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Abstract 

 

Autonomous vehicles perceive their surroundings through sensors such as LiDAR. However, snowflakes are distributed within the 

detection range of LiDAR sensors in snowy weather, generating noise points that compromise the sensor's detection performance. To 

mitigate this issue, we propose SnowSTNet, a point cloud denoising network that removes snowflake noise from LiDAR point clouds. 

In SnowSTNet, we adopt a two-branch network structure that encodes information in both spatial and temporal dimensions, and inputs 

the features obtained from the spatial branch into the temporal branch as guidance. We conducted comparative experiments on the 

SnowyKITTI dataset, and the results show that our method significantly outperforms others, achieving an MIoU of 97.19%. The 

proposed SnowSTNet ensures the reliable operation of self-driving vehicles in snowy weather and promotes the widespread application 

of autonomous driving technology in complex environments. 

 

 

1. Introduction 

With the rapid development of autonomous driving technology, 

vehicles have become capable of efficient perception and 

decision-making in clear weather. However, adverse weather 

such as snow still pose significant challenges to autonomous 

driving systems. LiDAR, as a core sensing device in autonomous 

driving systems, is susceptible to snowflake interference, 

generating a large number of noise points into the point cloud 

data. The presence of these noise points degrades data quality, 

leading to errors in environment perception and path planning, 

thus threatening vehicle safety. To overcome this challenge, we 

propose a LiDAR point cloud denoising method designed for 

snowy weather, which effectively removes snowflake noise 

while preserving critical environmental features, thereby 

enhancing the perception accuracy and operational safety of 

autonomous driving systems. 

Denoising methods for point clouds in adverse weather can be 

broadly divided into two categories: filter-based and deep 

learning-based methods(Qu et al., 2024). Filter-based denoising 

methods can be applied to most adverse weather by setting fixed 

parameters, without the need to train large amounts of point-by-

point labeled point cloud data. However, their performance is 

limited. Deep learning-based denoising methods are the 

application of neural networks in the field of point cloud 

denoising. Deep learning techniques were initially applied in 

point cloud semantic segmentation and later extended to point 

cloud denoising. Point cloud semantic segmentation is a multi-

classification task, whereas point cloud denoising is a binary 

classification task, a simplification of semantic segmentation. 

Considering the inherent properties of the noise points, 

researchers have improved classical semantic segmentation 

networks, and deep learning-based denoising methods have seen 

significant advancements in recent years. 

Researchers widely use filter-based denoising methods for 

LiDAR point cloud data. The most classical filters include the 
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Radius Outlier Removal (ROR) filter and the Statistical Outlier 

Removal (SOR) filter proposed by Rusu et al. (Rusu & Cousins, 

2011). Both approaches operate under the assumption that noise 

points exhibit spatial isolation. ROR operates by quantifying the 

local point density within a predetermined search radius, 

designating points as outliers when their neighborhood density 

falls below an established threshold. In comparison, SOR 

employs a statistical approach that evaluates the mean K-nearest 

neighbor distances, subsequently applying a universal distance 

threshold for outlier identification. Nevertheless, when relying 

solely on noise isolation characteristics, many authentic 

environmental features may be erroneously eliminated, resulting 

in substantial information loss. To address this issue, Charron et 

al. proposed the Dynamic Radius Outlier Removal (DROR) filter 

(Charron et al., 2018), improving on ROR by using a dynamic 

radius to adapt to variations in point cloud density, thereby 

avoiding misclassification issues caused by a fixed radius in 

long-range regions. Similarly, Kurup et al. introduced the 

Dynamic Statistical Outlier Removal (DSOR) filter (Kurup & 

Bos, 2021), which replaces the fixed global threshold in SOR 

with a dynamic threshold. Experimental results show that DROR 

and DSOR can effectively remove most noise points while 

retaining significant environmental features. In addition to spatial 

features, researchers have observed that noise points in adverse 

weather, such as snowy weather, generally have lower intensity 

values. Based on this observation, Park et al. proposed the Low-

Intensity Outlier Removal (LIOR) filter (Park et al., 2020). 

Building upon the aforementioned classical filters, several 

improved versions have been developed. Balta et al. proposed the 

Fast Cluster Statistical Outlier Removal (FCSOR) filter (Balta et 

al., 2018), which integrates voxel subsampling with the SOR 

filter. Duan et al. introduced the PCA-based Adaptive Clustering 

(PCAAC) filter (Duan, Yang, Chen, et al., 2021), which denoises 

by combining PCA downscaling with adaptive clustering. 

However, PCAAC performs poorly in long-range sparse regions. 

To address this limitation, Duan et al. further proposed the PCA-
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based Adaptive Radius Outlier Removal (PCAAR) filter (Duan, 

Yang, & Li, 2021), which integrates the Adaptive Radius Outlier 

Removal (AROR) method, effectively mitigating the impact of 

point cloud density variations. Roriz et al. proposed the Dynamic 

Low-Intensity Outlier Removal (DIOR) filter (Roriz et al., 2022), 

which combines the dynamic radius adjustment of DROR with 

the intensity thresholding mechanism of LIOR. Wang et al. 

introduced the Dynamic Distance-Intensity Outlier Removal 

(DDIOR) filter (Wang et al., 2022), which incorporates both 

distance and intensity information of the point cloud. Huang et 

al. proposed the Low-Intensity Dynamic Statistical Outlier 

Removal (LIDSOR) filter (Huang et al., 2023), which combines 

distance and intensity thresholds to reduce the risk of false 

denoising and accelerate processing speed. Finally, Yan et al. 

developed a denoising framework based on the disordered nature 

of snowflake noise points, which includes the Time Outlier 

Removal (TOR) filter (Yan et al., 2024), further enhancing 

denoising accuracy. 

Breakthroughs in neural networks have substantially enhanced 

the performance of deep learning-based denoising methods. 

Compared to filter-based methods, deep learning-based 

approaches can learn higher-dimensional noise features through 

network architectures, generally outperforming traditional filters. 

WeatherNet (Heinzler et al., 2020), proposed by Heinzler et al., 

was the first work to apply convolutional neural networks to point 

cloud denoising. WeatherNet improves upon the semantic 

segmentation network LiLaNet (Piewak et al., 2019) by reducing 

network depth and introducing dilated convolutions and Dropout 

layers, effectively enhancing denoising performance while 

reducing computational complexity. Subsequently, SunnyNet 

(Luo et al., 2022), proposed by Luo et al., further enhanced 

WeatherNet by incorporating attention modules such as SENet, 

CBAM, and ECANet, which effectively remove rain and fog 

noise. Bae et al. proposed a self-supervised learning method 

called SLiDE(Bae et al., 2022), which removes snow noise points 

without requiring labeled data. Similarly, Yu et al. introduced 

LiSnowNet (M.-Y. Yu et al., 2022), an unsupervised snow noise 

removal algorithm based on the MWCNN network. Building on 

WeatherNet and SalsaNext (Cortinhal et al., 2020), Seppänen et 

al. proposed 4DenoiseNet (Seppanen et al., 2023) and created the 

SnowyKITTI dataset. 4DenoiseNet incorporates temporal 

features and k-nearest neighbor convolution to significantly 

improve the removal of snow noise points. Recently, AdverseNet 

(Yan et al., 2025) has been proposed as a unified denoising 

network, which effectively removes noise caused by rain, snow, 

and fog, further improving the quality of point cloud data in 

complex environments. 

This study builds upon 4DenoiseNet, making improvements to 

address its limitations in temporal and spatial feature fusion. 

Based on previous research on the distribution characteristics of 

snowflake noise, we propose a Spatial-Temporal LiDAR Point 

Cloud Denoising Network for Autonomous Driving in Snowy 

Weather (SnowSTNet), which uses deep learning techniques to 

remove snowflake noise. Our method captures the dynamic 

changes during snowy weather by introducing temporal 

dimension information and effectively learns the local features of 

snowflake noise through spatial-temporal kNN-convolution. By 

analyzing sequential point cloud frames using k-nearest neighbor 

(kNN), the algorithm effectively exploits temporal correlations, 

which significantly improves denoising precision. In addition, we 

incorporate motion-guided attention (MGA) block into multiple 

network layers to encode information in both spatial and 

temporal dimensions. The features extracted from the spatial 

branch are used as guidance for the temporal branch, further 

optimizing the snowflake noise removal process. The 

architecture comprises spatial and temporal processing branches, 

with the former operating on the current point cloud P(t) and the 

latter analyzing the immediately preceding frame P(t-1). This 

combination enables the model to more accurately differentiate 

between noise points caused by snowflakes and environmental 

features. 

The main contributions of this study are as follows: 

1) We propose SnowSTNet, a point cloud denoising network 

based on a two-branch architecture that effectively handles 

LiDAR noise in snowy weather, thereby enhancing system 

perception. 

2) By utilizing the kNN-convolution operation to extract spatial 

and temporal features of point clouds, and applying joint 

encoding through a two-branch architecture with multiple MGA 

blocks, our method more effectively distinguishes noise points 

from non-noise points. 

2. Methodology 

2.1 Data Prepossessing 

This study uses a projection-based approach to process LiDAR 

point cloud data. This method maps the 3D coordinates (x,y,z) of 

the LiDAR point cloud to a spherical coordinate system and 

subsequently converts them into a 2D image coordinate system, 

providing a suitable input format for subsequent convolution 

operations. First, the 3D coordinates c=(x,y,z) of the LiDAR 

point cloud are mapped to a spherical coordinate system, then 

converted to the image coordinate system. The coordinate 

conversion is performed using the following equations: 

 

[
𝑢
𝑣
] = [

(
1

2
(1 − tan−1(

𝑦

𝑥
) ⋅ 𝜋−1)) ⋅ 𝑠𝑤

(1 − (sin−1(
𝑧

||c||
) + 𝑓𝑣𝑢𝑝) ⋅ 𝑓𝑣

−1) ⋅ 𝑠ℎ

] (1) 

 

The dimensions of the projected image are defined by 𝑠ℎ (height) 

and 𝑠𝑤 (width), with 𝑓𝑣 representing the sensor's total vertical 

field of view and 𝑓𝑣𝑢𝑝 denoting the upper portion of this FOV 

measured from the horizontal reference plane. These parameters 

generate image coordinates that form a three-channel (x, y, z) 

representation of the structured point cloud 𝑃𝑜 ∈ ℝ𝑠ℎ×𝑠𝑤×(3+𝐶𝑓), 

where 𝐶𝑓 corresponds to supplementary feature dimensions. 

 

2.2 Spatial Branch 

Traditional filter-based point cloud denoising methods primarily 

design filter algorithms based on certain a priori knowledge, such 

as noise points being isolated, LiDAR-acquired point clouds 

being denser near the sensor and sparser farther away (J. Yu et al., 

2025), and the disordered nature of snowflake noise points. 

However, these methods have limitations in handling complex 

environments, particularly in removing noise points while 

preserving environmental features. Inspired by the strategy in 

4DenoiseNet (Seppanen et al., 2023), we introduced a 

convolution operation based on kNN in the first layer of the 

network to enhance the neural network's ability to capture local 

spatial information. Unlike traditional convolution kernels based 

on pixel coordinates, kNN-convolution selects the k nearest 

neighbors of each point in metric space. This method enables 

better distinction of dynamic noise points, as illustrated in Fig. 1. 

Since performing kNN searches directly across the entire point 

cloud is computationally expensive, we limit the search to the 

local region around each point, thereby reducing computational 

complexity. In the current point cloud frame P(t), the kNN 

algorithm searches for the k nearest neighbors of each point. The 

search results are unfolded to generate neighborhood features, as 

described by the following equation: 
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Figure 1. Comparison of 2D convolution and kNN-convolution 

in distinguishing dynamic noise points and capturing local 

spatial features. 

 

𝑘𝑠(𝑝) = 𝑤 ∗ 𝑃𝑜
(𝑡)

= ∑ 𝑤(𝜕𝑝)

𝑘

𝜕𝑝=0

⋅ 𝑃𝑜
(𝑡)
(𝜓(𝑝))(𝜕𝑝) (2) 

 

Where 𝑤 represents the weight of the trainable convolutional 

kernel, and 𝜓(𝑝)  is the index function used to select the k 

nearest points from the neighboring points, defined as: 

 

𝜓(𝑝) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘(|𝑃𝑜𝑟
(𝑡)
(𝑝 − 𝜉,… , 𝑝 + 𝜉)

− 𝑃𝑜𝑟
(𝑡)
(𝑝)|) 

(3) 

 

Where, 𝑃𝑜𝑟
(𝑡)

denotes the range channel, and 𝜉  is a 

hyperparameter for the search range. 

 

2.3 Temporal Branch 

In LiDAR point clouds, snowflake noise points typically exhibit 

more chaotic characteristics compared to environmental features. 

This is due to the reflection of laser beams by airborne particles. 

Unlike the reflections from static surfaces, the reflections from 

snowflakes are more random, and this randomness is manifested 

as dynamic changes in the point cloud data. Studies show that 

reflections caused by snow are almost never found in the same 

position between adjacent scans, whereas reflections from static 

surfaces exhibit higher temporal consistency. Based on this 

observation and the strategy in 4DenoiseNet (Seppanen et al., 

2023), we introduce temporal information into point cloud 

denoising by performing contrastive analysis between adjacent 

frames, which effectively distinguishes dynamic noise points 

from static non-noise points. As shown in Fig. 2, we capture 

temporal information by searching the kNN set from the previous 

frame’s point cloud P(t−1), with the current frame's anchor point 

𝑎 ∈ ℝ𝑠ℎ×𝑠𝑤×3 as a reference. These anchor points correspond to 

the Cartesian coordinate channels of the current point cloud 

frame P(t). Similar to the spatial kNN search in P(t), the temporal 

kNN search is also conducted within the local neighborhood of 

the ordered point cloud. 

The kNN-convolution of the temporal branch is defined as: 

 

𝑘𝑡(𝑝) = 𝑤𝛥 ∗ 𝑑 = ∑ 𝑤𝛥(𝜕𝑝)

𝑘

𝜕𝑝=0

⋅ (𝑎(𝑝)

− 𝑃𝑜
(𝑡−1)

(𝜓𝛥(𝑝)))(𝜕𝑝) 

(4) 

 

Where 𝜓Δ(𝑝) is defined as: 

 

𝜓𝛥(𝑝) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘(|𝑃𝑜𝑟
(𝑡−1)

(𝑝 − 𝜉,… , 𝑝 + 𝜉)

− 𝑃𝑜𝑟
(𝑡)
(𝑝)|) 

(5) 

 

Figure 2. The Temporal-kNN-kernel capturing temporal 

information. 

 

2.4 SnowSTNet Design 

The network architecture of SnowSTNet is shown in Fig. 3. The 

network consists of two branches: the spatial branch processes 

the spatial features of the current frame’s point cloud P(t), and 

the temporal branch processes the temporal features of the 

previous frame’s point cloud P(t−1). The spatial branch contains 

kNN-convolution blocks that capture the kNN of each point. The 

temporal branch also performs kNN search, but the anchor points 

are provided by the spatial branch and are subtracted from the 

kNN points of the previous point cloud P(t−1). To further 

enhance feature fusion across time, we follow the design idea of 

MF-MOS (Cheng et al., 2024), where the two branches are 

connected through multiple MGA blocks. The encoded features 

from the previous frame’s point cloud are combined with the 

features of each layer of the current frame’s point cloud and 

passed as input to the subsequent encoding modules of the 

temporal branch. 

The feature fusion process can be expressed as: 

 

𝐹𝑠 = sigmoid(Conv1×1(𝐹spatial))⨂𝐹temporal (6) 

 

The equations represents that the range image feature 𝐹spatial is 

passed through a 1×1 convolution to generate the spatial attention 

weight map, which is then activated by a sigmoid function to 

constrain the weights within the range of [0, 1]. Subsequently, 

the weight map is element-wise multiplied with the residual 

image feature 𝐹temporal  to obtain the fused spatial attention 

feature 𝐹𝑠. This process effectively highlights important spatial 

regions and suppresses background noise. 

 

𝐹c = softmax(Conv1×1(Pool(𝐹𝑠))) × 𝐶 (7) 

 

The equations define the channel attention mechanism. Global 

average pooling is first applied to 𝐹𝑠, which is passed through a 

1×1 convolution and softmax to generate channel-wise weights. 

These weights modulate the spatial attention features, producing 

the fused feature 𝐹c . Finally, a residual connection adds the 

original input to the weighted features. 

 

𝐹final = 𝐹c + 𝐹spatial (8) 

 

We adjusted the channel-to-image aspect ratio in the PixelShuffle 

operation of the encoder to match the modified rectangular 

pooling operation. 
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Figure 3. Architecture of our proposed SnowSTNet. 

 

3. Experiments 

3.1 Datasets 

In the experiments of this study, we used a publicly available 

adverse weather point cloud dataset—the SnowyKITTI dataset 

with snow labels. This dataset consists of snow-affected LiDAR 

point cloud data generated by a snowfall simulation algorithm. 

We classified the adverse weather in the dataset based on 

different snowfall rates. Additionally, we divided the dataset into 

three parts: training set, validation set, and test set. The specific 

details of the dataset split are shown in Table 1. 

 

Classification Light Medium Heavy 

Snowfall Rate [0.5, 1.5) [1.5, 2.5) [2.5, 3.0] 

Number of 

Frames 
20546 10539 12467 

Train 0,2,19 1,5,9,10 6,13,15,21 

Valid 17,18 3,4,20 16 

Test 8 11,12 7,14 

Table 1. Split of the Adverse Weather Dataset under Snowfall 

 

3.2 Comparison with the State-of-the-art Methods 

In the quantitative experiments, we use Mean Intersection-over-

Union (MIoU) as the evaluation metric: 

 

IoU𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
 (9) 

 

MIoU =∑IoU𝑖

𝑐𝑙𝑠

𝑖=1

 (10) 

 

Where 𝑇𝑃𝑖  𝐹𝑃𝑖  𝐹𝑁𝑖  represent the number of true positives, 

false positives, and false negatives for the i-th class, respectively. 

The overall mean IoU (mIoU) is computed by averaging the 

class-wise IoUs across all categories. 

We conducted denoising experiments under snowy weather to 

compare SnowSTNet with state-of-the-art (SOTA) methods. The 

quantitative results, presented in Table 2, include IoU for 

individual categories, MIoU across all categories, as well as the 

average runtime and number of parameters. Some baseline 

results, such as those for AdverseNet (Yan et al., 2025), are 

directly adopted from their original publication. The comparison 

includes deep learning-based and filter-based methods. In 

comparison to these methods, the results indicate that 

SnowSTNet achieves the highest IoU and MIoU across the Light 

Snow, Medium Snow, Heavy Snow, and Clear categories. 
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SOR 10.36 12.23 14.42 85.46 30.62 70.41 2 

ROR 10.70 15.23 20.73 93.46 35.03 67.02 2 

DSOR 67.00 67.02 63.88 98.68 74.15 61.44 3 

DROR 54.00 59.44 59.84 98.27 67.89 110.48 4 

LiSnowNet 40.16 25.10 18.18 97.76 45.30 2.44 1.4M 

4DenoiseNet 96.21 95.74 95.05 99.90 96.73 34.03 0.6M 

SnowSTNet 97.73 95.99 95.11 99.92 97.19 32.84 2.6M 

Table 2. Quantitative Results of Denoising Experiments in 

Snowy weather 

 

Through Table 2, we observe that the MIoU of SOR and ROR is 

lower than that of DSOR and DROR, which indicates that DSOR 

and DROR, as improvements over SOR and ROR, effectively 

leverage the prior knowledge that LiDAR point clouds exhibit 

higher density at close range and sparser distribution at greater 

distances. As deep learning-based comparison methods, 

LiSnowNet and 4DenoiseNet prioritize lightweight design, and 

thus use distance views to represent the point cloud in the 

network. This approach allows them to learn complex noise 

features, resulting in generally higher MIoU compared to filter-

based methods. However, LiSnowNet performs poorly in snow 

denoising experiments, mainly because it relies on a set of 

complex threshold hyperparameters to achieve higher algorithm 

efficiency. While LiSnowNet’s Average Runtime is significantly 

lower than that of other methods in snow denoising experiments, 

its reliance on threshold hyperparameters is not adaptable to the 

varying snowfall rates of Light Snow, Medium Snow, and Heavy 

Snow, leading to poor performance. Our proposed SnowSTNet 

achieves the highest IoU and MIoU across different levels of 

snowfall, with an average runtime slightly shorter than that of the 

similarly performing 4DenoiseNet. This demonstrates that 

SnowSTNet effectively learns complex noise features under 

snowy weather. 
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DROR LiSnowNet 4DenoiseNet SnowSTNet 

    

 
Figure 4. Visualization of denoising results for snowy weather. 
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We present the qualitative results of the denoising comparison 

experiments under snowy weather, as shown in Figure 4. For the 

sake of comparison, we display the original point clouds from 

three different levels of snowfall, as well as the denoised results 

for each method. The blue points represent non-noise points, 

while the red points represent snowflake noise points. Observing 

the denoising results of SOR and ROR, we find that both leave a 

large number of noise points unremoved, but ROR has a better 

ability to retain environmental features compared to SOR. Upon 

examining the denoising results of DSOR, we observe that its 

performance is better for medium snow and heavy snow 

compared to light snow. This reveals a drawback of the DSOR 

method: it cannot achieve consistent denoising performance 

across point clouds with different snowfall rates using the same 

set of parameters. In contrast, DROR exhibits roughly similar 

denoising performance across all three snowfall rates, indicating 

that DROR is more robust to point clouds with varying degrees 

of snowfall. LiSnowNet generates denoised results with 

substantial residual noise, and its performance falls behind 

DSOR and DROR. This indicates that setting too many threshold 

hyperparameters, while shortening the model's average runtime, 

also limits the advantage of deep learning over traditional filter 

parameter settings, making it unable to automatically adjust the 

threshold hyperparameters according to different snowfall rates. 

4DenoiseNet effectively removes almost all the noise points, 

achieving excellent denoising performance. Our proposed 

SnowSTNet achieves a slight improvement over 4DenoiseNet. 

Since both methods already achieve near-perfect denoising, 

further improvements in accuracy become increasingly 

challenging. Overall, the denoising results demonstrate that 

SnowSTNet performs well across different snowfall rates. 

 

3.3 Ablation Study 

To assess the contribution of the spatial-temporal kNN-

convolution and MGA blocks, we performed ablation 

experiments on four modified versions of SnowSTNet. Table III 

summarizes their IoU performance, inference time, and 

parameter count. This study examines the effects of using 

traditional 2D convolution layers versus kNN-convolution 

modules, as well as the impact of incorporating multiple MGA 

blocks. 

The results in Table III highlight the influence of different 

convolution types and the use of MGA blocks on model 

performance and computational efficiency. When using 2D 

convolution without MGA, the model achieves IoU scores of 

95.99%, 94.38%, and 93.65% for Light Snow, Medium Snow, 

and Heavy Snow, respectively, while maintaining the shortest 

runtime (21.69 ms). Introducing MGA within the 2D convolution 

framework provides a slight improvement in Light and Medium 

Snow IoU (+0.39% and +0.11%, respectively) but has a 

negligible effect on Heavy Snow (-0.11%), with an almost 

unchanged runtime. 

In contrast, replacing 2D convolution with kNN-convolution 

significantly enhances model performance across all snowfall 

rates. Without MGA, kNN-convolution improves IoU scores for 

Light, Medium, and Heavy Snow by +1.45%, +1.24%, and 

+1.37%, respectively, compared to the baseline 2D convolution 

model. However, this performance gain comes at the cost of 

increased runtime (31.92 ms vs. 21.69 ms). When MGA is 

integrated with kNN-convolution, the model achieves the highest 

IoU across all categories (97.73%, 95.99%, and 95.11%), 

demonstrating that the combination of kNN-convolution and 

multiple MGA blocks yields the best overall performance. 

Nevertheless, this configuration also results in the highest 

computational cost, with the longest runtime (32.84 ms), 

highlighting the trade-off between performance and efficiency. 

These findings suggest that while kNN-convolution outperforms 

2D convolution in denoising under Snowfall, incorporating 

multiple MGA blocks further enhances performance, particularly 

in Light and Medium Snow. However, the increased 

computational overhead must be considered for real-time 

applications. 

 

First 

conv 
MGA 

Light 

IoU(%) 

Medium 

IoU(%) 

Heavy 

IoU(%) 

Runtime 

(ms) 
Parameters 

2D - 95.99 94.38 93.65 21.69 2.6M 

2D ✓ 96.38 94.49 93.54 21.79 2.6M 

kNN - 97.44 95.62 95.02 31.92 2.6M 

kNN ✓ 97.73 95.99 95.11 32.84 2.6M 

Table 3. Ablation Study on the Performance Impact of Different 

Modules 

 

4. Conclusion 

This paper proposes a novel point cloud denoising network, 

SnowSTNet, aimed at addressing the noise issues in LiDAR point 

cloud data under snowy weather. By adopting a dual-branch 

architecture that processes spatial and temporal information 

simultaneously, SnowSTNet effectively removes snowflake 

noise points and restores more accurate environmental details. 

Experimental results show that, compared to other methods, 

SnowSTNet achieves the highest accuracy in both MIoU and IoU 

metrics, consistently delivering excellent denoising performance 

across various snowfall rates. By improving LiDAR perception 

capabilities, SnowSTNet enables more reliable environmental 

understanding for autonomous vehicles, thereby enhancing 

system robustness and deployment in adverse weather. 
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