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Abstract 
 
The safety of autonomous vehicles (AVs) remains a major challenge, particularly within specific Operational Design Domains 
(ODDs). While physical testing lacks scalability, computer simulations effectively evaluate AV safety. However, most studies rely 
on virtual maps generated by simulation software, neglecting real-world complexities and focusing on single intersections rather than 
broader road networks. To fill the gap, this study lie in the development of a novel simulation workflow combining CARLA and 
VISSIM simulation softwares using High-definition (HD) maps while reducing data collection efforts and enabling the seamless 
integration of simulation results. Additionally, this study validates the effectiveness of emergency braking indicators within the AV 
simulation, confirming their applicability in assessing AV safety performance.  
The study area conducted near Tainan-City High-Speed Railway Station, Taiwan, analyzes emergency braking events across a 
network of three intersections and four road segments to identify high-risk zones. HD maps of the study area data were integrated 
into the CARLA to generate realistic traffic scenarios, while VISSIM modeled traffic flow and signal phases. 
The results indicate that emergency braking hotspots are concentrated at intersections, turns, and sharp curves near safety islands. 
This finding suggests that AVs make slower decisions than human drivers due to complex perception and computational models. 
Additionally, it highlights the importance of HD maps and traffic flow analysis in AV simulations and provides recommendations for 
improving AV safety, including simplifying road layouts, minimizing sharp turns, and restricting arbitrary lane changes. 
 
 

1. Introduction 

Numerous study have shown that autonomous vehicles (AVs) 
provide benefits, such as improved road safety and traffic 
outcomes (Mousavi et al., 2020), lower emissions, minimal 
driver workload (Balfe et al., 2015). and less traffic congestion 
(Khastgir et al., 2015). Some vehicle manufacturers claim that 
self-driving cars could significantly improve traffic safety since 
94% of crashes are attributable to human error (Singh, 2015). 
However, traffic crashes tend to be a multiple causal and 
complex problem, so traffic safety experts must address these 
multifaceted components. For these reasons, ensuring AV safety 
remains a critical challenge, requiring rigorous assessment. The 
Operational Design Domain (ODD) defines the conditions 
under which AVs operate safely, considering factors such as 
weather, speed, and traffic flow (Thorn et al., 2023). To refine 
ODDs, extensive testing is essential, but real-world validation is 
costly and lacks scalability (Piazzoni et al., 2021). As a result, 
computer simulations have become a preferred alternative for 
evaluating AV performance under various conditions. 
 
Compared to physical testing, simulations provide a controlled 
environment to replicate complex traffic scenarios, allowing 
researchers to evaluate AV behavior under diverse weather 
conditions, lighting, road geometry, and driving algorithms 
(Campanile et al., 2020). However, most existing studies rely on 
simplified virtual maps rather than real-world networks, 
limiting the authenticity of their findings (Dosovitskiy et al., 
2017). For instance, Talamini et al. (2020) found that strict rule 
compliance in AVs could increase congestion in high-density 
traffic, while Wang et al. (2021) demonstrated that skewed 
intersections pose significant challenges for AV perception and 
navigation. Similarly, Tahir & Alexander (2022) developed a 
verification framework in CARLA to assess AV safety under 

various intersection scenarios and weather conditions, 
highlighting the role of dynamic traffic interactions. Despite 
these contributions, most studies focus on predefined simulation 
settings, failing to fully replicate real-world traffic complexities. 
To bridge this gap, this study integrates high-definition (HD) 
maps into the CARLA driving simulator, enhancing traffic 
realism and AV perception. HD maps provide detailed 
geospatial information, including road geometry, lane markings, 
and traffic signs, improving simulation accuracy and reducing 
the cost and effort of manual network creation (Liu et al., 2020). 
 
Previous studies utilized several simulators that are available for 
testing autonomous vehicles, including RRADS (Baltodano et 
al., 2015), CarCraft, TORCS, Udacity (Wymann et al., 2000), 
and CAR Learning to Art (CARLA). Not all consider the 
dynamics of a complex environment (such as intersections, 
pedestrians, and traffic rules) that distinguish urban driving 
from track racing. An accurate simulator should clearly outline 
the 3D environment and have precise lower-level vehicle 
calculations regarding the vehicle's physics. There is a constant 
trade-off between 3D environment fidelity and simplified 
vehicular dynamics. Therefore, this study aimed to utilize a 
realistic simulator, CARLA, to analyze the effects of both 
autonomous and semi-assisted driving on vehicular traffic 
networks. One of clear advantages of CARLA is an open-source 
simulator for autonomous driving research that provides 
customization and control over the environment, restricted 
kinematic behavior, and script and sensor setting specifications 
(Dosovitskiy et al., 2017; Tahir & Alexander, 2021). 
Furthermore, this study incorporates VISSIM traffic simulation 
software to model dynamic traffic flow and signal phases, 
crucial for assessing AV decision-making in complex 
environments (Shin et al., 2024). Combining CARLA and 
VISSIM using HD maps provides a realistic and scalable 
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approach to testing autonomous vehicles (AVs) in complex 
traffic environments. This integration enhances traffic realism, 
AV perception, and decision-making analysis, making it ideal 
for ODDs validation and AV safety assessments. 
 
 Unlike studies limited to a single intersection, this research 
expands the scope by examining a more complex road network 
consisting of three intersections and four segments, allowing for 
a more comprehensive assessment of AV behavior in diverse 
urban settings. Different road networks create unique challenges 
for autonomous vehicles (AVs), affecting safety in various ways. 
These differences impact AV performance, making it essential 
to test them in diverse environments. Studying AV behavior in 
various road conditions helps identify risks, improve safety, and 
refine AV decision-making for real-world driving. 
 
Safety metrics are quantifiable measures used to assess the 
performance of autonomous vehicles (AVs) in avoiding 
accidents and ensuring safe operation. One key safety metric is 
the frequency of emergency braking, which indicates how often 
an AV must apply sudden braking to prevent a collision. When 
a crash becomes unavoidable, the emergency braking system is 
activated to minimize impact severity. One major cause of 
traffic accidents is a driver’s failure to brake in time or the 
application of insufficient braking torque during emergencies 
(Breuer et al., 2007). Therefore, analyzing the frequency and 
effectiveness of emergency braking provides valuable insights 
into AV safety. By studying how often and under what 
conditions emergency braking occurs, researchers can assess the 
risk of collisions with other vehicles or pedestrians and improve 
AV decision-making to enhance road safety (Schram et al., 
2015). 
 

2. Methodology 

2.1 Study Area 

The study focuses on a road network comprising three 
intersections and four segments near Tainan City High-Speed 
Railway Station, Taiwan, selected to examine safety issues 
where traffic converges. Specifically, the study area includes the 
intersections of Guiren Blvd with Guiren 7th Road and Guiren 
10th Road, as well as the connection between Guiren 7th Road 
and Guiren 10th Road. Figure 1 provides a Google image of the 
location. 
 
This intersection was selected due to its proximity to High-
Speed Rail Station and outlet mall, making it a high-traffic area 
with significant pedestrian and vehicular activity. To analyze 
intersection safety under varying traffic conditions, we modified 
four key traffic attributes: traffic volume, traffic signal timing, 
the ratio of heavy vehicles to pedestrians, and the configuration 
of hazardous driving behaviors. By altering these real-world 
traffic conditions, we aimed to assess their impact on 
intersection safety and identify potential risk factors.In addition 
to intersection safety analysis, we also evaluated the safety 
conditions of AVs by selecting a specific test route for AV 
assessment. This route includes four distinct driving scenarios 
(Points 1–4), with a starting point (S) and an endpoint (E), as 
shown in Figure 1. The light blue line connects these points, 
representing the designated test route. 
 

 

Figure 1. Google map image of the route in the study area 

 
2.2 Framework of this study 

The scenario processing is divided into three key stages to 
simulate scenarios for testing the ODD of AV. In the first stage, 
real-world data is collected and pre-processed to create a high-
precision map. This involves gathering traffic flow data, signal 
timings, pedestrian activity, and vehicle proportions. For HD 
map preprocessing, Roadrunner is used to adjust the map size 
and set geographic coordinates. The second stage involves 
simulation setup and execution. The OpenDRIVE format map 
data is imported into VISSIM to establish traffic conditions, 
while the same data is imported into CARLA to define 
environmental conditions. In VISSIM, the simulation workflow 
involves reconstructing the road network based on real-world 
data, configuring traffic conditions by defining vehicle flow, 
speed, and lane settings, and running the traffic model to 
analyze AV performance under various scenarios. Meanwhile, 
CARLA is used to configure environmental parameters such as 
weather, road surfaces, and traffic signals. Critical traffic events, 
including emergency braking and pedestrian crossings, are 
simulated to evaluate AV responses. Data collected from 
CARLA, including vehicle speed, position, and acceleration, is 
processed to extract key insights for safety evaluation. A co-
simulation between VISSIM and CARLA is performed via 
CARLA’s Python API and a bridge assistant. During the 
simulation, key parameters are configured, events are triggered, 
relevant data is extracted, and the results are formatted into a 
report for analysis.  
 
The final stage focuses on analyzing the collected simulation 
data. GIS analysis tools are used for hotspot analysis, and key 
safety metrics such as emergency braking are calculated. These 
analyses allow for a comprehensive evaluation of AV safety 
performance under different traffic conditions. Through this 
structured process, we can systematically simulate, analyze, and 
assess AV behavior across varying traffic scenarios, ensuring a 
thorough evaluation of their safety and operational reliability. 
The procedure from the first step to the third step is illustrated 
in the diagram in Figure 2. 
 
The Route Setting Framework established in this study (Figure 
3) outlines the process of path setup and data analysis, including 
waypoint generation, vehicle generation and path planning, and 
final data analysis. Waypoints are generated and plotted on a 
HD map, with road segments and nodes exported as images, 
while node positions are saved in a CSV file. The start and end 
points of the route are selected, and the generated route points 
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are exported as Route_point.csv. Next, Co-Simulation is 
conducted using the exported route points for vehicle generation 
and path planning. Finally, Data Analysis is performed by 
processing the emergency braking event report, calculating 
braking incidents within 5 meters of the path, and analyzing the 
navigation data of the AV. 
 

Figure 2. Framework of this study 
 

 

Figure 3. Route setting framework 

 
In HD maps, waypoints are predefined points used to define 
critical positions in a path, route, or navigation system. In 
autonomous vehicles (AVs), waypoints determine the driving 
trajectory, guiding the vehicle through turns, stops, and 
accelerations, while also serving as navigation reference points. 
They help the system localize and plan optimal routes. To 
designate a route for an AV in CARLA, waypoints must first be 
integrated into the simulation environment. The process of 

creating navigation nodes on HD maps in CARLA consists of 
four key steps. 
 
Step 1: Waypoint Creation  
Waypoints are generated at one-meter intervals across the entire 
HD map in CARLA, as shown in Figure 4, to define precise 
vehicle paths. These green points capture lane geometry, road 
curvature, and intersections, ensuring smooth navigation in the 
simulation.  
 

 
Figure 4. Waypoints 

 
Step 2: Waypoint ID Assignment  
If two waypoints are within 0.2 meters on the same road, they 
are assigned the same ID to group closely spaced points. This 
process helps simplify the representation of the road network by 
reducing redundant waypoints. After assigning IDs, the 
waypoints (blue points) are exported, as shown in Figure 5.  
 

 
Figure 5. Waypoints ID 

 
Step 3: Road Segment Coloring  
Road segment coloring, as shown in Figure 6, is used to visually 
distinguish different sections of the road network. Each color 
indicates a distinct road segment, including intersections with 
turns and lane changes, facilitating the creation of navigation 
nodes.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-929-2025 | © Author(s) 2025. CC BY 4.0 License.

 
931



 

 
Figure 6. Road segment colors 

 
Step 4: Navigation Node Marking: 
Navigation nodes were marked with blue dots, with the start and 
end points of each road segment numbered, as shown in Figure 
7. Arrows were used to indicate the direction of travel. This step 
simplifies the selection of starting and ending positions, 
ensuring efficient navigation path generation for AV 
simulations. 

 

 
Figure 7. Navigation node marking 

 

 
Figure 8. Navigation node marking 

After marking the navigation nodes, we generate node numbers 
and their coordinates. To design a test route, we select 
waypoints based on these node numbers along the route. The 
selected waypoints, shown in the Figure 8, are then stored in a 
CSV file. If the route only specifies the start and end points 
without following a predefined waypoint sequence, the A-star 
algorithm is used to determine the shortest path automatically. 
 
2.3 Co-simulation   

The primary objective of co-simulation is to integrate the 
strengths of both platforms for a more realistic simulation 
environment. VISSIM accurately simulates macro-level traffic 
flow, while CARLA provides detailed micro-level vehicle 
dynamics and environmental perception. Co-simulation requires 
real-time data transmission between CARLA and VISSIM, 
achieved through TCP (Transmission Control Protocol) 
connections, with clients and servers set up in both platforms. 
Simulation data, such as vehicle positions and speeds, is 
synchronized using ROS (Robot Operating System) topics and 
services to ensure consistency between the two simulators. For 
example, vehicle positions in CARLA must align with traffic 
flow in VISSIM. 
 

 
Figure 9. Co-simulation framework between CARLA and 

VISSIM 
 
As shown in Figure 3, we employed the Python API to establish 
co-simulation via TCP/IP, enabling coordinated control and 
data exchange between CARLA and VISSIM. The CARLA 
Python API manages environment and sensor setup, including 
configuring maps, vehicles, pedestrians, and onboard sensors 
(cameras, radar, and LiDAR) for data collection and perception. 
The VISSIM Python API interfaces with VISSIM via COM 
(Component Object Model) to handle traffic network modeling 
and vehicle behavior modeling, defining traffic parameters 
(signals, lanes, traffic flow) and behavioral models (car-
following, lane-changing). 

 
3. Result and Discussion 

3.1 Simulation present 

The simulation route begins at point S, located at the 
intersection of Guiren Blvd and Guiren 7th Road, and proceeds 
through Scenarios 1 to 4 before reaching the endpoint E on 
Gaofa 1st Road (Figure 1). The simulation covers various 
signalized intersection scenarios, including left turns at a green 
light, lane positioning for left turns onto the outer lane of 
Guiren 7th Road’s two-lane section, straight driving in the outer 
lane, and right turns at a green light. A detailed explanation of 
the route, including its street view and representation in the 
CARLA simulation, can be found in Table 1. 
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Real world Simulation 
Signalized intersection left turn – 
At the intersection of Guiren 10th 
Road and Guiren Blvd, the vehicle 
makes a left turn at a green light, 
continues straight, and prepares to 
turn left onto the two-lane section 
of Guiren 7th Road.  

 
 

Signalized intersection straight 
driving – At the intersection of 
Guiren 7th Road and Guiren Blvd, 
the vehicle continues straight in the 
outer lane of the two-lane section 

 
 

 
Signalized intersection right turn – 
At the intersection of Guiren 7th 
Road and Gaofa 1st Road, the 
vehicle makes a right turn at a 
green light, continues straight in 
the outer lane of the two-lane 
section, and prepares to merge into 
the outer lane of Gaofa 1st Road’s 
three-lane section. 

 

 
 

 
Table 1. A detailed explanation of the selected route 

 
3.2 Simulation present 

In this study, we also evaluate the impact of crash risk on an 
AV navigating a specified road network. Using predefined 
nodes along road segments on the map, we define a start point, 

intermediate waypoints, and an endpoint to establish the AV's 
trajectory. To analyze the AV's safety performance, we utilize a 
emergency braking hotspots as a key safety indicator. The 
emergency braking occurrences of AVs during each simulation 
were recorded automatically by CARLA. These data points 
were subsequently processed using GIS tools to visualize 
hotspot distributions. Figure 10 illustrates the spatial 
distribution of emergency braking hotspots on the AV's route as 
well as on other vehicle paths. The blue trajectory represents the 
AV’s intended driving path, while red points indicate locations 
where emergency braking was triggered. According to Figure 
10, emergency braking events are notably concentrated at 
intersections and lane-changing areas, particularly around point 
③ , suggesting potential hazards related to road design or 
external traffic interactions. The high density of emergency 
braking hotspots at the intersection near point ③ indicates a 
zone of increased conflict, possibly due to unexpected vehicle 
movements or insufficient reaction time. Additional red markers 
along the AV’s path, particularly near the starting section (①) 
and lane-changing area (②), imply that AV stability might be 
affected during these transitions. 
 

 
Figure 10. The spatial distribution of emergency braking 

hotspots 
 
To quantify the impact of emergency braking at this intersection, 
we defined 14 key intersection reference points, including road 
corners, merging areas, and a sharp traffic island, to better 
capture critical braking locations. By computing the Euclidean 
distance between each braking event and its nearest reference 
point, we found that the majority of incidents occurred within 
50 meters of these critical points as shown in Figure 11. The 
highest concentration of emergency braking was observed at 
sharp turns and merging lanes, where sudden stops are likely 
due to abrupt lane changes, congestion, and reduced 
maneuvering space. The map visualization further highlights 
clusters of braking events, particularly at locations requiring 
significant speed reduction. To enhance traffic safety, we 
recommend optimized signal timing, clearer lane markings, and 
speed control measures to mitigate sudden braking at high-risk 
zones. 
 
Overall, the GIS-based spatial analysis highlights key risk-
prone zones in AV navigation. The concentration of emergency 
braking events at intersections and lane-changing regions 
suggests that AV decision-making algorithms may require 
further calibration to improve responsiveness in complex urban 
traffic conditions. This insight can inform future improvements 
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in AV control algorithms to enhance safety and adaptability in 
real-world environments. 
 

 
Figure 11. The emergency braking distance distribution 

 
4. Conclusions  

This study aims to enhance AV safety by integrating high-
precision maps with simulation-based testing in CARLA. By 
incorporating real-world data and conducting co-simulations 
with VISSIM, we create realistic traffic scenarios, improving 
the reliability and accuracy of safety assessments. The study 
focuses on a single AV route across a network of three 
intersections and four road segments to evaluate its ODD and 
safety performance. 
 
The hotspots for AV emergency brakings are primarily 
concentrated at intersections, turns, and V-sharp areas near 
safety islands. These locations present unique challenges for 
AV decision-making, highlighting the complexities of AV 
navigation in dynamic traffic environments. Our results were 
compared with existing studies and found to be consistent with 
current research findings. Zhang et al. (2023) indicate that AVs 
typically make decisions more slowly than human drivers in 
complex traffic scenarios. This discrepancy arises because AVs 
rely on sophisticated perception and computation models to 
ensure driving safety. Unlike human drivers, AVs require 
additional time and data processing to manage interactions and 
make decisions effectively. 
 
The increased decision-making time for AVs underscores the 
challenges posed by dynamic traffic conditions and intricate 
road layouts. While human drivers leverage intuition and 
experience to react swiftly, AVs must process vast amounts of 
sensory input to navigate safely. Consequently, the 
computational complexity involved in AV decision-making 
necessitates further advancements in real-time processing 
algorithms and predictive modeling. Future research should 
focus on optimizing AV response times and enhancing their 
adaptability in highly dynamic and complex traffic 
environments. 
 
Our study also found that high traffic flow significantly impacts 
the ODD, especially at intersections, where unpredictable road-
user behaviors (e.g., red-light violations, failure to stop) pose 
risks (Morris et al., 2021). Additionally, lane-splitting by 
motorcycles affects AV safety, highlighting the need for traffic 
flow management. To mitigate risks, we recommend limiting 
mixed traffic flow to reduce unpredictable interactions between 
vehicles. Additionally, controlling the overall traffic volume can 
improve the efficiency of autonomous vehicle (AV) decision-
making. Furthermore, enhancing AV perception systems is 

essential for better detection of road users, ensuring safer 
navigation in various traffic conditions. 
 
To improve AV safety, we recommend that local governments 
consider the following when opening routes to AVs. First, road 
layouts should be simplified by reducing sharp turns and 
complex intersections. Additionally, avoiding sharp traffic 
island designs to minimize emergency braking occurrences. 
Lastly, restricting arbitrary lane changes to enhance AV driving 
stability, ensuring smoother and safer operations on the road. 
 
Despite its contributions, this study has three key limitations. 
First, the study area was limited, as only one intersection was 
analyzed due to time constraints. Future research should explore 
various road types and more complex intersections, such as 
roundabouts. Second, there was a lack of real-world validation, 
as video recordings to verify whether the simulation data 
accurately reflected actual traffic conditions. Future research 
should deploy dashcams on AVs and install intersection 
cameras to compare real-world near-collision incidents with 
simulation-based emergency braking reports for virtual-real 
integration. Lastly, the study covered only a partial subset of 
possible scenarios. Future studies should expand scenario 
testing to develop more comprehensive safety assessment 
strategies for AVs. By addressing these limitations, future 
research can further refine AV safety evaluations and support 
the real-world deployment of AVs. 
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