
SOYBEAN CROP YIELD PREDICTION BY INTEGRATION OF REMOTE SENSING AND
WEATHER OBSERVATIONS

J.D.Mohite1∗, S.A.Sawant2, A.Pandit3, R.Agrawal3, S. Pappula4

1 TCS Research and Innovation, Tata Consultancy Services, Mumbai, India - jayant.mohite@tcs.com
2 TCS Research and Innovation, Tata Consultancy Services, Pune, India - suryakant.sawant@tcs.com

3 TCS Research and Innovation, Tata Consultancy Services, Indore, India - (ankur.pandit, rishabh.agrawal3)@tcs.com
4 TCS Research and Innovation, Tata Consultancy Services, Hyderabad, India - srinivasu.p@tcs.com

KEY WORDS: Yield Forecasting, Soybean Crop, Remote Sensing, Weather Data, Random Forest Regression

ABSTRACT:

The main objective of this study is the in-season forecasting of soybean crop yield using the integration of satellite remote sensing
and weather observations. The study was carried out in the Paraná state of Brazil. The soybean crop in the study region is
sown during Oct.–Nov. month and harvested between Feb.–Mar. of the next year. Municipality-level soybean yield data for 15
municipalities was obtained from the AGROLINK portal of Brazil, from the 2005–06 season to the 2020–21 season. The crop
yield data constituted yearly municipality-wise yield in kg/ha. Remote sensing-based indicators such as the Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST), and Rainfall data from CHIRPS
was considered in the study. Regression modelling was carried out between municipality-level yield as the dependent variable
and features generated from remote sensing and weather observations as independent variables. Performance evaluation of tuned
random forest regression (RFR) and tuned support vector regression (SVR) were performed against multiple linear regression
(MLR). A comparison of results in terms of algorithms shows that RFR performed better than SVR and MLR. Further, a root-
mean-square-error (RMSE) of 414 kg/ha and an R2 value of 0.748 were achieved by the best RFR model. Validation of developed
RFR model was performed on the data from the new soybean season, i.e., 2020–21. We have achieved an R2 value of 0.693 with
a RMSE of 585 kg/ha. Although the model performance on the data of 2020-21 season is slightly reduced, R2 and RMSE are in
good agreement with test results. This study showed that, integration of remote sensing and weather observations would be useful
for in-season yield forecasting of soybean at municipality level.

1. INTRODUCTION

Soybean (Glycine max (L.) Merrill) is one of the most import-
ant sources of protein and oil. United States, Brazil, Argentina,
and China account for around 90% of the global soybean pro-
duction (Embrapa, 2018, USDA, 2019). Brazil is the second
largest producer of soybean in the world, after the United States,
and the crop is grown in almost all of the country’s states. The
production of soybean in Brazil has shown a steady increase
over the years, driven by factors such as technological advance-
ments, favourable weather conditions, and government policies
that promote agricultural development. According to data from
the Brazilian National Company for Food Supply Companhia
Nacional de Abastecimento (CONAB), Brazil’s soybean cultiv-
ation area has increased from around 15 million hectares in year
2000 to more than 38 million hectares in the 2020-2021 harvest
season (CONAB, 2021). The majority of soybean cultivation in
Brazil is concentrated in the southern and central regions of the
country, which have favourable soil and weather conditions for
the crop. Parana is the second largest producer of soybeans in
Brazil, accounting for approximately 19% of the country’s total
soybean production in 2020-21 harvest season. The largest pro-
ducer is Mato Grosso, which accounts for approximately 28%
of the country’s total soybean production (CONAB, 2021). The
Parana state has favourable soil and weather conditions for soy-
bean production, and has invested heavily in research and devel-
opment of the crop, including the development of high-yielding
soybean varieties and advanced production techniques. The
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area under soybean cultivation in Parana has also increased sig-
nificantly over the years, from around 2 million hectares in year
2000 to more than 5 million hectares in year 2021 (CONAB,
2021).

Accurate and timely statistics on soybean crop area and yield in
Brazil and Parana are crucial for crop management, food secur-
ity, and economic planning. Many approaches have been de-
veloped in the past for in-season yield assessment ranging from
field based survey, physical process based models (Jones et al.,
2003), use of non-invasive technologies, etc. The Brazilian gov-
ernment collects and publishes regular data on soybean produc-
tion, including crop area, yield, and production volume, which
are widely used by farmers, policymakers, and analysts. How-
ever, manually collecting the data in yield is costly and time
consuming process. Alternatively, crop cutting experiments are
being conducted by various state and private agencies, which
have limited scalability and involves huge cost and time (Mo-
hite et al., 2019).

Over the years, there has been significant progress in the use and
development of physical process-based crop growth simulation
models. Few examples of crop growth simulation models be-
ing used for soybean yield prediction include Agricultural Pro-
duction System Simulator (APSIM) (Keating et al., 2003), De-
cision Support System for Agro-Technology Transfer (DSSAT)
(Jones et al., 2003), SoySim (Wilhelm et al., 2004), STICS
(Brisson et al., 1998). Crop growth simulation models basically
uses mathematical equations to simulate the growth and devel-
opment of crops and used to assess the response of various man-
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agement practices on yield. Although, physical process based
models are quite accurate, and a large amount of ground data
is needed to run the simulations. Model performance is largely
affected by the quality and quantity of ground data available.

On the other hand, non-invasive technologies mainly involve
the use of remote sensing observations in machine learning
based models for in-season yield forecast (Peralta et al., 2016,
Schwalbert et al., 2018, Xia et al., 2020, Li et al., 2020). With
the advent of global coverage and openly available remote sens-
ing satellite data in Optical and Synthetic Aperture Radar elec-
tromagnetic spectrum at regular intervals. Thereby, resulted
into ease in accessing the time series of satellite data and couple
machine learning algorithms to provide value added insights
into the agriculture sector. Additionally the compute platform
such as Google Earth Engine (GEE) (Gorelick et al., 2017) fa-
cilitated the spatio-temporal scalability. Remote sensing data
can be used to estimate various crop-related parameters, such
as vegetation indices, surface temperature, and soil moisture,
which are closely related to crop growth and yield. These para-
meters can be used to develop models for predicting crop yield.
In recent years, several studies have been conducted on soy-
bean crop yield prediction using remote sensing data in Brazil.
These studies have focused on different aspects of the problem,
such as the choice of remote sensing data sources, the develop-
ment of appropriate models, and the validation of the results.
Moreover, integration of weather data along with remote sens-
ing observations has proven effective in improving the model’s
performance (Peng et al., 2018, Cai et al., 2019). Consider-
ing the advantages and limitations of the prior art, we have at-
tempted to use the integration of satellite and weather data for
in-season yield forecasting.

The main objective of this study is the in-season forecasting
of soybean crop yield using the integration of satellite remote
sensing and weather observations. The study wasconducted in
selected municipalities of the Paraná state of Brazil.

2. MATERIALS AND METHODS

This section covers information about the study area, insights
into the satellite and ground reference data, and a detailed ap-
proach for yield prediction using various machine learning al-
gorithms.

2.1 Study Area

We have conducted this study in selected municipalities in
Parana State, Brazil 1. Parana is one of the southern states of
Brazil, bordered on the north by Sao Paulo state, on the east
by the Atlantic Ocean, on the south by Santa Catarina state
and the province of Misiones, Argentina, and on the west by
Mato Grosso do Sul and Paraguay, with the Parana River as its
western boundary line (Chisholm, 1911). The annual mean air
temperature ranges between 15 and 24 °C, with the highest tem-
peratures found in the northwest and the lowest around Palmas
(Aparecido et al., 2016). Precipitation is less than 1,200 mm
(47 in) a year in the north of the state, rising to above 1,800 mm
(71 in) in the southwest and southeast of the state (Aparecido
et al., 2016). Agriculture is one of the main economic drivers
of the state, and about 15% of Parana’s GDP comes from agri-
culture. Parana is a leading producer of crops such as soybeans,
corn, coffee, and wheat.

2.2 Satellite Datasets Used

We have mainly used satellite data products from the Moderate
Resolution Imaging Spectroradiometer (MODIS) and rainfall
data from the Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS).

2.2.1 MODIS Based Vegetation Indices MOD09GA and
MYD09GA are two products of the Moderate Resolution Ima-
ging Spectroradiometer (MODIS) sensors onboard the Terra
and Aqua satellites, respectively (Vermote and Wolfe, 2015).
These products provide daily surface reflectance data at a 1-
kilometer spatial resolution. The data are corrected for atmo-
spheric effects and provide a consistent surface reflectance time
series over the lifetime of the MODIS sensors. Version 6 of the
products include improvements such as better cloud and cloud
shadow screening, and updated aerosol retrieval algorithms.
The surface reflectance bands, such as Red, NIR were used to
estimate the Normalized Difference Vegetation Index (NDVI),
However, surface reflectance in blue, red and NIR bands was
used to estimate Enhanced Vegetation Index (EVI). The data
was accessed from the GEE during the Soybean crop season
i.e. for the months November, December and January between
2005-2021. Monthly mean composites at 1 km spatial resolu-
tion were generated and used in the analysis.

2.2.2 MODIS Based Land Surface Temperature We
have utilized land surface temperature data from MODIS
(MOD11A1 and MYD11A1 version 6 products) (Wan, 2015).
The MODIS Land Surface Temperature (LST) product is a
remotely sensed dataset that provides information about the
temperature of the Earth’s surface (Wan et al., 2002). These
products are generated using a split-window algorithm that util-
izes the 3.7 µm and 11 µm thermal bands to retrieve LST. The
data is available at a daily temporal scale and 1 km spatial res-
olution during daytime and nighttime modes. We have utilized
the data available in the daytime mode. LST data was accessed
from GEE for the months of November, December, and January
between 2005 and 2021 and used in the analysis.

2.2.3 Rainfall Data from CHIRPS The Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS) daily
rainfall product is a remotely sensed dataset that provides in-
formation about daily rainfall amounts across the globe. The
product is derived from a combination of satellite data and
ground station observations (Funk et al., 2015) and has a 30+
year quasi-global coverage. The product provides daily global
coverage of rainfall amounts at a spatial resolution of 0.05 de-
grees, or approximately 5 km. We created monthly accumulated
composites from the daily data and resampled it to 1 km spa-
tial resolution to match it with MODIS-based vegetation indices
and LST. We accessed the data for the months of November,
December, and January between 2005 and 2021 from the GEE.

2.3 Ground Reference Data on Yield

AGROLINK is a web portal focused on the agricultural sector
in Brazil. The portal was created in year 1996 and provides a
wide range of information and services related to agriculture,
livestock, agribusiness, and rural development (AGROLINK,
2019). AGROLINK offers a variety of content, including news,
articles, interviews, market analyses, and technical information.
The portal covers a wide range of topics, such as crop produc-
tion, livestock management, pest and disease control, irrigation,
precision agriculture, biotechnology, sustainability, and rural
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Figure 1. Study area

policies. AGROLINK provides crop yield data at the municip-
ality level for various agricultural crops for various historical
years. We accessed the yield data for the soybean crop for 15
municipalities in the state of Parana, Brazil, for the soybean
crop seasons from 2005-06 to 2020-21. The data was represen-
ted as the yield value per hectare per municipality for specific
year.

2.4 Overall Framework

We obtained municipality-level soybean yield data for 15 mu-
nicipalities from AGROLINK (AGROLINK, 2019) for the soy-
bean crop seasons from 2005-06 to 2020-21. The data was rep-
resented as yield value per hectare per municipality for specific
year and used as ground truth for modeling purposes. For the
municipality-level analysis, we considered observations from
MODIS satellite and remote sensing-based indicators, such as
Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), and Land Surface Temperature (LST),
as well as rainfall data from CHIRPS. For NDVI and EVI, we
considered the municipality-level maximum, minimum, and av-
erage values for the period from 1 Nov. to 31 Jan.. For LST, we
estimated the municipality-level maximum, minimum, and av-
erage values for the months of November, December, and Janu-
ary, and accumulated rainfall for Nov., Dec., and Jan. was con-
sidered features in the study. We utilized a total of 18 features,
including 3 for NDVI, 3 for EVI, 9 for LST, and 3 for rainfall.
The dataset contained 248 samples from various municipalit-
ies and seasons. Regression modeling was performed between
municipality-level yield and features derived from remote sens-
ing and weather observations. Municipality-level yield data
was considered as the dependent variable, while features de-
rived from MODIS and CHIRPS data were used as independ-
ent variables in the regression analysis. The modeling approach
involved dividing the data into training (80%) and validation
(20%) sets. The performance of tuned Random Forest Regres-
sion (RFR) and tuned Support Vector Regression (SVR) was
evaluated against the Multiple Linear Regression (MLR). Fi-

nally, the best model was used to generate yield maps for the
study region.

2.5 Machine Learning Algorithms used in the study

We mainly used three different Machine Learning algorithms,
namely Multiple Linear Regression (MLR), Random Forest Re-
gression (RFR), and Support Vector Regression (SVR).

2.5.1 Multiple Linear Regression MLR also known as
Multiple regression is a statistical method that uses multiple
explanatory variables to predict the outcome (Stepanov et al.,
2020). MLR models the linear relationship between explanat-
ory variables and target variables. We used MLR as the baseline
regression model in our study, where NDVI, EVI, LST, and
rainfall were used as explanatory variables with yield as the tar-
get variable.

2.5.2 Random Forest Regression Random Forest is a well-
known machine learning algorithm used for ensemble learning,
which combines multiple decision trees to make more accur-
ate predictions. This algorithm generates a large number of
decision trees from a subset of random training data, and the
output from individual trees is used to make the final decision
(Breiman, 1996). The method is widely used for various remote
sensing applications, including crop yield prediction, due to its
capability to resist over-fitting and require less computational
time (Inglada et al., 2015, Belgiu and Csillik, 2018, Were et al.,
2015). However, like many other algorithms, RFs are sensitive
to the choice of hyperparameters and the training data used. In
this study, we followed a K-fold cross-validated grid search ap-
proach. In this approach, the dataset was first randomly split
into a training set (80% of the total dataset) and a test set (20%
of the total dataset). The test set was kept for final evaluation,
while the training set was further split into three subfolds. The
model was iteratively trained on K-1 (2) of the folds and val-
idated on the remaining one to optimize the performance by
tuning RF hyperparameters, such as the number of trees and
minimum number of variables available at each split.
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2.5.3 Support Vector Regression SVR is a type of super-
vised learning that can handle non-linear relationships between
variables and high-dimensional datasets, making it a powerful
tool for yield prediction. SVR has been extensively used for
various agricultural applications (Khosla et al., 2020, Anandhi
and Chezian, 2013, Brdar et al., 2011). Similar to other ML al-
gorithms, the performance of SVR could be improved by hav-
ing the optimum choice of hyperparameters. In this study, we
have tuned the SVR for two hyperparameters, namely C and
Sigma. The train-test splitting and modeling strategy were kept
similar to RFR.

Figure 2. Overall analysis approach

3. RESULTS AND DISCUSSION

This section describes the performance of various ML mod-
els, such as MLR, RFR, and SVR. Additionally, we have also
discussed the predicted versus actual yields at the municipality
level for a new season.

3.1 Implementation of Various ML Models

We mainly used three algorithms in our study: MLR, RFR, and
SVR. There are no hyperparameters for MLR, but algorithms
such as RFR and SVR are sensitive to the choice of hyperpara-
meters and training data. The right selection of these hyperpara-
meters is crucial for optimal results. For hyperparameter selec-
tion, we followed a 3-fold cross-validated grid search strategy
for RFR and SVR. In this approach, the dataset was first ran-
domly split into a training set (80% of the total dataset) and
a test set (20% of the total dataset). The test set was kept for
final evaluation, while the training set was further split into 3
sub-folds. The model was iteratively trained on K-1 (2) of the
folds and validated on the remaining one to optimize the per-
formance by tuning hyperparameters. RFs were tuned for two
parameters: the number of trees (ntree) and the minimum num-
ber of variables available at each split (mtry). We tried ntree
values between 50-400 with an interval of 50 (8 ntree values)
and mtry between 2-8 (7 mtry values) with an interval of 1. A
total of 56 models were trained, considering each combination
of ntree x mtry, and the best model was considered for testing
on the remaining 20% data. SVR was tuned for two hyperpara-
meters: C and Sigma. We tried C values of 0.1, 1, 10, 100 and
Sigma values of 0.001, 0.01, 0.1, and 1. Therefore, 16 models
were trained, considering each combination of C x Sigma, and
the best model was considered for testing on the remaining 20%

Table 1. Performance of MLR

SN TrainSet R2 RMSE
1 TrainSet 1 0.578 822
2 TrainSet 2 0.545 854
3 TrainSet 3 0.549 853

data. In the case of MLR, we used all 80% of the data for model
training and the remaining data for testing of the model. Finally,
we chose the best model from MLR, RFR, and SVR, predicted
the yield for the season 2020-21, which was not considered in
the modeling process, and validated our results.

3.2 Performance of Various ML Models

Table 1 shows the performance of MLR for three different sim-
ulations (training sets). Since the training data was randomly
selected, we ran the models three times to assess the perform-
ance of MLR with changing training data. The average R2 value
was found to be 0.557 and RMSE of 843 kg/ha with a standard
deviation of 0.018, indicating that the model is not sensitive to
training data and performed equally well when the training data
was changed. However, the overall 2 value across all the models
is relatively lower.

Tables 2 and 3 show the performance of the RFR model in terms
of R2, RMSE for various combinations of ntree and mtry. The
results show that the best RFR model achieved a Root Mean
Square Error of 414 kg/ha and an R2 value of 0.748, which was
obtained for a model trained using ntree=200 and mtry=5. It
can be observed that as the number of trees increased, there was
a steady increase in R2 from 50 to 350 for mtry values of 2-4.
However, for mtry values between 5-8, there was an increase in
R2 only for ntree values from 50-200, and R2 either reduced or
remained constant after an ntree of 200. Comparing MLR and
RFR, it can be seen that there was a significant improvement in
R2 for all the combinations of ntree x mtry.

Table 4 and Table 4 show the performance of the SVR model
for various combinations of C and Sigma. The best R2 value
of 0.722 was achieved for a C value of 10 and a Sigma value
of 0.01. For the same combination of C and Sigma, the RMSE
reached up to 502 kg/ha. Furthermore, there was a significant
improvement in performance compared to MLR; however, the
results were not as good as RFR.

Finally, we chose the best RFR model (trained with ntree=200
and mtry=5) and applied it to the data from the 2020-21 season
for yield prediction. We estimated the R2 and RMSE between
the predicted yield and actual yields for the season provided by
AGROLINK. We achieved an R2 value of 0.693 with an RMSE
of 585 kg/ha. Although the model’s performance on the data
from the 2020-21 season is slightly reduced, the R2 and RMSE
are in good agreement with the test results. The figure 3 shows
the percent change between the ground reference yield and pre-
dicted yield at the municipality level. We can observe that half
of the municipalities are within a 10% deviation. However, re-
maining half of the municipalities are within a 15% deviation,
and for the one municipality, the deviation goes beyond 15%.

4. SUMMARY AND CONCLUSIONS

We have developed in-season yield forecasting models for soy-
bean crop in the Parana state of Brazil. The models were de-
veloped using historical municipality level yield data from the
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Table 2. Performance of RFR in terms of R2

`````````̀ntree ↓
mtry → 2 3 4 5 6 7 8

50 0.63 0.644 0.667 0.68 0.678 0.634 0.661
100 0.63 0.661 0.678 0.684 0.689 0.699 0.699
150 0.645 0.673 0.671 0.691 0.711 0.727 0.7
200 0.68 0.701 0.712 0.748 0.733 0.73 0.732
250 0.69 0.691 0.718 0.744 0.733 0.738 0.74
300 0.716 0.72 0.733 0.739 0.727 0.744 0.73
350 0.722 0.733 0.74 0.741 0.734 0.742 0.74
400 0.689 0.69 0.692 0.721 0.704 0.712 0.698

Table 3. Performance of RFR in terms of RMSE

`````````̀ntree ↓
mtry → 2 3 4 5 6 7 8

50 731 722 700 678 623 710 723
100 701 689 659 601 600 621 700
150 700 677 622 507 588 521 631
200 685 612 572 414 522 471 552
250 633 606 512 434 462 464 498
300 544 576 473 455 445 430 477
350 498 502 444 471 438 444 456
400 512 555 502 498 476 465 578

Table 4. Performance of SVR in terms of R2

XXXXXXXXC ↓
Sigma → 0.001 0.01 0.1 1

0.1 0.645 0.666 0.665 0.678
1 0.689 0.7 0.7 0.7
10 0.712 0.722 0.71 0.71
100 0.682 3 0.655 0.642 0.642

Table 5. Performance of SVR in terms of RMSE

XXXXXXXXC ↓
Sigma → 0.001 0.01 0.1 1

0.1 722 687 555 598
1 643 600 515 543
10 599 502 509 522
100 576 544 536 519

AGROLINK portal of Brazil, as well as remote sensing and
weather-based indices. We used regression modeling with mu-
nicipality level yield data as the dependent variable and remote
sensing and weather indices as independent variables. The per-
formance of tuned Random Forest Regression (RFR) and tuned
Support Vector Regression (SVR) was evaluated against the
Multiple Linear Regression (MLR). The results showed that
RFR outperformed SVR and MLR, achieving a Root Mean
Square Error of 414 kg/ha and an R2 value of 0.748 for the best
RFR model trained with ntree=200 and mtry=5. We validated
the developed RFR model with data from the 2020-21 soybean
season, achieving an R2 value of 0.693 with an RMSE of 585
kg/ha. Although the model performance on the data from the
2020-21 season was slightly reduced, the R2 and RMSE were in
good agreement with the test results. This study showed that the
integration of remote sensing and weather observations would
be useful for in-season yield forecasting of soybean at the mu-
nicipality level.

Figure 3. Percent deviation between actual and predicted yield at
municipality level

5. FUTURE WORK

In the existing work, we have considered municipality-level
data from 15 municipalities of Parana state in Brazil and used
well-known machine learning algorithms such as MLR, RFR,
SVR. In the future, we would like to assess the performance of
deep learning algorithms by adding data from other municip-
alities in Parana and other states of Brazil. Additionally, we
would like to validate the developed approach for upcoming
seasons.
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