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Abstract

The application of SLAM technology in planetary environments has become a research frontier for autonomous rovers. Existing
visual SLAM methods often exhibit low accuracy in pose estimation and reconstruction due to poor feature extraction and mis-
matched correspondences. This paper introduces a novel strategy that integrates neural implicit networks within a visual SLAM
framework. By jointly optimizing camera poses and implicit scene representations using neural radiance fields, we achieve high-
precision visual localization in the Mars scene without requiring loop closure. We validate our method using data from NASA’s
Perseverance rover and compare its performance with OV2SLAM. The results demonstrate that our method significantly outper-
forms OV2SLAM in localization accuracy, achieving an 85.16% reduction in absolute trajectory errors and maintaining translation
errors within 1 m across the entire trajectory. Moreover, our framework delivers compelling novel view synthesis despite sparse
inputs and a fixed forward-facing viewpoint. The 3D point cloud models, synthesized from estimated depth maps and poses, further
highlight the feasibility and effectiveness of our method for reconstruction in planetary environments.

1. Introduction

3D reconstruction technology plays a pivotal role in
autonomous navigation and scientific exploration tasks for
rovers (Gemme et al., 2005). In planetary environments
lacking GPS support, such as the surfaces of Mars and the
Moon, Simultaneous Localization and Mapping (SLAM) has
become a central research focus for autonomous exploration
systems (Cao et al., 2012). To support rover missions, SLAM
systems must not only construct real-time centimeter-level en-
vironmental models but also ensure the long-term stability of
pose estimation. This is critical for subsequent tasks such as
path planning (Wang et al., 2017b), scientific target identific-
ation (Barnes et al., 2009), and mission execution (Bass et
al., 2005). The 3D reconstruction model generated during the
rover’s exploration provides strong support for both the mor-
phological examination of Martian impact craters (Ye et al.,
2025) and the global place recognition for robot navigation (Xia
et al., 2021, Xia et al., 2023). However, the unique geomor-
phological features of planetary surfaces pose significant chal-
lenges to traditional visual SLAM methods: repetitive textures
caused by weathering layers (Maimone et al., 2007), complex
and variable features, and anisotropic geometries. These envir-
onmental characteristics lead to systemic risks for feature-based
or direct SLAM systems, including feature mismatch and pose
estimation drift.

Current mainstream visual SLAM frameworks typically utilize
feature-based or direct methods as front-end processing mod-
ules. However, actual imaging data from Mars rover mis-
sions reveal that, in dust-covered regions, the spatial distribu-
tion density of SIFT features sharply decreases compared to
urban environments on Earth. This feature sparsity results in
an increased failure rate in co-visibility detection and severely
restricts feature matching and continuous tracking between ad-
jacent frames (Zhong et al., 2023). Although direct methods,
which rely on photometric consistency, are theoretically more
suitable for low-texture environments, the high dynamic range
of cameras in planetary environments significantly reduces the

convergence of the photometric error function, and local min-
ima can severely degrade pose estimation accuracy. On the
other hand, terrestrial SLAM systems typically incorporate loop
closure for global optimization. However, given the cost con-
straints associated with rover missions, loop closure cannot
be implemented in planetary environments (Guo et al., 2018),
thereby posing additional challenges for robust SLAM estima-
tion.

In recent years, Neural Radiance Fields (NeRF) (Mildenhall et
al., 2021), have demonstrated leading performance in the field
of 3D reconstruction. Unlike traditional explicit representa-
tions, this continuous scene representation method uses Multi-
Layer Perceptrons (MLPs) to map spatial coordinates to volu-
metric density and color values, showing significant advantages
in reconstructing complex geometric surfaces and synthesizing
novel views. However, applying the NeRF framework typically
requires Structure from Motion (SfM) preprocessing to obtain
subpixel-level poses, which limits its use in autonomous nav-
igation scenarios. Several studies have developed algorithms
that jointly optimize both pose and scene representation to en-
hance the versatility of NeRF. One approach combines visual
SLAM for pose tracking in the front end with neural impli-
cit representation-based mapping in the back end (Zhang et
al., 2023, Mao et al., 2024), while another treats pose as a
learnable parameter to be optimized simultaneously with the
scene representation (Bian et al., 2023). The combination of
SLAM front-end and neural implicit back-end algorithms has
been mainly applied to small indoor scenes (Zhu et al., 2022),
where the long-term robustness of front-end tracking cannot be
guaranteed in planetary environments. On the other hand, joint
optimization NeRF algorithms face significant challenges when
dealing with long sequences and sparse viewpoints in explora-
tion tasks, making them ineffective for the autonomous explor-
ation requirements of rovers.

To address the specific constraints of planetary exploration
tasks, we apply a joint optimization approach for pose and scene
representation in a neural implicit method as a new SLAM
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framework to tackle the aforementioned challenges. This ap-
proach is notably different from existing visual SLAM and
neural implicit SLAM systems in key aspects. First, instead
of using the typical feature extraction and matching procedure
in the front end, it employs an end-to-end differentiable render-
ing pipeline that jointly optimizes camera positions and scene
representations using pixel-level photometric consistency and
other prior geometry constraints. Second, the framework ad-
opts a progressive optimization strategy, beginning with a small
initial set of images and gradually adding images from various
viewpoints to avoid reaching local minima. Finally, the entire
scene is separated into bunches of local radiance fields, allow-
ing for independent optimization while avoiding the restrictions
of direct global optimization.

We applied this framework to the Perseverance rover’s Mars
images for practical testing and compared it with OV2SLAM
as a visual SLAM method. The experiments show that our ap-
proach provides more robust pose estimation results, with the
full travel trajectory closely matching actual conditions and a
significantly lower drift rate.

In summary, our main contributions are listed in two aspects:

• We apply the progressively optimized neural radiance
field, LocalRF, to a monocular visual SLAM framework
to address the challenges of low localization accuracy and
insufficient robustness in traditional visual SLAM systems
for planetary environments.

• We conduct autonomous rover localization and 3D recon-
struction experiments using real Mars imagery from the
Perseverance rover. Our approach significantly improves
localization accuracy and successfully reconstructs a 3D
point cloud model of the exploration scene.

2. Related Work

Visual SLAM is currently the most efficient deployment ap-
proach in planetary environments. Existing visual SLAM re-
search has evolved into multiple branches, which can be cat-
egorized into feature-based SLAM, direct SLAM, and deep
learning-based SLAM. Each offers various solutions for differ-
ent scenarios. Therefore, this section will review and analyze
these three types of algorithms.

Feature-based SLAM. Feature-based visual SLAM constitutes
the majority of widely adopted SLAM algorithms. These meth-
ods operate on hand-crafted feature detectors (such as Harris
corners and SIFT descriptors) to establish matching and track-
ing relationships by identifying stable feature points across con-
secutive frames (Schönberger et al., 2017), subsequently optim-
izing camera trajectories and sparse point cloud maps through
multi-view geometric constraints. The early proposed Mono-
SLAM system (Davison et al., 2007) pioneered real-time mon-
ocular visual SLAM implementation through an Extended Kal-
man Filter (EKF) framework for feature tracking and map con-
struction, laying the foundation for subsequent research. In fea-
ture extraction and matching advancements, the ORB-SLAM
system (Mur-Artal et al., 2015) utilized Oriented FAST and Ro-
tated BRIEF (ORB) features, which enhanced feature repeat-
ability and matching robustness while maintaining real-time
performance, establishing a landmark work in feature-based
SLAM. Subsequent iterations including ORB-SLAM2 (Mur-
Artal and Tardós, 2017) and ORB-SLAM3 (Campos et al.,

2021) extended this framework through binocular vision integ-
ration and multi-sensor fusion capabilities. To address vary-
ing operational scales and frame rates, OV2SLAM (Ferrera et
al., 2021) demonstrates exceptional performance with its effi-
cient front-end tracking and innovative online Bag-of-Words
approach, supporting real-time localization across frequencies
ranging from single-digit Hz to hundreds of Hz while achiev-
ing superior positioning accuracy across three public data-
sets. However, these methodologies exhibit inherent limitations
when handling consecutive frames with insufficient local fea-
tures. Planetary remote sensing images lack surface texture
information and show considerable nonlinear radiation differ-
ences (Wan et al., 2025, Huang et al., 2024), making classic
feature-matching algorithms ineffective. The tracking pipelines
prove particularly vulnerable to failure in scenarios where loc-
alized regions exhibit persistent feature scarcity, revealing crit-
ical robustness deficiencies for autonomous localization tasks in
planetary environments characterized by homogeneous terrain
textures and sparse visual features.

Direct SLAM. Direct SLAM methods accomplish pose estima-
tion and scene reconstruction through nonlinear optimization of
pixel intensity differences between adjacent frames. The core
methodology involves constructing a photometric consistency
residual function. This intensity-based optimization paradigm
eliminates computational overhead from feature descriptor gen-
eration, granting unique advantages for localization and map-
ping in low-texture environments. A seminal contribution in
this domain is the DTAM system (Newcombe et al., 2011),
which innovatively integrated global dense depth map optim-
ization with direct tracking, achieving real-time 3D recon-
struction under a sub-pixel level photometric error minimiz-
ation framework. LSD-SLAM (Engel et al., 2014) advanced
this paradigm, introducing hierarchical keyframe selection and
semi-dense reconstruction to address scale drift in large-scale
environments. The system implements gradient-based pixel se-
lection to enhance tracking stability in texture-deficient scen-
arios. Dense Visual Odometry (DVO) (Kerl et al., 2013), pro-
posed an intensity error optimization framework augmented
with depth information. This approach leverages photomet-
ric consistency constraints between RGB and depth images for
motion estimation and dense reconstruction, demonstrating im-
proved performance in feature-sparse environments. On planet-
ary surfaces, large areas of weak texture or repetitive geometric
structures may lead to insufficient image gradient information
relied upon by direct method SLAM, resulting in a deteriorated
condition number of the Hessian matrix of the photometric error
function and a significant decrease in pose estimation accuracy.

Deep-learning based SLAM. Deep learning-based visual
SLAM models the relationship between environment geo-
metry and camera motion implicitly through neural networks,
overcoming the limitations of traditional hand-crafted fea-
tures. In terms of end-to-end SLAM architecture innovations,
DeepVO (Wang et al., 2017a) uses an LSTM network to model
temporal pose constraints, achieving continuous motion estim-
ation without explicit geometric modeling. TartanVO (Wang et
al., 2021) introduces a cascade architecture of optical flow pre-
diction networks and pose regression networks, making break-
throughs in cross-domain generalization. DROID-SLAM (Teed
and Deng, 2021) combines the RAFT (Teed and Deng, 2020)
optical flow network with an iterative updating mechanism to
achieve its high accuracy, high robustness, and strong general-
ization. With the advancement of NeRF technology, the integ-
ration of NeRF with SLAM has opened up new pathways for
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implicit scene modeling. iMAP (Sucar et al., 2021) was the first
to introduce NeRF into real-time SLAM systems, achieving
dense reconstruction under monocular input through keyframe
sampling and radiance field online optimization. Nice-SLAM
incorporates a hierarchical scene representation, integrating
multi-level local information and leveraging pre-trained geo-
metric priors to optimize scene representation, enabling dense
reconstruction of large indoor scenes. NeRF-SLAM (Rosinol et
al., 2023) proposes a differentiable framework that jointly op-
timizes camera poses and NeRF scene representations. It com-
bines DROID-SLAM as the front-end tracking module with
neural radiance fields for scene reconstruction, leading to good
indoor geometric accuracy based on photometric loss and depth
prior constraints.

3. Methodology

In this work, we propose a method for monocular visual SLAM
that applies the joint optimization of pose and scene repres-
entation using neural radiance field to planetary images. We
adopt LocalRF (Meuleman et al., 2023) as the SLAM frame-
work, which enables large-scale and unbound outdoor scene
localization and scene representation without initial pose us-
ing only monocular images. To enhance geometric constraints
in complex environments, this framework employs monocular
depth estimation and optical flow estimation models to generate
prior information as geometric supervision, which, combined
with photometric loss, constructs the overall loss function. The
workflow is described in Fig. 1.

Figure 1. Workflow of our framework.

3.1 Preliminaries

NeRF is an innovative deep-learning framework that enables
the synthesis of photorealistic novel views from a limited set of
input images. NeRF employs an MLP-based neural network to
model a continuous volumetric scene representation. This rep-
resentation maps 3D spatial coordinates x = (x, y, z) and view-
ing directions d = (θ, ϕ) to corresponding colors c = (r, g, b)
and densities σ, allowing the system to generate high-quality

renderings of scenes from arbitrary viewpoints:

φ(x), φ ˆ(d)
F−→ (c, σ) (1)

where d̂ = (dx, dy, dz) is a representation of the viewing direc-
tion using the actual three-dimensional Cartesian space vector,
φ(·) indicates the application of position encoding and F de-
notes the neural network function.

To generate a novel view, NeRF leverages a volume rendering
technique to render input rays r(t) = o + td cast from the
camera to the scene. For each pixel, the color is determined by
accumulating the color and density of each sample points along
the ray, which is expressed as the integral:

C(r) =

∫ t2

t1

T (t)σ(r(t))c(r(t), d̂)dt (2)

Where T (t) = exp
(
−
∫ t

t1
σ(r(s))ds

)
indicates the overall

transparency, which models the amount of light that reaches the
camera after passing through the medium. The color at each
point along the ray is weighted by the opacity σ(r(t)), and the
total color contribution is integrated over the ray’s length. This
integral allows the model to capture the complex interactions of
light within the scene.

During training, the color loss quantifies the photometric error
between predicted images and ground truth. This loss term is
calculated through pixel-wise comparison of RGB values in the
rendered image C(r) and the corresponding ground truth im-
age Cgt(r). Minimization of this photometric discrepancy dur-
ing optimization enhances the model’s capacity to reconstruct
photorealistic scene representations. The color loss Lcolor is
formally defined as:

Lcolor =
∑
r∈R

∥∥C(r)− Cgt(r)
∥∥2

2
(3)

where R denotes the set of sampled rays, N represents the total
number of rays in each batch, and ∥ · ∥2 indicates the L2-norm
operation. This formulation ensures dense supervision across
all observed pixels while maintaining computational efficiency.

3.2 LocalRF

LocalRF is an incremental NeRF algorithm that jointly optim-
izes camera poses and scene representations. It partitions the
input images into multiple localized radiance fields, with only
the current localized radiance field being activated for training
and optimization at each stage. LocalRF employs three types
of loss functions for optimization: photometric loss, depth loss,
and optical flow loss. Each local radiance field will independ-
ently calculate its own photometric loss, while the last part of
the optimized consecutive frames from the previous local radi-
ance field will be used for supervision.

To handle unbounded scenes, LocalRF employs a unique dy-
namic radiance field setup to avoid reliance on predefined
global scaling parameters used in Mip-NeRF360 (Barron et al.,
2022). The use of the L∞ norm uniformly extends the spa-
tial range of the scene to the maximum side length of a square
bounding box, with all 3D points in each local scene being
scaled to the [-2, 2] space, facilitating subsequent MLP infer-
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ence for the radiance field:

contract(p) =

{
p if ∥p∥∞ ≤ 1,(
2− 1

∥p∥∞

)(
p

∥p∥∞

)
otherwise.

(4)

To enhance joint optimization performance in long-sequence
large-scale scene reconstruction, LocalRF employs a progress-
ive optimization strategy. The framework initializes with a pre-
defined frame subset and incrementally incorporates new im-
ages from the subsequent sequence. Camera poses of newly
added frames are initialized as identical to their preceding coun-
terparts.

Tp ⇒ T
(0)
p+1 (5)

The initialized pose T
(0)
p+1 is subsequently treated as learnable

parameters during joint optimization—this scheme ensures ro-
bust optimization convergence while preventing local minima
trapping. This progressive optimization strategy is particularly
beneficial for sequence images captured from a fixed viewpoint
on planetary rovers.

Another core process lies in the dynamic instantiation of dis-
crete local radiance fields, decomposing extensive scenes into
spatially adjacent neural representations with partial frame
overlap. This architecture ensures meticulous local optimiz-
ation while preserving global scene consistency across view-
points. Each new local radiance field is established where the
last frame is in the currently optimized sequence, thereby fully
utilizing the optimized frames as effective supervision for the
new radiance field.

Monocular depth and dense optical flow provide strong con-
straints when reconstructing Neural Radiance Fields from con-
secutive frames captured from sparse viewpoints, effectively
maintaining geometric consistency during progressive optim-
ization. In this study, DPT (Ranftl et al., 2021) is used for
monocular depth estimation, and RAFT is used for optical flow
estimation. Depth loss leverages the fine geometry informa-
tion from pre-trained models to improve the neural radiance
field, while optical flow loss utilizes pixel-level correspondence
constraints to optimize depth and poses. Dense depth maps
D̂(r) are estimated by the volumetric density, both the estim-
ated depth and the prior depth are then normalized to compute
loss Ld:

D̂(r) =

N∑
i=1

Ti (1− exp(−σiδi)) di, (6)

Ld =
∣∣∣D̂∗ −D∗

∣∣∣ . (7)

By incorporating intrinsic and extrinsic camera parameters with
depth, the forward optical flow is derived as F̂k→k+1, while the
backward optical flow Fk→k−1 is computed in the same way.
The 3D points in the scene are reprojected using the relative
poses between adjacent frames to calculate the actual optical
flow. The loss is then computed as Lf as follows:

F̂k→k+1 = (u, v)−Π
(
[R|t]k→k+1Π

−1(u, v, D̂)
)
, (8)

Lf =
∥∥∥F̂k→k+1 −Fk→k+1

∥∥∥
1
. (9)

We utilize the depth maps and poses estimated by LocalRF to
perform depth fusion with the consistency check for better re-

construction (Cheng et al., 2020), thus exporting the final 3D
point clouds.

4. Experiments

4.1 Dataset

We use a sequence of images captured by the navigation camera
of NASA’s Perseverance rover in sol 200 during its AutoNav
operation as the dataset to demonstrate the practical perform-
ance of our algorithm. The dataset consists of grayscale images
captured by the stereo navigation cameras, each with the size of
1280×960. We utilize rectified images provided by NASA and
perform cropping and filtering to ensure their suitability. After
preprocessing, the dataset comprises 180 frames, with each im-
age resized to 886×665. For the entire framework, we fully rely
on the left navigation camera images as input.

4.2 Baseline and Metrics

Considering that the Perseverance rover image dataset lacks
ground-truth trajectories similar to those in simulated data-
sets on earth, we use the most popular baseline algorithm
COLMAP (Schönberger and Frahm, 2016, Schönberger et al.,
2016) to recover image poses as the reference ground truth.
Among open-source visual SLAM algorithms, OV2SLAM has
demonstrated superior localization accuracy compared to ORB-
SLAM2 on the KITTI visual odometry benchmark, owing
to its strong adaptability to different scales and frame rates.
OV2SLAM is used as the baseline classical visual SLAM
algorithm for comparison with our method to evaluate the
performance of both approaches on real planetary datasets.
Monocular visual SLAM systems, including COLMAP, al-
ways suffer from scale ambiguity. Therefore, we use the
binocular trajectory from OV2SLAM as a reference and ap-
ply the Umeyama (Umeyama, 1991) algorithm to recover the
scale of the monocular poses from OV2SLAM, LocalRF, and
COLMAP. The localization accuracy evaluation is then conduc-
ted using the scale-recovered poses. For scene representation,
we use PSNR, SSIM, and LPIPSVGG to evaluate the quality of
novel view synthesis generated by the model.

4.3 Implementation

Our experiments follow the default settings of LocalRF, with
the first 5 frames of the selected sequence used for initializa-
tion. Poses of these frames are initialized as identity and in-
corporated into the first TensoRF model, which is then gradu-
ally optimized while adding new frames. The 5-frame poses
initialized as identities are optimized and updated according to
the scene representation, and once a new frame added its initial
pose is set to be the same as the optimized pose of the previ-
ous frame to ensure fast and robust training convergence. The
learning rates for pose optimization are set to 5 · 10−3 for ro-
tation and 5 · 10−4 for translation. The TensoRF resolution is
initially set to 643 and is later upsampled to 6403. The weights
for the photometric loss, optical flow loss, and depth loss are
set to 0.25, 1.0, and 0.1 respectively. We recover the photo-
grammetric camera model intrinsics from NASA’s linearly cor-
rected images using CAHVOR camera parameters (Di and Li,
2004). Based on this, we compute the key training parameter
FOV for LocalRF. The MLP used for regressing rendered color
values adopts Fea late view model. Decomposed features are
first passed through two fully connected layers with 128 hidden
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units and ReLU activation. The view direction is then concat-
enated with the output and processed by a final linear transform
layer. The ray sampling batch size is set to 4096, and the entire
training is conducted on an NVIDIA RTX 4090.

4.4 Results of Perseverance dataset

Fig. 2 presents the camera pose estimation results of the two
algorithms in the XZ plane view. The dataset used in this
experiment follows a forward trajectory without sharp turns.
After performing the same Sim(3) Umeyama alignment, the
trajectory of LocalRF nearly overlaps with that of COLMAP.
Although the OV2SLAM trajectory also maintains a consistent
forward trend, there are some significant initial localization am-
biguities, and it shows a larger drift error in subsequent frames.
We further present the per-frame translation error of both al-
gorithms compared to COLMAP to quantitatively visualize the
drift in local regions, as shown in Fig. 3.

Figure 2. Trajectory of OV2SLAM and LocalRF in XZ plane.

Figure 3. Translation error of each method. (a) LocalRF, (b)
OV2SLAM.

As illustrated in Fig. 3, LocalRF maintains translation errors
below 1 m for all frames, with a maximum deviation of 0.98
m in the end, while other frames exhibit satisfactory preci-
sion. The significant initial deviation observed in OV2SLAM
results from trajectory alignment to ensure global scale and po-
sitional consistency with COLMAP ground truth. This data-
set from the Perseverance rover presents unique challenges
compared to conventional benchmarks like KITTI: 1) Substan-
tial inter-frame translation intervals due to mission-imposed
acquisition constraints; 2) Variable frame rates significantly
lower than the 10Hz standard in terrestrial datasets; 3) Non-
constant speed motion patterns. Furthermore, the character-
istic low-texture Martian terrain poses inherent difficulties for

OV2SLAM’s front-end optical flow tracking module. Global
trajectory analysis reveals that OV2SLAM exhibits consider-
able mid-sequence drift, with translational errors exceeding 1
m throughout most frames.

Method RPEr ↓ RPEt (m)↓ ATE (m)↓

OV2SLAM 0.040 0.278 1.779
LocalRF 0.014 0.188 0.264

Table 1. Pose evaluation of Perseverance dataset. All metrics are
presented in RMSE.

We used the EVO toolkit for quantitative evaluation, and the
results are given in Table 1, with the best performances high-
lighted in bold. LocalRF achieves a superior ATE of 0.264m,
demonstrating significant improvement over OV2SLAM. RPE
is measured with 1-meter interval to assess the drift of both
algorithms within each segment which further confirms Loc-
alRF’s advantages in both rotational and translational compon-
ents. This enhanced performance stems from LocalRF’s dy-
namic local radiance field creation mechanism, which allows
fine adjustments to the poses within each local scene. Depth
supervision from DPT and optical flow constraints from RAFT
collaboratively guide geometrically consistent representation
learning. In addition, the joint optimization strategy based on
NeRF replaces explicit mesh structures with implicit volumet-
ric representations, allowing for better multi-view consistency
in complex scenes through neural networks. Although cam-
era poses lack dedicated loss terms, the continuous refinement
through backpropagation during scene representation learning
ensures progressive accuracy enhancement. This symbiotic op-
timization between pose parameters and neural scene represent-
ation proves particularly effective in handling the Perseverance
dataset’s challenges of sparse viewpoints and weak texture.

To evaluate the synthesized novel view results of LocalRF, we
adopted the same approach as the original LocalRF, extracting
one frame every 10 frames as the test frame. Qualitative results
of synthesized novel views are presented in Fig. 4, demonstrat-
ing that the generated views effectively preserve the actual geo-
metric information of test frames without structural distortions
or reconstruction failures. The rendering of variably sized Mar-
tian surface rocks indicates LocalRF’s capability for reasonable
depth estimation along rover trajectories, providing a valuable
reference for subsequent path planning in autonomous explor-
ation missions. Nevertheless, reconstruction quality in planet-
ary environments remains inferior to terrestrial scenarios, with
observable blur artifacts in multiple near-field regions. This in-
dicates some targeted optimizations need to be made for the
environment migration.

Method PSNR ↑ SSIM ↑ LPIPSVGG ↓

LocalRF 25.750 0.684 0.460

Table 2. Quantitive novel view synthesis results.

The quantitative metrics of novel view synthesis on Persever-
ance dataset are shown in Table 2. While the PSNR consist-
ently maintains a high level, both the SSIM and LPIPS exhibit
observable challenges. This limitation stems from two primary
factors. There is a notable reduction of high-frequency vari-
ations in planetary scenes, where most high-frequency signals
originate from rock boundaries. The repetitive geological struc-
tures fail to provide sufficient distinguished features for neural
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Figure 4. Novel view synthesis results of our proposed method. The top row shows the rendered results and the bottom row provides
ground truth.

network learning. This feature scarcity may cause the neural
radiance field to misinterpret distinct terrain points as identical
locations, resulting in blur artifacts and erroneous depth estim-
ation. Another factor is the insufficient inter-frame overlap (Yu
et al., 2021) in the Perseverance dataset, where optical flow
priors struggle to establish reliable pixel-wise correspondences,
particularly in near-field regions with extensive occlusions that
degrade constraint effectiveness. Despite these challenges, Loc-
alRF demonstrates promising practical potential for planetary
environment applications.

We reconstructed the Martian scene based on the results from
LocalRF to demonstrate the feasibility of the current framework
for 3D reconstruction. Following the post-processing approach
from MVSNet, we performed depth fusion on the estimated
depth maps and poses to generate a 3D point cloud. The re-
construction results are shown in Fig. 5.

Figure 5. Reconstruction result of Perseverance dataset.

Our reconstruction results successfully capture fundamental
geometric structures surrounding the rover’s trajectory in Mar-
tian scenarios while reconstructing most rocks within the field
of view. The lack of detail in central point cloud regions may
stem from overexposure artifacts in Perseverance’s imagery.
Furthermore, the depth maps estimated through LocalRF ex-
hibit notable noise artifacts when integrated with pose estim-
ation results, particularly manifesting as degraded reconstruc-
tion quality for distant geological features. The framework also
demonstrates limitations in depth consistency filtering for sky
regions, resulting in disordered point cloud distributions in up-
per scene areas. These observations reveal inherent constraints
when directly applying existing neural radiance field frame-
works to extraterrestrial environments, necessitating further op-

timizations for improved depth estimation.

Nevertheless, the achieved 3D reconstruction results validate
the methodological feasibility and reveal promising application
prospects. The framework demonstrates essential capabilities
for reconstructing navigation-critical features such as rock dis-
tributions and terrain undulations. Future enhancements could
incorporate adaptive exposure compensation modules and hy-
brid depth estimation strategies combining neural rendering
with geometric priors to address current limitations. These im-
provements would better align the system with the stringent re-
quirements of planetary exploration missions.

5. Conclusion

In this work, we applied the LocalRF to navigation images
captured by the Perseverance rover, enabling a neural impli-
cit monocular visual SLAM system for 3D reconstruction tasks
in planetary environments. Our experiments indicate that tradi-
tional visual SLAM approaches struggle to handle real planet-
ary images effectively, whereas our incremental neural implicit
SLAM framework, powered by LocalRF, achieves significantly
more robust and more accurate pose estimation. Furthermore,
we generated a fused 3D point cloud of the actual scene by
leveraging the poses and dense depth maps estimated by Loc-
alRF. Although the overall performance is constrained by the
characteristics of planetary images and the limited availability
of data, we believe that neural implicit 3D reconstruction holds
substantial promise for applications in planetary exploration.
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