a depth-separable convolution 

operation of different sizes, 
i i

k k is available in sizes 5x5, 7x7, 

9x9, and 11x11, F is the input feature map, iOutPut is the result 

of convolution operations of different sizes. 

2.2 CAA Module 

 

FIG. 3 CAA Module 

The CAA Module is shown in FIG. 3. In the PKI Block, to 

capture long-range contextual information within building 

features, the CAA module is introduced to consider the 

dependencies between distant building and background pixels, 

while enhancing the central point features. The CAA module 

extracts local features through average pooling and 

convolutional layers, utilizing horizontal and vertical strip 

convolutions to improve the recognition of elongated building 

shapes. Simultaneously, the Sigmoid function generates 

attention weights, enabling the PKI Block to establish long-

range pixel relationships in building high-resolution remote 
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sensing imagery. This mechanism further enhances the accuracy 

and robustness of building extraction. The bar convolution is 

shown in formula 2. 

w 1 pool

h 1 w

DWConv ( )

DWConv ( )

b

b

k

k

F F

F F





=

=
   (2) 

In Formula 2, poolF   is the feature map after pool, 

1DWConv
bk   and 1DWConv

bk    are horizontal bar convolution 

and vertical bar convolution, where 11 2
b

K N= +  , N  is the 

number of PKI Blocks, wF  is the horizontal convolution result 

feature map, and hF  is the vertical convolution result feature 

map. 

2.3 PFP Structure 

 

FIG. 4 PFP Structure 

The PFP structure is illustrated in FIG. 4. To fully leverage the 

feature maps generated during the encoding stage, the PFP 

structure processes multi-scale feature maps. In the context of 

building high-resolution remote sensing imagery, to prevent the 

fusion of overly low-level fragmented texture information of 

buildings, the feature maps from the last three stages undergo an 

upsampling operation, restoring the feature maps to a quarter of 

their original size. Each upsampling stage consists of a 3×3 

convolutional layer, a ReLU activation layer, and a twofold 

bilinear interpolation upsampling operation, ensuring that the 

building's detailed features are preserved. Finally, a 1 × 1 

convolutional layer followed by an eightfold bilinear 

interpolation upsampling operation restores the image to its 

original size, thereby accurately reconstructing the building's 

high-resolution features. 

 

3. Experiment 

The performance of MMAENet was evaluated on the WHU 

aerial remote sensing dataset using IoU, Recall, F1-score, and 

Precision as accuracy metrics (Huang et al., 2024). The 

experiments were conducted on an NVIDIA GTX 4090D 

graphics card, utilizing pre-trained weights from 300 epochs on 

the ImageNet1k dataset. Training was carried out for 30 epochs 

with the support of the mmsegmentation toolbox, a batch size of 

16, and the SGD optimizer, employing the PolyLR strategy for 

dynamic learning rate adjustment. 

The configuration of the Encode phase is detailed in TABLE 

1. The feature map dimensions were reduced to 1/2, 1/4, 1/8, 

1/16, and 1/32 of the original image size. The number of PKI 

Blocks (N) in the overall framework varied across different 

stages, with values of 4, 12, 20, and 4. The number of output 

channels for each layer was 32, 64, 128, 256, and 512, 

respectively. 

TABLE 1 configuration of Encode phase 

 
Feature Map 

Scale Size 
Out Channels 

PKI Block 

Num（N） 

Stem 1/2×1/2 32 - 

Stage 1 1/4×1/4 64 4 

Stage 2 1/8×1/8 128 12 

Stage 3 1/16×1/16 256 20 

Stage 4 1/32×1/32 512 4 

 

4. Analysis  

The comparative test results are presented in FIG. 5, as well as 

TABLE 2 and 3. By comparing the performance of Convnext (Z. 

Liu et al., 2022), PSPNet (Zhao et al., 2017) and Swin 

Transformer (Liu et al., 2021) on WHU Aerial imagery dataset, 

our results show that MMAENet superior performance across all 

metrics, including IoU, Recall, F1-score and Precision. 

MMAENet outperforms Swin Transformer, PSPNet, and 

Convnext in both background and building segmentation. 
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Image GT MMAENet Convnext Swin Transformer PSPNet 

FIG. 5 Processing results of different models 

 

TABLE 2 Different models are experimented in WHU Aerial imagery dataset 

 mIoU(%) mRecall(%) mF1-score mPrecision(%) 

Convnext 79.34 90.85 87.71 85.18 

PSPNet 85.91 94.80 92.09 89.79 

Swin Transformer 90.15 96.47 94.66 93.03 

MMAENet 91.69 97.54 95.56 93.78 

TABLE 3 WHU Aerial imagery dataset category metrics 

  Convnext PSPNet Swin Transformer MMAENet 

IoU(%) 
Background 94.19 96.29 97.54 97.94 

Building 64.50 75.51 82.76 85.44 

Recall(%) 
background 95.86 97.21 98.18 98.34 

Building 85.85 92.39 94.76 96.74 

F1-score 
Background 97.01 98.11 98.76 98.96 

Building 78.42 86.06 90.56 92.15 

Precision(%) 
Background 98.19 99.03 99.34 99.59 

Building 72.17 80.55 86.73 87.98 
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MMAENet leverages a parallel multi-scale convolutional 

kernel mechanism to efficiently extract multi-scale building 

features from high-resolution remote sensing imagery. The 

experimental results demonstrate that MMAENet significantly 

outperforms the comparison models in terms of both building 

IoU and mIoU. The building IoU reaches 85.44%, 

outperforming Swin Transformer, PSPNet, and ConvNeXt by 

2.68%, 0.93%, and 20.94%, respectively. The mIoU achieves 

91.69%, with improvements of 1.54% and 5.78% over Swin 

Transformer and PSPNet, respectively. This enhancement in 

performance directly reflects the effectiveness of the PKI 

Module in extracting multi-scale features. By utilizing parallel 

multi-scale convolutional kernels, the model is capable of 

capturing both local details and global structures of buildings 

from high-resolution remote sensing imagery, thereby 

accommodating the significant scale variations of buildings in 

high-resolution remote sensing imagery. 

Furthermore, MMAENet demonstrates enhanced capability in 

capturing long-range dependencies. In terms of Recall, 

MMAENet achieves a background recall rate of 98.34% and a 

building recall rate of 96.74%, surpassing Swin Transformer by 

0.16% and 1.98%, respectively. This advantage highlights the 

ability of the CAA module to effectively model long-range 

semantic dependencies between buildings and the background in 

high-resolution remote sensing imagery, thus mitigating 

missegmentation issues caused by the predominance of local 

features. In dense building area segmentation tasks, the CAA 

module significantly improves the accuracy of boundary 

localization through dynamic weighting. Additionally, the mean 

recall (mRecall) reaches 97.54%, outpacing the comparison 

models and further solidifying the robustness of the CAA 

module in long-range information extraction. 

With its multi-level feature fusion mechanism, the PFP 

structure effectively guarantees the optimal utilization of multi-

scale features. The ablation experiments presented in TABLE 4 

show that the PFP structure considerably enhances the model's 

efficiency in utilizing building features. Specifically, the mIoU, 

mRecall, mF1-score, and mPrecision metrics all show 

significant improvements over the PKINet baseline. MMAENet 

achieves mIoU, mRecall, mF1-score, and mPrecision values of 

91.69%, 97.54%, 95.56%, and 93.78%, respectively. These 

results demonstrate that the PFP structure, by fusing shallow 

high-resolution features with deep semantic-rich features, strikes 

an effective balance between local detail representation and 

global semantic understanding. In small building segmentation 

tasks, the PFP structure retains edge details using shallow 

features while leveraging deep features to suppress background 

noise, thereby enabling high-precision segmentation. 

TABLE 4 Ablation experiments on the WHU Aerial 

imagery dataset 

 
mIoU 

(%) 

mRecall 

(%) 

mF1-

score 

mPrecision 

(%) 

PKINet 89.30 96.25 94.16 92.31 

PKINet+

PFP 
91.69 97.54 95.56 93.78 

 

5. Conclusion 

This paper presents an innovative and efficient building 

extraction network, MMAENet, developed through a 

comprehensive analysis of multi-scale features of buildings and 

the long-range dependencies between buildings and background 

in high-resolution remote sensing imagery. MMAENet employs 

a PKI module a PFP structure to fully exploit building features 

across various levels and scales, while a CAA module effectively 

captures long-range dependencies between buildings and 

background, thereby significantly enhancing the accuracy of 

building extraction. To validate the efficacy of MMAENet, 

comparative experiments were conducted on the WHU Aerial 

Image Dataset, benchmarking against mainstream networks such 

as ConvNeXt, PSPNet, and Swin Transformer. The experimental 

results demonstrate that MMAENet achieves IoU, Recall, F1-

score, and Precision of 85.44%, 96.74%, 92.15%, and 87.98%, 

respectively, for building extraction from high-resolution remote 

sensing imagery. These metrics show improvements of 2.68%, 

1.98%, 1.59%, and 1.25% over Swin Transformer, highlighting 

its remarkable ability to precisely segment buildings and 

background regions in high-resolution remote sensing images. 

Notably, MMAENet proves highly effective in handling 

challenges such as blurred building edges and strong background 

interference, particularly in dense urban areas and complex 

backgrounds. In the future, Zero-Shot learning will be 

incorporated to enable the model to generalize to the 

segmentation of different types of buildings. 
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