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Abstract 

 

The Simultaneous Localization and Mapping (SLAM) technology is fundamental to the autonomous navigation of Unmanned Aerial 

Vehicles (UAVs) and holds significant value for the realization of UAV-based bridge inspections. However, conventional SLAM 

methods for UAV face challenges related to low continuity and weak reliability across different scenes, making it difficult to meet the 

requirements for comprehensive bridge localization and mapping. To address the limitations of existing UAV-based SLAM approaches, 

we propose a seamless SLAM system that integrates IMU, LiDAR, and RTK. In open scenes (such as the top and sides of a bridge), 

high-precision absolute localization is achieved by fusing IMU and RTK through an iterative error-state Kalman filter (IESKF). In 

occluded environments (such as the underside of a bridge), an IMU/LiDAR odometry is used to recursively estimate the UAV’s pose. 

In cross-scene situations (when the UAV passes through a bridge arch), the quality of sensor data is evaluated based on an interactive 

multi-model (IMM), and an adaptive switching mechanism is employed between two localization modes—IMU/RTK mode and 

IMU/LiDAR mode—ensuring smooth and seamless multi-source fusion localization even in the presence of sensor signal fluctuations. 

To validate the effectiveness of our method, extensive tests were conducted on several real-world bridge scenarios. The results show 

that our method can achieve centimetre-level cross-scene localization accuracy in bridge inspection applications, which indicates its 

feasibility and effectiveness. 

 

 

1. Introduction 

Bridge inspection is crucial for the maintenance of public 

transportation, yet traditional manual inspection methods are 

inadequate in meeting the demands for efficiency and safety. 

UAV-based inspection technologies (Ri et al., 2024) provide an 

efficient solution by enabling rapid and comprehensive scanning 

of bridges. Nevertheless, due to GNSS signal blockage or 

interference beneath large bridges (Jiang et al., 2021), UAV-

based simultaneous localization and mapping (SLAM) methods 

face challenges in achieving continuous and reliable localization, 

which hampers inspection efficiency. Therefore, further research 

on seamless localization techniques is crucial for enhancing the 

intelligence level of bridge maintenance. 

Current UAV-based SLAM methods for infrastructure 

inspections typically incorporate sensors such as IMU, LiDAR, 

and RTK. IMU/RTK fused methods can achieve centimetre-level 

absolute accuracy in open spaces with good RTK signal 

availability (Han et al., 2017; Farrell et al., 2000). However, 

GNSS signals may lost under bridge, and IMU errors cannot be 

effectively corrected. LiDAR-inertial odometry (LIO) integrate 

point clouds with high-frequency IMU motion (Wu et al., 2023), 

enables efficient localization in the absence of GNSS. However, 

in large bridges, LIO errors tend to accumulate due to the sparse 

point clouds in open areas (Xu et al., 2022). LiDAR/IMU/RTK 

fused methods can achieve high precision (Li et al., 2023), but 

most existing LiDAR/IMU/RTK fused frameworks adopt fixed 

optimization model (Shan et al., 2020; Liu et al., 2024.), which 

cannot cope with the sensor signal fluctuations in complex 

environments. As a result, it is difficult to maintain continuity 

and reliability of localization when UAV traverse large bridges. 

To overcome the limitations of existing SLAM methods in 

cross-scene situations, an intuitive idea is to explore the dynamic 

fusion strategies for multi-modality data (Meng et al., 2022.). On 

the one hand, it is necessary to explore how to intelligently select  

  

(a) A bride located in Shenzhen (b) The UAV under the bridge 

Figure 1. UAV cross-scene localization under bridge. Due to 

sensor signal fluctuations when UAV traverse large bridges, it is 

difficult to maintain continuity and reliability of localization. 

 

reliable information from different sensors for complementary 

fusion, thereby improving localization accuracy and robustness. 

On the other hand, it is essential to investigate how to maintain 

the continuity of pose estimation through adaptive switching 

between multi-source data when a single sensor degrades.  

Based on the above ideas of dynamic fusion and adaptive 

switching, we propose a seamless SLAM framework based on 

the integration of IMU, LiDAR and RTK, which achieves 

reliable cross-scene localization performance in several bridges. 

The main contributions of our work are as follows: 

(1) We propose a seamless LiDAR/IMU/RTK fused SLAM 

method. The method can dynamically switch the localization 

mode and adjust the multi-sensor fusion weights according to the 

specific scenes, avoiding the jump in localization accuracy 

caused by the failure of a single sensor, and ensuring the 
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continuity and stability of UAV localization trajectory in 

complex environments. 

(2) We design a novel multi-sensor switching strategy, which 

employs Interactive Multiple Model (IMM) to monitor the 

residuals of each sensor's state and evaluate its reliability, and 

then adjusts the confidence of each sensor to achieve adaptive 

switching between LiDAR/IMU/RTK, thus providing reliable 

pose estimation in both open and obstructed areas. 

(3) Comprehensive and concrete evaluations are conducted 

under a self-built dataset of complex bridge environments. The 

experimental results show that our method outperforms state-of-

the-art LiDAR/IMU/RTK fused methods.  

The rest of this article is organized as follows. Section II 

presents an overview of UAV-based SLAM methods using 

multi-source data. Section III elaborates the architecture of our 

proposed method. Experiments and evaluations are shown in 

section IV. Finally, we conclude this work in Section V. 

 

2. Related Work 

This paper primarily discusses UAV-based SLAM methods 

involving IMU/GNSS/LiDAR. The IMU/GNSS fused methods 

suffer from GNSS signal blockage, the IMU/LiDAR fused 

methods are prone to long-term trajectory drifts, while the current 

IMU/LiDAR/GNSS fused methods show decreased reliability in 

cross-scene conditions. Based on the different fusion frameworks, 

we present a brief review and discussion. 

 

2.1 IMU/GNSS Fused Methods 

IMU/GNSS fusion technology can provide centimetre-level 

positioning services in open areas (Han et al., 2017.) and has been 

widely used in in the field of drone navigation. However, GNSS 

or RTK is not usable in environments with physical obstructions 

(Farrell et al., 2000). While GNSS position can provide short-

term corrections for IMU, when GNSS signals are lost for long 

periods or frequently, the cumulative error of IMU cannot be 

corrected. Therefore, in cross-scene conditions, due to GNSS 

signal fluctuations, relying solely on IMU/GNSS combination is 

insufficient to meet long-term stable positioning requirements. 

 

2.2 IMU/LiDAR Fused Methods 

In recent years, IMU/LiDAR fused methods have been widely 

applied in the fields of robot navigation. LOCUS (Palieri et al., 

2020) is a robust odometry centred on LiDAR, and employs a 

loosely-coupled switching mechanism, allowing it to provide 

reliable, high-precision localization services even in cases where 

one or more sensor fail. LOCUS 2.0 (Reinke et al., 2022) 

significantly improves the system's real-time performance and 

memory efficiency by introducing an adaptive voxel grid filter 

and a sliding window map storage data structure. However, due 

to the relative independence of LiDAR and IMU data processing 

in the loosely-coupled frameworks, the complementary 

relationship between the two sensors cannot be fully utilized, 

which limits further improvements in localization accuracy. 

In tightly-coupled methods, FAST-LIO2 (Xu et al., 2022) 

integrates LiDAR and IMU data tightly using iterative error-state 

Kalman filtering (IESKF), ensuring the robustness of pose 

estimation. Moreover, FAST-LIO2 improves its accuracy by 

directly registering raw LiDAR scans to the map, and enhancing 

computational speed with the ikd-Tree data structure. Faster-LIO 

(Bai et al., 2022) uses a sparse voxel-based neighbour structure, 

iVox (incremental voxels), as the point cloud spatial data 

structure, replacing the ikd-Tree structure in FAST-LIO2 and 

effectively reducing the time cost of point cloud registration. The 

tightly-coupled LIO systems are relatively complex and requires 

more refined parameter tuning. Furthermore, due to the system's 

heavy reliance on precise calibration and data synchronization 

between LiDAR and IMU, it may face additional challenges in 

practical applications. 

When drones are used for large-scale bridge inspections, issues 

like point cloud sparsity or degradation may lead to increased 

registration errors, and IMU errors will accumulate over time, 

especially in the absence of external absolute position 

information (such as GNSS) for correction. Therefore, in 

practical applications, the LIO system needs to be adjusted 

according to the specific scenarios and requirements to better 

meet the needs of seamless localization. 

 

2.3 IMU/LiDAR/GNSS Fused Methods  

To address the limitations of IMU/GNSS or IMU/LiDAR 

methods, researchers investigate how to integrate all the sensors. 

(Gao et al., 2024) propose an IMU/LiDAR/GNSS fused methods 

which integrate two subsystems, GNSS-IMU and LiDAR-IMU. 

The former subsystem provides initial state estimation and global 

localization information, while the latter subsystem optimizes 

state and constructs 3D map. This framework is capable of 

continuously performing state estimation through iterative 

Kalman filtering even when some sensors fail. (Chen et al., 2024) 

propose weighted GNSS/IMU/LiDAR fusion method, which 

uses a laser error model based on Gaussian Process Regression 

and combines laser-assisted lateral constraints and non-integrity 

constraints to improve its accuracy in urban environments, 

achieving notable accuracy improvements over traditional EKF-

based SLAM approaches. (Shen et al. 2024) introduced a real-

time SLAM method integrating LiDAR/IMU/GNSS, through 

joint optimization of LiDAR/IMU and LiDAR/IMU/GNSS, 

combined with degradation handling and ground point 

constraints, to achieve drift-free, globally consistent real-time 

mapping. LIO-SAM (Shan et al., 2020) is a representative work 

that employs sliding window and factor graph optimization 

(FGO), and achieves precise pose estimation and mapping. FGO-

GIL (Li et al., 2023) is a SLAM system developed for high-

precision continuous navigation in urban environments, which 

utilizes a factor graph optimization framework to tightly fuse 

GNSS measurements, IMU, and LiDAR data. FGO-GIL employs 

a keyframe-based nonlinear optimization strategy that effectively 

uses hybrid heterogeneous sensor data to enhance the accuracy 

and frequency of state predictions. GLIO (Liu et al., 2024) 

leverages factor graph optimization to tightly integrate multiple 

measurement data and achieves global consistency and 

continuous pose estimation in two stages. The first stage employs 

sliding window FGO for efficient odometry estimation, while the 

second stage adopts a scan-to-multi-scan scheme to maintain 

global consistency and improve robustness to GNSS outliers. 

Experimental results indicate that GLIO achieves more than 70% 

improvement in positioning accuracy in urban areas compared to 

traditional IMU/GNSS methods and LIO methods. 

IMU/LiDAR/GNSS fused methods integrates the strengths of 

multiple sensors to provide high-precision localization solution. 

However, these methods also face challenges such as system 

complexity, difficulty in parameter tuning, and low scalability. In 

cross-scene conditions with fluctuating or failure of multiple 

sensor signals, IMU/LiDAR/GNSS methods with fixed fusion 

model struggle to maintain long-term stable trajectory and map. 

Therefore, to fulfil the need for seamless localization across 

complex bridge scenarios, there is an urgent need to develop 

more reliable multi-sensor fused SLAM frameworks with 

environmental adaptability. 
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Figure 2. The seamless LiDAR/IMU/RTK localization method. 

 

 

3. Method 

This paper proposes a seamless UAV localization method 

based on IMU/LiDAR/RTK fusion: In open areas, high-precision 

localization is achieved by integrating all sensor data through an 

iterative error-state Kalman filter (IESKF); in obstructed 

environments, IMU/LiDAR odometry recursively estimates pose; 

when transitioning across different scenarios, the quality of 

sensor data is evaluated using an interactive multi-model (IMM), 

and adaptive switching between IMU/RTK and IMU/LiDAR 

localization modes ensures smooth, seamless multi-source fusion 

localization during sensor measurement fluctuations under cross-

scene conditions. 

This method is suitable for a variety of complex environments, 

offering stable localization services in both open and obstructed 

areas, preventing abrupt changes and degradation in localization 

accuracy. The method also supports flexible configuration, 

allowing for adjustment of parameters and fusion weights based 

on specific scenarios and requirements, meeting the needs of 

diverse application. The multi-sensor fusion strategy enhances 

the system's fault tolerance, ensuring the continuity and stability 

of localization results even in the event of sensor failure, thus 

improving the UAV’s autonomous inspection capabilities in 

complex environments. 

The process of our IMU/LiDAR/RTK seamless localization 

method is shown in Figure 2, which takes LiDAR point clouds, 

IMU measurements, and RTK position information as inputs, and 

then evaluates the quality of different sensors using IMM model, 

enabling seamless switching between two localization modes: 

IMU/RTK mode in open areas with GNSS signals and 

IMU/LiDAR mode in GNSS-denied regions, thus achieving 

continuous and reliable localization and mapping across all 

scenarios of the bridge. 

 

3.1 State Estimation 

The state estimation process is based on the Iterative Error-

State Kalman Filter (IESKF), which utilizes IMU for propagation 

and LiDAR/RTK measurements for state update. The system 

state 𝐗 is defined as follows: 

𝐗 ≜ [ 𝐑𝐼
𝑇𝐺 , 𝐏𝐼

𝑇𝐺 , 𝐯𝐼
𝑇𝐺 , 𝐛a

𝑇 , 𝐛ω
𝑇 , 𝐠𝑇𝐺 ]

T
               (1) 

where 𝐑𝐼
𝑇𝐺 , 𝐏𝐼

𝑇𝐺 , 𝐯𝐼
𝑇𝐺 denote the IMU attitude, position and 

velocity in the global frame, 𝐠𝑇𝐺  is the gravity vector in the 

global frame, 𝐛a
𝑇 , 𝐛ω

𝑇  are IMU biases. 

State Propagation: We take the first IMU frame (𝐼) as the 

global frame (𝐺). The propagation is performed upon the arrival 

of an IMU measurement. 

�̂�𝑘+1 = �̂�𝑘 ⊞ (𝐟(�̂�𝑘 , 𝐮𝑘 , 𝐰𝑘) ∙ ∆𝑡), 𝐗 ∈ 𝓜𝑠          (2) 

𝐮 ≜ [𝐚T 𝛚T]T, 𝒘 ≜ [𝐧a
T 𝐧ω

T 𝐧𝐛a

T 𝐧𝐛ω

T ]
T
     (3) 

where 𝐟  denotes the state transition model, 𝐮 denote the IMU 

measurements, 𝐰 is the noises. ⊞ and ⊟ denotes the plus and 

minus operation on a manifold 𝓜𝑠. 

Residual Computation: The LiDAR residual is defined as the 

distance between the measured point to the nearest plane in the 

map. The residuals 𝐳𝐿𝑘𝑗

𝜏  of point 𝒑𝒋
𝑳 and its noise 𝐫𝐿𝑘𝑗

 are: 

𝐳𝐿𝑘𝑗

𝜏 = 𝐡𝐿𝑘
(�̂�𝑘

𝜏 , 𝟎) ≜ 𝛍𝑗
𝑇𝐺 ( �̂�𝐿𝑘

𝜏𝐺 �̂�𝐿
𝜏𝐼 𝒑𝑗

𝐿 − 𝒒𝑗
𝐺 )    (4) 

where 𝛍  denotes the normal vector of corresponding plane. 𝜏 is 

the step of iterative state update process of IESKF. �̂�𝐿𝑘

𝜏𝐺  denotes 

the transformation matrix for projecting the current point cloud 

frame to the global map, and �̂�𝐿
𝜏𝐼  denotes the extrinsic matrix 

between LiDAR and IMU. 

The RTK residual 𝐳𝑅𝑘

𝜏  is defined as the difference between the 

IMU predicted position 𝐏𝐼
𝐺 and the RTK position 𝐏𝑅

𝑁 : 

𝐳𝑅𝑘

𝜏 = 𝐡𝑅𝑘
(�̂�𝑘

𝜏 , 𝟎) ≜ 𝐏𝐼
𝐺 − 𝐓𝑁

𝐺 𝐏𝑅
𝑁             (5) 

where 𝐓𝑁
𝐺  denotes the transformation matrix for projecting the 

current RTK position to the global coordinates. 

State Update: Combining the prior distribution of �̂�𝑘with the 

LiDAR/RTK measurement model from (4-5) yields a posteriori 

distribution of the state 𝐗𝑘 , and the maximum a posteriori 

estimate (MAP) are: 

min (‖𝐗𝑘 ⊟ �̂�𝑘‖
𝟐

+ ∑ ‖𝐫𝐿𝑘𝑗
‖

𝟐
+𝒎

𝑗=1 ‖𝐫𝑅𝑘
‖

𝟐
)            (6) 

The posteriori probability distribution �̂�𝑘
𝜏+1 is described as: 

�̅�𝑘+1 = �̂�𝑘
𝜏+1 = �̂�𝑘

𝜏 ⊞ (𝐊𝐳𝑚
𝜏 − (𝐈 − 𝐊𝐇)(J𝜏)−1)(�̂�𝑘

𝜏 − �̂�𝑘) (7) 

where 𝐊 denotes the Kalman gain and 𝐇 denotes the observation 

matrix of all sensor data. For the detailed derivation process, 

please refer to the literature (Xu et al., 2022). When the iterations 

converge, the optimal state of IESKF at stage 𝑘 is updated. 

 

3.2 IMU/RTK localization mode for open scenes 

IMU provides high-frequency motion information unaffected 

by external environments, which can be used for short-term pose 
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propagation, but IMU errors will accumulate over time. RTK 

provides low-frequency, high-precision long-term localization 

benchmarks when the signal is good. These two sensors are 

highly complementary, so in open areas with good RTK signal, 

IMU/RTK fused localization mode is used to provide precise 

global localization. 

 

3.3 IMU/LiDAR localization mode for occluded scenes 

In occluded areas with poor RTK signal, the IMU/LiDAR 

odometry is used to propagate the motion state. 

To enhance the reliability of point cloud registration in 

complex environments, we use a frame-to-frame registration 

method introduced in our prior work (Chen et al., 2022b). The 

proposed method uses IMU propagation to provide initial guess 

for frame-to-frame ICP pre-registration, thus avoiding the risk of 

degradation that occurs in frame-to-map association methods in 

homogeneous structured scenes, and achieving high-precision 

frame-to-frame point cloud registration. 

 

3.4 Mode switching and fusion 

We design a novel localization mode switching strategy for 

cross-scene seamless localization. When the RTK signal is good, 

RTK/IMU is used as the primary localization mode; whereas in 

the absence of RTK signals, LiDAR/IMU mode is prioritized; 

During transitions across different scenarios, as the sensors signal 

quality fluctuates, the fusion weights of different sensors is 

adaptively adjusted to ensure smooth switching between the two 

localization modes, thus ensuring continuous localization of the 

UAV in the bridge environment. 

The switching and fusion model is implemented based on the 

Interactive Multi-Model (IMM) (Kirubarajan et al., 2003) and 

Bayesian probability theory. IMM model first adopts parallel 

sub-modes to process different sensor data separately, then 

evaluates the mode probability according to its residual and 

adjust the weights of mode; finally, the parallel modes are fused 

using the adaptive weight, which leads to smooth switching and 

adaptive fusion between LiDAR/IMU/RTK.  

At the module switching stage, the likelihood of different 

mode is calculated using the residual 𝐫𝑘 and its covariance 𝐒𝑘. 

The likelihood function is related to the observation residuals, 

and the fluctuations in residuals in complex environments reflect 

changes in sensor reliability. The form of likelihood function is: 

𝑙𝑘
(𝑖)

= 𝑝 [𝐳𝑘
(𝑖)

|𝐌𝑘
(𝑖)

, 𝐙𝑘
(𝑖)

] ~𝓝 (𝐫𝑘
(𝑖)

; 𝟎, 𝐒𝑘
(𝑖)

)            (8) 

where 𝐌  denotes the localization mode, 𝐙  denote the 

measurements. Based on Bayesian probability theory, we can 

derive the likelihood function: 

𝑙𝑘 ≜=
1

√det(2𝐒𝑘 )

exp [−
1

2
𝐫𝑘

𝑇𝐒𝑘
−1𝐫𝑘 ]             (9) 

Besides the likelihood function, we also calculate the mode 

transition probability 𝜋 based on the results of each mode in the 

previous stage. Since the reliability of each mode differs, directly 

propagating the states with low reliability will lead to a decrease 

in localization accuracy. To address this issue, we define the 

transition probability 𝜋, which denotes the probability of mode 𝑗 

switching to mode 𝑖  in the Markov chain, and represents the 

strength of the constraints between different modes. If the 

credibility of mode 𝑗  is high, the corresponding transition 

probability from 𝑗 to 𝑖 becomes larger, thus enabling interaction 

between modes. The transition probability is calculated as: 

𝜋𝑘+1
(𝑗)|(𝑖)

=
𝜋𝑘

(𝑗)|(𝑖)
exp [𝜎𝑘+1

(𝑖)
− 𝜎𝑘

(𝑖)
]

∑ 𝜋𝑘
(𝑗)|(𝑖)

exp [𝜎𝑘+1
(𝑖)

− 𝜎𝑘
(𝑖)

]𝑁
𝑗=1

                   (10) 

Algorithm 1: The Mode switching and fusion model 

Input: The state 𝐗𝑘
(𝑖)

of each mode; current measurement 𝐙𝑘
(𝑖)

. 

Begin 

1: Calculate the likelihood function of each mode 𝑙𝑘
(𝑖)

 

2: Update the transition probability 𝜋𝑘
(𝑗)|(𝑖)

 between modes 

3: Calculate the priori interaction weights 𝜇𝑘
(𝑖)

 

4: Combine 𝜋𝑘
(𝑗)|(𝑖)

 and 𝜇𝑘
(𝑖)

, and get the fusion weight 𝜎𝑘
(𝑖)

. 

5: Adaptive fusion of modes to obtain an optimal state 𝐗𝑘
∗  

End 

Output: The optimal state 𝐗𝑘
∗ . 

 

 

Figure 3. The UAV localization system. 

 

Based on the transition probability, we can compute the 

interaction weights 𝜇, which can be serve as priori knowledge to 

measure the credibility of localization modes: 

𝜇𝑘+1
(𝑖)

= ∑ 𝜋𝑘
(𝑗)|(𝑖)

𝜎𝑘
(𝑗)

𝑁

𝑗=1

                        (11) 

By comprehensively considering the likelihood function 𝑙 and 

prior weight 𝜇, we can calculate the posterior fusion weight 𝜎 of 

each mode. The likelihood reflects the reliability assessed in the 

current stage. The prior weight reflects the prior reliability of 

each sensor in the previous stage. By integrating them, the fusion 

weight of mode (𝑖) is updated: 

𝜎𝑘
(𝑖)

= 𝜇𝑘
(𝑖)

𝑙𝑘
(𝑖)

∑ 𝜇𝑘
(𝑗)

𝑙𝑘
(𝑗)

𝑀

𝑗=1
⁄                         (12) 

At the fusion stage, the IMU/LiDAR mode and IMU/RTK 

modes are fused according to the weights: 

𝐗𝑘
∗ = ∑ 𝜎𝑘

(𝑖)
𝐗𝑘

(𝑖)

𝑁

𝑖=1

                                        (13) 

where 𝐗𝑘
∗  denotes the optimal localization state. 

When the mode weight is less than the threshold (e.g., RTK in 

occluded environments), this mode is not involved in state 

estimation. When the data quality fluctuates, IMM model can 

dynamically adjust the fusion weight of modes, realizing the 

seamless fusion of LiDAR/IMU/RTK across scenes, which can 

effectively improve the reliability of localization.  

The detailed methodology of this switching and fusion model 

is summarized in Algorithm 1. 

 

4. Results 

4.1 UAV localization system 

We designed and constructed a UAV localization system 

integrated with LiDAR/IMU/RTK, as shown in Figure 3. We 

used a DJI M350 drone as platform. The system is equipped with 

a Livox Mid360 solid LiDAR, capable of providing point clouds 

and 6-axis IMU measurement data. In addition, real-time RTK 

data is read through the DJI M350 SDK. 
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(a) Building scenario (b) The first bridge (c) The second bridge 

Figure 4. Experimental scenarios. 

 

             
(a) Z+F 5010 fixed station scanner    (b) LiGrip H120 scanner 

Figure 5.  Equipment used for collecting ground-truth 

 

 
(a) Ground-truth of laser scanner 

 

(b) Map of our method 

Figure 6.  Map comparisons at occluded building scene 

 

4.2 Experimental scenarios 

4.2.1 Building scenarios: We chose a Building of Shenzhen 

University as the experimental scenario, as shown in Figure 4 (a). 

The building consists of three areas, with an open space on the 

periphery and a GNSS-denied space inside. The centre area of the 

building can receive fluctuating RTK signals. The experimental 

site allows UAVs to shuttle between open and occluded areas, 

which can provide ideal conditions for testing the seamless 

LiDAR/IMU/RTK switching. In open space, a high-precision 

INS system is used to obtain ground-truth trajectory. In GNSS-

denied area, the point cloud acquired by Z+F 3D laser scanner is 

used as ground-truth. 

 

4.2.2 Bridge scenarios: We selects two bridges in Shenzhen 

as experimental scenarios, as shown in Figure 4 (b-c). We use our 

UAV system to collect cross-scene data by flying along the sides 

and underneath the bridge for localization and mapping, and test 

the localization performance of our method with state-of-the-art 

multi-sensor fusion SLAM methods. We utilize a LiGrip H120 

handheld laser scanner to collect point cloud map as ground-truth.  

 

Methods ATE (m)  

DLIO 0.157 

Faster-LIO 0.179 

Fast-LIO2 0.152 

LIO-SAM 0.103 

Ours 0.087 

Table 1 ATE (m) of SLAM Methods 

 

Horizontal cross-section RMS (m)  

cross-section 1 0.066 

cross-section 2 0.064 

cross-section 3 0.072 

Average  0.067 

Table 2 RMS (m) of horizontal building cross-sections 

 

Vertical cross-section RMS (m)  

cross-section 1 0.043 

cross-section 2 0.048 

cross-section 3 0.043 

Average  0.045 

Table 3 RMS (m) of vertical cross-sections 

 

4.3 Accuracy evaluation at building scenarios 

4.3.1 Accuracy evaluation at open areas: When the UAV is 

at open space where GNSS is available, the trajectory collected 

by INS system is used as ground-truth. We choose the Absolute 

Trajectory Error (ATE) as metric, and we compare our method 

with LIO odometry DLIO (Chen et al., 2022a), Faster-LIO (Bai 

et al., 2022) and Fast-LIO2 (Xu et al., 2022), IMU/LiDAR/GNSS 

fused method LIO-SAM (Shan et al., 2020), as shown in Table 1. 

Our method shows optimal performance in terms of ATE, 

indicating that our method’s superiority in maintaining global 

trajectory consistency. 

 

4.3.2 Accuracy evaluation at occluded areas: When the 

UAV enters GNSS-denied areas, the INS system cannot collect 

the ground-truth data. To evaluate the performance of our method 

in occluded areas, we utilize point cloud map from a fixed-station 

3D laser scanner as ground-truth, and then evaluate the accuracy 

by calculating the root mean square error (RMSE) of ICP 

registration between the ground-truth and the mapping results of 

our method. 

We first collect the ground-truth map in the building scene 

using Z+F 5010 scanner, as shown in Figure 5(a), which has a 

measurement range of 0.3 to 187.3 meters and a distance 

resolution of 0.1 millimetres, with a registration accuracy within 

0.01 meters. We then select fixed objects (non-glass facades) in 

the test area for accuracy evaluation. These fixed objects are 

stable over time, and their 3D shapes can be clearly captured in 

both data, so they can serve as suitable benchmarks for accuracy 

evaluating. 

We extract point cloud cross-sections in the horizontal and 

vertical directions and calculate their corresponding registration 

errors. The results are shown in Table 2,3 and Figure 6, the 

average RMS of the horizontal cross-sections is 0.067 m, and the 

average RMS for the vertical cross-sections is 0.045 m, which 

achieve centimetre-level mapping accuracy in GNSS-denied 

areas, indicating the effectiveness of our method. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-937-2025 | © Author(s) 2025. CC BY 4.0 License.

 
941



 

  

(a) IMU/RTK Trajectory                                                                (b) Our Method 

Figure 7.  Trajectory comparisons in building cross-scene experiment 

 

  

(a) Ground-truth collected by 3D laser scanner                                                (b) Point cloud map of our method 

Figure 8.  Map comparisons at the first bridge scene 

 

  

(a) Ground-truth collected by 3D laser scanner                                                (b) Point cloud map of our method 

Figure 9.  Map comparisons at the second bridge scene 

 

 

Cross-sections RMS (m)  

bridge pier 1 0.079 

bridge pier 2 0.075 

Average  0.077 

Table 4 RMS (m) of cross-sections at the first bridge 

 

Cross-sections RMS (m)  

bridge pier 1 0.076 

bridge pier 2 0.083 

bridge pier 3 0.077 

Average  0.079 

Table 5 RMS (m) of cross-sections at the second bridge 

 

4.4 Performance of cross-scene localization 

To validate the switching capability of our method in cross-

scene situations, a qualitative analysis was carried out in the 

building scenario. The comparison between the IMU/RTK 

trajectory and the trajectory of our method is shown in Figure 7. 

The trajectory using only the IMU/RTK mode drifts when the 

RTK signal quality decreases in the occluded areas, while our 

method maintains a continuous global trajectory by switching to 

the IMU/LiDAR mode, which demonstrates its better reliability. 

If the IMU/RTK and IMU/LiDAR mode is not adjusted using the 

switching model, direct fusion of erroneous RTK positions can 

lead to localization failures. Additionally, the accuracy of our 

method in this scene has been discussed in detailed in Section 4.3. 

Overall, our method can effectively perform adaptive switching 

and fusion of localization modes when RTK signals fluctuate, 

thereby achieving precise and reliable seamless localization 

across different scenes. 

 

4.5 Applications at bridge scenarios 

We select two bridges in the Longgang District of Shenzhen 

University as test scenarios. The first bridge is 125 meters in 

length and 27 meters in width. The second bridge is 76 meters in 

length and 10 meters in width. Figures 8 and 9 qualitatively show 

the mapping results of our method during cross-scene flight.  

We first collect the ground-truth map in the bridges scenes 

using LiGrip H120 handheld scanner, as shown in Figure 5(b), 

which has a measurement range of 120 meters and a relative 

mapping accuracy within 1 centimetre. 

Furthermore, we extracted the bridge piers from the point 

cloud and evaluated the mapping accuracy. The selected bridge 

piers are identified with red rectangles in Figures 8 and 9. The 

UAV needs to fly back and forth under the bridge when 

measurement the bridge piers, so the mapping accuracy of these 

objects can reflect the cross-scene performance of our method.  

1 2 3 1 2 3 

1 2 1 2 
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We evaluate the mapping accuracy by calculating the root 

mean square error (RMSE) of ICP registration between ground-

truth and the map of our method. The results are shown in Tables 

4 and 5. Our method achieves mapping accuracies of 0.077m and 

0.079m for the two bridges, demonstrating good consistency and 

precision, indicating that our method can achieve centimetre-

level seamless localization and mapping in bridge scenarios. 

 

5. Conclusion 

Continuous and seamless UAV localization in complex 

environments is essential for improving the intelligence of bridge 

maintenance and management. However, existing UAV-based 

SLAM methods face challenges in maintaining a continuous 

trajectory across entire bridge due to limited sensor signals in 

occluded area. To address the issues of low continuity and weak 

reliability of existing SLAM methods for bridge cross-scene 

situations, we propose a seamless UAV SLAM framework based 

on the integration of IMU, LiDAR and RTK information. We 

design a novel multi-sensor switching and fusion strategy based 

on Interactive Multi-Model, which enables seamless switching 

between IMU/LiDAR mode and IMU/RTK mode, thus providing 

continuous localization services in both open and obstructed 

areas. Experimental results in real-word demonstrate that our 

method can achieve centimetre-level accuracy, outperforming 

state-of-the-art LiDAR-inertial odometry and LiDAR-IMU-RTK 

fused methods. The proposed method can effectively improve the 

fault tolerance of SLAM system, ensuring the continuity of the 

trajectory even if a single sensor fails, which is valuable for 

enhancing the autonomous navigation capabilities of UAV. 
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