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Abstract 

 

Mars is a dynamic planet exhibiting numerous active surface phenomena, such as recurring slope lineae (RSL), commonly seen on the 

Martian surface in the mid-latitude regions. Automatic detection of these changes on the Martian surface is pivotal for understanding 

the evolution and dynamic processes of Mars. Deep-learning models for change detection, such as the Siamese network, have been 

widely used for identifying changes in images. This paper presents a deep-learning model based on the backbone of the Siamese 

network, incorporating a spatial attention module and a balanced evaluation method, for detecting dynamic changes on the Martian 

surface from time-series images. Moreover, we developed a multi-processing web crawler for automatic data retrieval and processing 

from online image archives, significantly enhancing the efficiency and reach of the change detection method. The effectiveness and 

reliability of the proposed method have been validated using real time-series Mars images covering typical regions on the Martian 

surface, focusing on the detection of a typical dynamic phenomenon on Mars, i.e., RSL. The proposed method can automatically 

retrieve and process data from online image archives, such as the High Resolution Imaging Science Experiment (HiRISE) image 

archives, and achieves a change detection accuracy of 81.8%. Results indicate that the method can detect subtle changes on the Martian 

surface from online image archives automatically, showing promising potential for studying the dynamic environment of Mars and 

enhancing our understanding of Martian surface dynamics. 

 

 

1. Introduction 

Mars is a planet characterized by a variety of dynamic activities. 

Detecting changes on its surface is essential for comprehending 

the planet’s dynamic processes, geological history, and climate 

evolution. For example, tracking changes like new impact craters 

helps scientists refine models of the Mars surface age and history 

(Daubar et al., 2013). Furthermore, identifying changes aids in 

the search for water, a crucial component for life, by pinpointing 

areas of interest such as recurring slope lineae (RSL), which 

might suggest temporary liquid water flows (Ojha et al., 2015). 

Thus, detecting changes on Mars offers a dynamic perspective of 

the planet, uncovering processes that static observations cannot 

reveal. 

 

Detecting surface features and changes on planetary surfaces 

typically relies on various types of remote sensing data, such as 

images and digital elevation models (Wu et al., 2021a; Ye et al., 

2021). Image data from Mars orbiter cameras, including the High 

Resolution Imaging Science Experiment (HiRISE) (McEwen et 

al., 2007), the Context Camera (CTX) (Bell et al., 2013; Malin et 

al., 2007), and the Compact Reconnaissance Imaging 

Spectrometer for Mars (CRISM) (Murchie et al., 2007) aboard 

the Mars Reconnaissance Orbiter (MRO), are essential for 

change detection on the Martian surface. HiRISE images (0.3 

m/pixel) are better suited for examining small-scale surface 

changes. CTX images (6 m/pixel) cover large areas, making them 

suitable for large-scale change detection, while CRISM is crucial 

for spectral analysis and mineral detection in research areas. 

 

Web crawlers are effective tools for searching and downloading 

images from websites, overcoming the challenges of navigating 

vast amounts of web content by quickly extracting and indexing 

information on a large scale, which manual downloading cannot 

achieve (Olston & Najork, 2010). Therefore, developing a web 

crawler for long-term and large-scale detection is crucial for 

managing large data volumes.  

 

Additionally, automatically detecting features such as RSL and 

their changes on Mars is challenging due to their subtle nature, 

with widths ranging from 0.5–5 m (McEwen et al., 2011). 

Traditionally, RSL were manually labeled (e.g., Stillman, 2018; 

Mitchell & Christensen, 2016), which is a time-consuming and 

labor-intensive task. To address this, Stillman et al. (2020) 

developed the Mapping and Automated Analysis of RSL 

(MAARSL) method to facilitate automatic RSL detection. 

However, despite its efficiency compared to manual labeling, 

MAARSL still requires human intervention to ensure accurate 

and reliable results. This underscores the need for improved 

methods that can automatically, efficiently, and accurately 

identify dynamic changes from online data archives with minimal 

manual input. 

 

In this paper, we introduce an innovative method for 

automatically detecting changes from time-series images of 

Mars. Our approach uses a web crawler to automatically retrieve 

time-series data from online archives such as HiRISE, CTX, and 

CRISM, based on the location of the specific research area. Once 

the necessary data are downloaded, change detection is 

performed using a deep-learning method based on an enhanced 

Siamese network. We validated this approach by automatically 

retrieving HiRISE data and detecting RSL in the mid-latitude 

regions on Mars. Additionally, we evaluated the efficiency of the 

automatic data retrieval process and the accuracy of the Siamese 

network model.  

 

The rest of this paper is structured as follows: Section 2 describes 

the method for automatic change detection from time-series 

images of Mars. Section 3 details the experimental evaluation 

using RSL as a case study. Finally, Section 4 offers concluding 

remarks and further discussion. 
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2. Automatic Workflow for Change Detection in Mars 

Time-Series Images 

2.1 Framework of the Approach 

Figure 1 presents the workflow of the approach. Starting with 

data retrieved by the Web crawler, which searches relevant 

websites based on specific requirements to gather data. 

Simultaneously, a target time range is established using Mars 

Year as its unit, which is crucial for detecting temporal changes, 

and metadata along with georeferenced information are collected 

to register and compile time-series data. The compiled data are 

then input into the Siamese network, which consists of two 

channels, each dedicated to processing images from different 

time periods. By sharing weights between the two channels, the 

network can effectively compare feature maps. To improve 

feature extraction, each channel is followed by an attention 

module. The processed outputs are then passed to an up-sampling 

component that employs a U-Net architecture for pixel-by-pixel 

reconstruction, with the results normalized for further analysis. 

Finally, the system assesses the accuracy of the proposed model 

and generates a binary mask to highlight areas of interest or 

change. The output is a binarized mask that outlines changed 

areas on the Martian surface, aligning well with the high-

resolution satellite images processed by the Siamese network. 

 

 
Figure 1. Workflow of the proposed approach. 

 

2.2 Web crawler for Automatic Data Retrieval from Online 

Image Archives 

The process of retrieving and downloading data with a Web 

crawler encompasses a series of crucial steps aimed at 

methodically and effectively gathering information from the 

Internet (as illustrated in Figure 2). To begin with, based on the 

information about the target area and the specific dataset required, 

the crawler generates target product names based on the location 

and established naming conventions for each product. Following 

this, the crawler compiles a list of precise URLs, which are then 

fed into the crawler frontier to guide the data collection process. 

To mitigate any potential disruptions during downloading, a retry 

mechanism is incorporated, ensuring the program operates 

smoothly without interruptions. Once the data is successfully 

downloaded, image matching is conducted using tie points (Hu 

et al., 2016; Li et al., 2008). Subsequently, image registration is 

performed to either link different images together or to geo-

reference the images to a base map (Wu et al., 2013; 2015). The 

outcomes are usually stored in a structured format for subsequent 

analysis and are then securely stored in a designated data 

repository. This comprehensive approach not only ensures the 

accuracy and reliability of the collected data but also facilitates 

easy access and management for future use. 

 

 
Figure 2. Workflow for automatic online data retrieval, 

preprocessing, and storage. 

 

In the realm of Web crawling, implementing retry mechanisms is 

essential for ensuring robust and dependable data collection. Web 

crawlers often face temporary challenges like network timeouts, 

server errors, or webpages being momentarily unavailable 

(Olston & Najork, 2010). A well-designed retry strategy enables 

crawlers to effectively manage these issues, thereby enhancing 

the overall success rate of data retrieval (Pant et al., 2004). The 

retry mechanism involves making multiple attempts to access a 

web resource after an initial failure, typically with a pause 

between tries (Grimes et al., 2008). This method can greatly 

improve a crawler’s resilience by allowing it to navigate 

temporary disruptions. For example, exponential backoff, a 
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widely used retry strategy, increases the wait time between 

consecutive attempts, reducing server load and minimizing the 

likelihood of repeated failures (Al Galib et al., 2024). 

Additionally, incorporating retry logic helps ensure compliance 

with website terms of service by avoiding excessive requests in a 

short timeframe (Pardon & Pautasso, 2014). By effectively 

managing retries, Web crawlers can achieve more reliable and 

efficient data collection, ultimately resulting in more accurate 

and comprehensive datasets. 

 

The proposed method for the data downloading using Web 

crawler follows the detailed and specific sequence of steps: 

Initially, by pinpointing the exact location of the target area, the 

orbit number and target code can be swiftly determined. The 

target code indicates the latitudinal position of the center of the 

intended observation area in relation to the beginning of the orbit. 

For instance, in the case of HiRISE, the first six digits of the 

target code correspond to the orbit number, with the orbit 

commencing at the equator on the descending (night) side. The 

subsequent three digits represent the number of complete degrees 

from the orbit’s start, while the fourth digit indicates the 

fractional degree, rounded to the nearest half-degree. Data from 

sources like HiRISE can be easily located and downloaded using 

the generated product name and URL. Conversely, for data from 

other sources such as CTX, the inferred product names cannot be 

directly utilized to create the target URLs. Additionally, some 

Asynchronous JavaScript XML (AJAX) requests require 

crawling a completely new URL and volume ID for data 

retrieval, which demands more preparation time and may slow 

down the downloading process. 

 

2.3 Spatial Attention–Enhanced Siamese Network for 

Change Detection 

Traditional machine learning approaches for object detection, 

like the use of support vector machines combined with the 

histogram of oriented gradients employed by Wang et al. (2021) 

to identify surface features on Mars, are effective when working 

with limited training samples and simpler machine learning 

networks (Wu et al., 2021b). However, the Siamese network is a 

deep learning architecture specifically crafted for change 

detection by assessing the similarity between two images. 

Typically, it produces one-dimensional outputs, such as a 

similarity score that quantifies the resemblance between the input 

images (Bromley et al., 1993). In this paper, U-Net is chosen as 

one of the backbone networks for the proposed framework, 

especially for the upsampling and reconstruction part. It then 

reconstructs the results on a pixel-by-pixel level through up-

sampling, facilitating accurate change detection at the pixel level. 

This capability makes U-Net particularly suitable for tasks 

requiring detailed analysis of image differences, as it ensures that 

even subtle changes are captured and represented accurately. By 

leveraging the strengths of both the Siamese network and U-Net, 

the framework is well-equipped to handle complex change 

detection tasks, providing robust and precise results that can be 

applied in various fields such as remote sensing, medical imaging, 

and environmental monitoring. 

 

Figure 3 illustrates the network architecture utilized in this paper. 

This framework takes as input two images that display certain 

variations taken in different time periods. After adjusting the size 

to match the performance capabilities of different computers, 

these images are separately processed through a U-Net 

architecture, where they undergo down-sampling to 

progressively extract pertinent information with sharing weights 

with each other, which are applied to the images. Following this, 

the distinct features of the two images are up-sampled to generate 

change detection results, which are then compared against the 

input label. The loss function is employed to measure the 

discrepancy between the two images and the input label, and the 

weights and bias are adjusted accordingly to improve accuracy. 

 

Figure 3. Structure of Siamese network, with the inputs being images at different time points and the output being pixel-by-pixel change 

detection results. 

 

Considering the variations in surface features and the imbalanced 

nature of the image background, a spatial attention module is 

implemented to address the imbalance between positive and 

negative samples. This module is a specialized module designed 

to modulate the response feature values across the spatial 

dimension (Zhang et al., 2022). It amplifies relevant information 
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while reducing the influence of extraneous data, thereby 

addressing the typical lack of contextual information found in 

traditional convolutional approaches. By enabling a single 

feature at any position to perceive features from all other 

positions, this module enhances the robustness of pixel-by-pixel 

representation capabilities. The spatial attention module is often 

visualized as a probability map or feature vector, assigning higher 

weights to spatial positions that necessitate the extraction of 

positive information. Depending on the specific task at hand, the 

regions emphasized by the spatial attention module within the 

same image may differ, allowing for a more tailored and effective 

analysis. This approach not only improves the detection of 

meaningful changes but also enhances the overall performance of 

the network in various image processing tasks. 

 

3. Experimental Analysis 

As a common dynamic feature on the Martian surface, RSL was 

chosen as a case study to test the effectiveness of the developed 

method. RSL are typically narrow, with widths ranging from 0.5 

to 5 meters and lengths possibly exceeding 100 meters (McEwen 

et al., 2011). Detection of RSL requires high-resolution orbital 

images, such as those provided by HiRISE. As a sun-

synchronous orbiter (Zurek & Smrekar, 2007; Thomas et al., 

2010), HiRISE is capable of capturing multi-temporal surface 

images with nearly identical solar incidence and emission angles, 

minimizing significant differences in features like hill shading 

between images. RSL can be distinguished from their 

surroundings by several morphological and spectral 

characteristics: (i) narrow, elongated shape (Bhardwaj et al., 

2019); (ii) originate at bedrock outcrops (McEwen et al., 2011) 

and flow down steep slopes (Munaretto et al., 2020); (iii) lower 

albedo (McEwen et al., 2014; Ojha et al., 2014) or spectral 

reflectance (Ojha et al., 2015) than that of the surrounding terrain; 

(iv) longest during the summer and gradually vanish afterward, 

showing a recurring annual cycle (Vincendon et al., 2019). 

 

 
Figure 4. (a) Part of Palikir Crater (−41°35’, 202°10’). (b, c, d) 

(e, f, g) are two groups of training sample showing appearance 

and disappearance of RSL across different seasons. (d, g) Input 

label for training and accuracy verification. 

 

The proposed method allows for efficient detection of RSL. 

Initially, HiRISE images from various time periods are 

automatically retrieved from the online image archive based on 

the longitude and latitude of the target areas. Next, the proposed 

deep-learning model, using training samples (Figure 4), 

generates a feature map for detecting changes on a pixel-by-pixel 

basis. Finally, by converting the feature map into a binary format, 

the changed areas are marked as white regions, which are well 

aligned with those in high-resolution images taken at the same or 

similar solar longitude. This approach streamlines the process of 

identifying RSL, ensuring accurate mapping and analysis of these 

dynamic Martian features. 

 

The HiRISE data from Palikir Crater during the summer and 

autumn of Mars Year 31 were divided into 256 × 256 square 

patches, with 70% used for training and 30% reserved for 

validation. A pixel-based evaluation method was employed to 

qualitatively assess the model’s performance (Figure 5). 

Although there are some inaccuracies in detecting the edges of 

RSL, the model significantly reduces the effort required for 

manually labeling RSL. 

 

 
Figure 5. Visualization of evaluation results. Columns 1 and 2: 

Summer and autumn HiRISE images; Column 3: Detection 

results; Column 4: Ground truth for evaluation and comparison. 

TP, TN, FP, FN means true positive, true negative, false positive 

and false negative separately. 

 

Due to slight variations in solar incidence angles and 

georeferencing issues with HiRISE images, small hill shades may 

occasionally be misidentified as RSL during detection. However, 

since this error is systematic, it is relatively straightforward to 

correct. On the other hand, if many RSL are missed, the workload 

increases exponentially. Therefore, correcting false negatives by 

adding the missed RSL to achieve accurate results is more 

challenging than eliminating falsely detected RSL. 

 

Indicator Results 

Sensitivity 64% 

Specificity 99.6% 

False discovery rate (FDR) 0.4% 

Overall accuracy 99% 

Balanced accuracy 81.8% 

Table 1. Performance metrics of RSL detection model. 

 

Overall accuracy is significantly affected by the large number of 

negative samples (background), making traditional accuracy 

evaluation methods unsuitable for situations with a large 

imbalance between positive and negative samples. In such cases, 
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a balanced accuracy evaluation method is more reliable. Table 1 

provides the quantitative evaluation criteria for the RSL detection 

model. Given the imbalanced distribution of RSL and 

background, the balanced accuracy is 81.8%, which is considered 

sufficient and acceptable for reducing manual workload. False 

detections mainly occur in small hill shade areas, while the major 

omissions are at the edges of RSL and in extremely narrow RSL 

regions, approximately 30 cm (~1 pixel) wide. These narrow 

RSL have higher I/F (radiance/irradiance) values than wider 

RSL, making them difficult to distinguish from their 

surroundings. 

 

4. Conclusions  

In this paper, we introduced a novel method that integrates the 

functionality of a Web crawler with an enhanced Siamese 

network to identify changes on the Martian surface. To evaluate 

the effectiveness and precision of this method, we concentrated 

on the automatic detection of RSL, a subtle and seasonally 

varying phenomenon on Mars. Using our innovative approach, 

we performed change detection analyses on RSL across various 

Martian regions. Our key findings are as follows: 

 

(1) The proposed method successfully retrieves and processes 

data from online image archives with a 100% success rate, when 

given a stable network connection and retry mechanism. This 

automation greatly simplifies the data acquisition process, 

ensuring researchers have consistent access to high-quality 

images for analysis. 

 

(2) Our approach’s change detection capability achieves a pixel-

by-pixel balanced accuracy of 81.8%, significantly reducing 

repetitive manual tasks. This high level of precision results from 

thorough training and validation, allowing the model to reliably 

detect even the most subtle changes on Mars. By reducing the 

need for human intervention, this method enables more efficient 

and extensive data analysis. 

 

(3) The method can automatically detect RSL on Mars more 

efficiently and robustly than manual techniques. This will 

facilitate a deeper analysis of RSL, including their spatial and 

temporal patterns, and enhance understanding of the 

environmental factors affecting their distribution and behavior. 

 

The proposed method highlights the potential to enhance our 

understanding of Martian surface dynamics by enabling more 

efficient and comprehensive studies of the planetary changing 

environment. With automated detection and analysis, researchers 

can focus on interpreting results and developing new insights into 

the mechanisms driving changes on Mars. Beyond RSL analysis, 

this approach shows promise for detecting other dynamic 

phenomena on Mars, such as ice block movements in polar 

regions and new impact craters, offering broad applications in 

planetary research. 
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