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ABSTRACT: 

 

In recent years, the use of remote sensing technology has grown exponentially in various industries such as agriculture, forestry, and 

urban planning. Remote sensing data collection systems rely on a network of nodes to collect and transmit data. The transmission 

capacity of these node networks is a critical factor in the performance and efficiency of the entire system. However, accurately 

predicting the transmission capacity of a node network can be a challenging task. To carry out large scale open remote sensing data 

collection, it is necessary to predict the network transmission capacity of nodes in the face of the difference in the execution speed of 

each node for various tasks. It is necessary to predict the network transmission capacity of nodes. In this research, we propose a node 

network transmission capacity prediction model for large scale remote sensing data collection using a combination of Particle Swarm 

Optimization (PSO) and Backpropagation (BP) algorithms. The proposed PSO-BP model aims to accurately predict the transmission 

capacity of a node network in a remote sensing data collection system. The model is tested and evaluated using a large-scale dataset 

and the results show that the proposed model outperforms existing models in terms of prediction accuracy. This work contributes to 

the field of remote sensing data collection by providing a reliable and efficient method for predicting the transmission capacity of 

node networks. 
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1. INTRODUCTION 

Space remote sensing technology is entering the era of 

industrial applications, in which Landsat, Sentinel and other 

public interest satellite remote sensing data play an important 

role (Hemati et al., 2021; Phiri et al., 2020; Segarra et al., 2020). 

With the development of remote sensing technologies and 

advancement of deep learning-based algorithms, significant 

progress has been achieved in recent years in many remote 

sensing tasks, for example, object detection from remote 

sensing images (Cheng and Han, 2016; Deng et al., 2018; Li et 

al., 2020; Qian et al., 2020; Song et al., 2020; Wang et al., 2021; 

Zhang et al., 2019; Zhu et al., 2021), remote sensing change 

detection (Hecheltjen et al., 2014; Jensen and Im, 2007; Khelifi 

and Mignotte, 2020; Shi et al., 2022; Q. Wang et al., 2018; 

Zhang et al., 2021) and remote sensing big data (Chi et al., 

2016; Deren et al., 2014; Liu et al., 2018; Ma et al., 2021, 2015; 

Yu et al., 2021a, 2021b). Remote sensing data user groups such 

as individuals, small and medium-sized enterprises are 

gradually increasing. In the process of data application, 

satellites are generally publicly released on the Internet for 

global users, which is limited by the service capability of the 

data source itself and the acquisition capability of data user 

nodes. Due to the constraints of data source’s own service 

capability and data user node acquisition capability, the 

problems of low efficiency of large-scale public remote sensing 

data acquisition and low utilization rate of user acquisition 

nodes still exist (Lee et al., 2011). The problems such as low 

efficiency of large-scale public remote sensing data collection 

and low utilization rate of user collection nodes still exist 

(Wang et al., 2022). 

 

However, there are few studies on network node transmission 

capacity prediction. To carry out large scale open remote 

sensing data collection in crowdsourcing mode, it is necessary 

to predict the network transmission capacity of nodes 

considering the difference in the execution speed of each node 

for various tasks. The traditional Backpropagation (BP) 

algorithm uses the inertia weights between the input and hidden 

layers and the inertia weights between the hidden layer and the 

output layer to establish the prediction model. The inertia 

weights between the hidden layer and the output layer are 

randomly initialized, and the learning factors are randomly 

generated constants. The algorithm has a strong sensitivity to 

these coefficients during the training process, and it is easy to 

fall into long iteration time and local extremes. This study 

analyses the possible factors affecting the transmission speed of 

the node network at the levels of data source, transmission 

medium and receiving terminal of open remote sensing data 

collection. A range of controllable factors were selected to 

establish a prediction model of network transmission capacity. 

For the traditional BP neural network algorithm, the inertia 

weights of network algorithm, it is easy to fall into local minima 

and other shortcomings. The Particle Swarm Optimization 

(PSO) algorithm with good robustness and global search 

capability is combined with the BP neural network algorithm to 

propose an improved PSO-BP algorithm. The improved 

algorithm includes the introduction of gradient, momentum 

factor, and inertia weight adjustment function. To further 

improve the accuracy of the algorithm in the iteration, the 

accuracy dynamic adjustment function is introduced, and the 

learning factor is also introduced into dynamic adjustment 

function. Finally, a comparison experiment between the 
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improved PSO-BP algorithm and the traditional BP algorithm is 

conducted on a real data set collected from Sentinel 2. 

 

2. NODE NETWORK TRANSMISSION CAPACITY 

PREDICTION MODEL 

2.1 Analysis of factors affecting the transmission capacity 

of node networks 

This paper considers the data transmission in large-scale public 

remote sensing data collection under the crowdsourcing model. 

During the collection process, data is transmitted from the 

public remote sensing data source through multiple transmission 

media to the collection node. The data transmission process 

mainly involves “two sources and one medium”, which are the 

data source, the transmission medium, and the receiving 

terminal. The paper analyses the characteristics of the three 

stages of factors affecting node network transmission capacity, 

and Figure 1 shows the factors affecting node network 

transmission capacity. 

 

 

Figure 1. The factors that affect the transmission ability of 

nodes in a network 

 

2.1.1 Constraint analysis based on the data source side 

The main factors that affect the transmission capacity of a node 

network at the data source are related to the physical 

configuration and server parameter settings of the data source 

server.  

 

In order to ensure the long-term stability and security of the data 

source, the number of concurrent accesses, IPs, access 

frequencies, access bandwidth speeds, allowed access time 

periods, and allowed access areas of users are usually restricted 

based on the physical configuration of the server node.  

 

Through long-term collection, it has been found that when a 

single user frequently accesses the USGS data source for a long 

period of time, the user’s order production speed is relatively 

slow, and the data download speed in the morning is much 

faster than that in the afternoon. The data source is closed for 

maintenance every Wednesday in Beijing time. User 

information must be provided when downloading, and the 

download speed is the fastest in the early morning in Beijing 

time. 

 

2.1.2 Constraint analysis based on transmission medium 

In the long-term practice process, it is found that the acquisition 

nodes located in different geographical locations also have 

significant differences. Therefore, it is guessed that when using 

the network medium for data transmission, the total network 

sites in different spatial regions sources differ, and the service 

capacity of configured network bandwidth varies from one 

spatial region to another. Similarly, in the same spatial region 

under the same network configuration environment, different 

physical facilities such as routers, cables, switches, similarly 

affect the data in transmission speed in the network medium.  

 

To verify the effect of network topology on the transmission 

speed of data in the network medium, relevant experiments on 

relay service nodes were conducted. First, taking the public data 

source as the source end and the relay node as the receiving end, 

the relay service node host directly collected a certain amount of 

remote sensing data from the above-mentioned public data 

source, and stored it in the local physical hard disk of the relay 

service node. Then, taking the relay node as the source end and 

the various collection nodes as the receiving end, other 

collection nodes download data from the relay node to the local. 

The experimental results show that the speed of using the relay 

node to collect public remote sensing data is indeed much 

higher than that of not using the relay node, but due to the high 

cost of using the relay node, it is not suitable for large-scale 

long-term public remote sensing data collection. 

 

2.1.3 Constraint analysis based on the acquisition 

terminal Among the many factors that affect the network 

transmission capability of the acquisition terminal, the node’s 

own network bandwidth configuration plays a dominant role. 

Having a higher network bandwidth configuration is more 

beneficial for network data transmission. During the work 

process of the collecting terminal, when other applications 

occupy a large amount of network bandwidth, it seriously 

affects the node’s ability to collect data using the network 

bandwidth. When the terminal uses third-party software to limit 

the network bandwidth of the collection client, it also affects the 

efficiency of data network transmission. The number of threads, 

task type, start time, and task length set by the terminal 

collection client also affect the network transmission speed of 

the node, and these factors are controllable factors of the 

collection terminal, so these controllable parameters can be used 

as input for subsequent network transmission ability prediction 

models. In addition, factors such as disk read and write speed, 

network card, and other physical hardware facilities on the node 

also affect the network transmission ability of the node. 

 

2.2 Model parameter feature selection 

To establish a model for predicting node network transmission 

capabilities and accurately predict the network transmission 

capabilities of crowd-sourced collection nodes, the factors that 
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affect the data in the network transmission environment were 

analysed in the previous section from the three stages of data 

source, transmission medium, and receiving terminal. Many of 

these factors are uncertain and not controlled by the receiving 

terminal, making it difficult to discover their intrinsic patterns. 

Therefore, they cannot be considered in the node network 

transmission capability prediction model. Considering the need 

for publicly available remote sensing data collection, and from 

the perspective of being long-term, stable, inexpensive, and 

practical, many uncontrollable factors are discarded. Without 

considering many data source-side factors and physical factors, 

a selection of controllable factors is made from the perspective 

of dynamic adjustments to the client application parameters of 

the collection terminal. Using machine learning theory, a model 

for predicting node network transmission capabilities is 

established. The model is trained using the node’s actual 

historical collection records, enabling the prediction of the 

node’s network transmission speed. Table 1 shows the selected 

features that affect network transmission capabilities. 

 

Feature Source Feature Name 

Data source Number of concurrencies 

Access frequency 

Access time 

Order submission time 

Order capacity 

Whether it is a working day 

Transmission 

medium 

Space area 

Networking method 

Router model 

Switch models 

Network cable type 

Receiving 

terminal 

Network bandwidth 

Network card type 

Hard drive transfer rate 

Number of task threads 

Task progress 

Task length 

Collection terminal time: hour 

Collection terminal time: minute 

Collection terminal time: second 

Whether it is a working day 

Table 1. Selected features affecting network transmission 

capability. 

 

3. METHODS 

3.1 PSO 

PSO is an algorithm with advantages of simplicity, fast 

convergence and easy implementation, and is widely used in 

scheduling optimization, data mining, model training and other 

aspects of swarm intelligence optimization algorithms (D. 

Wang et al., 2018). 

 

The position of the i-th particle in the population in a D-

dimensional search space consisting of N particles is denoted as 

 which are the possible 

solutions of the problem. The velocity of the particle also 

consists of a D-dimensional vector, denoted as 

. It determines the 

direction and distance of the particle moving in the population. 

In addition, the movement of each particle component of the 

velocity is bounded by the maximum limiting velocity Vm. 

when Vij > Vm, . Similarly, 

the particle s displacement xij is also bounded by xm. When xij > 

xm, , the fitness value of the 

particle at this time can be calculated according to the objective 

function. To prevent the blind search of particles, usually 

. The equations of its velocity 

and displacement update during the particle iterative process are 

as follows. 

 

   (1) 

 

In Equation (1), the number of current iterations of the particle 

is denoted by k, and the inertia weight coefficient is denoted by 

w. The larger the value of inertia weight, the stronger the global 

search ability of the particle. c1 and c2 denote the learning 

factors. c1 describes the influence of the particle by the 

individual extremes, so that the particle has global search ability 

and avoids getting into local solutions. c2 represents the 

influence of global optimum on the particle. r1 and r2 are 

random numbers between (0,1). w, c1 and c2 are the three 

constants that jointly determine the spatial search ability of the 

particle. The position of the optimal fitness value calculated by 

the particle during the iteration process is represented by the 

individual extreme value, which are expressed as 

. The position of the 

optimal fitness value computed by all particles in the population 

during the iteration is denoted by the global extremum pg: 

. 

 

3.2 PSO-BP Algorithm 

In traditional BP neural network algorithms, the weights and 

thresholds are randomly generated, so the algorithm has 

randomness and unreliability. This paper proposes the PSO-BP 

neural network algorithm. First, the particles of PSO algorithm 

are initialised as the initialization weights of BP neural network 

algorithm, then iteration of PSO algorithm starts. Each iteration 

of PSO algorithm is followed by an execution of BP neural 

network algorithm. The iteration termination condition of BP 

neural network algorithm is determined by the prediction 

accuracy, which is dynamically adjusted as the number of 

iterations of PSO algorithm increases. The training termination 

condition of BP neural network algorithm becomes stricter in 

the later stage of PSO algorithm. After each iteration of BP 

neural network algorithm, the absolute value of the error is used 

evaluate the fitness of each particle of PSO algorithm. When the 

PSO algorithm satisfies its iteration termination condition, the 

PSO-BP algorithm also ends. 

 

The parameters involved in the algorithm are the population 

size N, the dimensionality of the particles D, the number of 

iterations of the particles M, the inertia weight w, the learning 

factors c1 and c2, the maximum displacement xm , and the 

maximum velocity vm. The BP neural network algorithm uses a 

three-layer network topology. The value of each particle in the 

PSO algorithm represents the inertia weight in the BP neural 

network algorithm. The dimensionality of the particles D can be 

expressed as:  

 

 ,    (2) 
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In equation (2), the Din , Dh, and Dout denote the number of 

neuros in the input layer, hidden layer, and output layer of the 

BP neural network, respectively.  

 

In the process of predicting the transmission capacity of the 

nodes, six factors including the number of download task 

threads, task progress, task length, acquisition terminal time (in 

hours), acquisition terminal time (in minutes), and data source 

time (in hours) are used as the six neurons in the input layer. 

The number of neurons in the output layer is 1, and the number 

of neurons in the hidden layer is 10. The dimension D= 70, 

which indicates there are 70 inertia weights. For each particle's 

position , xi,1 to xi,60  denote the inertia 

weights from the input layer to the hidden layer and xi,61 to xi,70  

denote the inertia weights from the hidden layer to the output 

layer. 

 

3.2.1 Improvement of inertia weights: Inertia weight (w) in 

Particle Swarm Optimization (PSO) represents the ability of a 

particle to inherit its current velocity from its previous velocity. 

A smaller value of w is beneficial for local search, while a 

larger value is beneficial for global search. To balance the 

global and local search abilities of particles in PSO, the inertia 

weight is improved by modifying the inertia weight using the 

following equation (3) 

 

,   (3) 

 

In Equation (3), the initial and termination values of inertia 

weights are denoted by wstart and wend, respectively, and wstart < 

wend. The current number of particle iterations is k, and the 

maximum number of iterations is denoted by M. Due to the 

changing characteristics of the cosine function, the inertia 

weight (w) decreases slowly during the initial and final 

iterations. Therefore, the algorithm has a longer global 

optimization time at the beginning of the iterations, effectively 

reducing the risk of getting trapped in a local optimum. 

Additionally, in the later stages of the iterations, The algorithm 

can perform local search with a finer granularity, allowing for 

more incremental and precise adjustments. 

 

3.2.2 Improvement of learning factors: In PSO algorithm, 

the learning factors c1 and c2 are the acceleration factors for the 

individual and global best values of a particle, respectively. 

Similarly, to enable the particles to have a good global search 

ability in the early stages of the iterations and to improve the 

precision and convergence speed of the particles in the later 

stages, the values of c1 and c2 are adjusted dynamically. This 

approach maintains the diversity of the population in the early 

stages of the search and improves the search performance in the 

later stages. The formula for calculating c1 and c2 is as follows. 

 

    (4) 

 

In Equation (4), the initial and termination values of the 

learning factor c1 are denoted by cstart and cend, respectively, and 

0<cstart<cend<4. M is the maximum number of iterations, and k is 

the current number of iterations. 

 

3.2.3 Adaptation function: After initializing the neural 

network, the absolute value of the actual output result and the 

predicted result of the download force of the node at the next 

moment as the fitness function of the PSO algorithm: 

 

    (5) 

 

In Equation (5), X is the input to the neural network which are 

the six input metrics mentioned earlier. yi and yi
’ are the node 

the actual and predicted download speed. In the iterative 

process, the variation of velocity and displacement of the 

particles uses equation (1). The inertia weights and learning 

factors are calculated using in equations (3) and (4), 

respectively. 

 

3.2.4 Data normalisation: To improve the accuracy of the 

training and reduce the errors caused by the difference in the 

magnitude of the input values, the input data is normalized to 

the range of (0,1). This is done to make the input neurons more 

sensitive and to reduce the errors caused by the difference in the 

scale of the factors. The equation for normalization is as 

follows: 

 

 ,     (6) 

 

In equation (6), the normalized result of input neuron i is 

denoted as Xi,norm. Xi,min is the minimum value of the input 

neuron, and Xi,max is the maximum value of the input neuron. 

 

3.2.5 Data inverse normalization: To facilitate the 

comparison of predicted results with actual results and to make 

it easier to calculate the fitness value of each particle, it is 

necessary to reverse the normalization process of the particle’s 

predicted results. The equation for reverse normalization is as 

follows: 

,    (7) 

 

In Equation (7), Yi,norm represents the result of the i-th 

dimension data after de-normalization, Yi represents the result 

of the i-th dimension data before de-normalization, that is, the 

un-normalized result after prediction, Yi,maxV represents the 

maximum value of the i-th dimension data in the actual results, 

and Yi,minV represents the minimum value of the i-th dimension 

data in the actual results. 

 

3.2.6 Accuracy dynamic adjustment function: To achieve 

the goal of low precision (low expected error) in the early stages 

of BP neural network training and high precision (high expected 

error) in the later stages, this paper introduces a precision 

dynamic adjustment function to dynamically adjust the error 

precision of the BP algorithm during the training process. The 

expression for the precision dynamic adjustment function is as 

follows: 

 

      (8) 

 

In Equation (8), a is the initial accuracy which usually is 1, b is 

the accuracy adjustment factor, and k is the current number of 

iterations. 

 

The execution flow of the PSO-BP algorithm is shown in Figure 

2.  
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Figure 2. PSO-BP algorithm flow chart 

 

4. EXPERIMENT AND RESULTS 

4.1 Experimental parameters setting 

To validate the execution results of the above proposed PSO-BP 

algorithm, BP, and PSO-BP algorithms were evaluated to 

conduct the experiments with real data sets. In Table 2, the 

parameters of the above two algorithms are set. The number of 

neurons in the input layer is 6, the number of neurons in the 

hidden layer is 10, and the number of neurons in the output 

layer is 1. The sigmoid function is used for the excitation 

function of the hidden layer. The inertia weights from the input 

layer to the hidden layer and from the hidden layer to the output 

layer are adjusted by combining gradient descent and 

momentum factor. 

 

Algorithm Parameters 

BP LearningRate = 0.08, Momentum factor  

=0.5, AvgTrainError >0.001 

PSO-BP N=50, cstart=3.5, cend=2.5, wstart=1, 

wend=0.1, b=0.2, Iter=200, vmax=2, xi,D ∈ 

[-0.5, 0.5], LearningRate =0.08, 

Momentum factor = 0.5, Iter=5 

Table 2. Algorithm parameters setting 

 

4.2 Experimental results analysis 

To validate the execution results of the BP algorithm and the 

proposed PSO-BP algorithm, experiments have been done on  

real data sets. After cleaning and filtering the historical dataset, 

we collected more than 20,000 data files from a collection client 

of Sentinel 2 data collection. Around 20,000 data files were 

selected as the training set, and more than 2900 data files were 

selected as the test set. Table 3 lists the some of the 

experimental results of the tests using the two algorithms 

mentioned above. 

 

No Actual 

Value 

BP PSO-BP 

Predicted 

Value 

Error 

Rate 

Predicted 

Value 

Error 

Rate 

1 976 677 0.3064 835 0.1445 

2 840 854 0.0167 927 0.1036 

3 832 886 0.0649 895 0.0757 

4 816 848 0.0392 916 0.1225 

5 848 859 0.0130 899 0.0601 

6 840 867 0.0321 916 0.0905 

7 920 833 0.0946 905 0.0163 

8 944 842 0.1081 894 0.0530 

9 920 842 0.0848 909 0.0120 

10 840 799 0.0488 887 0.0560 

11 824 834 0.0121 872 0.0583 

12 912 843 0.0757 889 0.0252 

13 976 777 0.2039 876 0.1025 

14 864 833 0.0359 853 0.0127 

15 808 813 0.0062 873 0.0804 

16 808 798 0.0124 857 0.0606 

17 912 867 0.0493 926 0.0154 

18 880 888 0.0091 932 0.0591 

19 832 848 0.0192 922 0.1082 

20 856 858 0.0023 903 0.0549 

21 920 842 0.0848 903 0.0185 

22 872 876 0.0046 904 0.0367 

23 824 850 0.0316 890 0.0801 

24 832 853 0.0252 879 0.0565 

25 832 819 0.0156 885 0.0637 

26 808 845 0.0458 866 0.0718 

27 896 840 0.0625 861 0.0391 

28 808 833 0.0309 916 0.1337 

29 816 802 0.0172 901 0.1042 

30 928 838 0.0970 900 0.0302 

31 816 791 0.0306 871 0.0674 

32 984 824 0.1626 889 0.0965 

33 840 919 0.0940 942 0.1214 

34 920 909 0.0120 928 0.0087 

35 856 921 0.0759 927 0.0829 

36 888 907 0.0214 925 0.0417 

37 920 906 0.0152 931 0.0120 

38 936 898 0.0406 922 0.0150 

39 832 905 0.0877 921 0.1070 

40 888 905 0.0191 928 0.0450 

41 816 906 0.1103 927 0.1360 

42 808 909 0.1250 947 0.1720 

43 936 913 0.0246 937 0.0011 

44 824 899 0.0910 936 0.1359 

45 920 900 0.0217 950 0.0326 

46 808 882 0.0916 905 0.1200 

47 968 876 0.0950 891 0.0795 

48 832 754 0.0938 870 0.0457 

49 824 771 0.0643 871 0.0570 

50 848 765 0.0979 847 0.0012 

Table 3. Selected prediction results 

Figure 3 below shows the comparison of the error rates of the 

two algorithms for the data in Table 3. The prediction errors of 

the BP algorithm and the PSO-BP algorithm are very different, 

with the former having a large variance in the prediction results 

and the latter having a relatively flat prediction error. The errors 

of the two algorithms are mostly concentrated around 5%. 
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Figure 3. Error rates comparison between BP algorithm and 

PSO-BP algorithm 

 

In Figure 4, the true value, and the prediction value from the 

two algorithms are shown. Prediction from PSO-BP algorithm 

is closer to the true value, while the error of the traditional BP 

algorithm is larger compared with PSO-BP algorithm. 

 

 

Figure 4. Results comparison between BP algorithm and PSO-

BP algorithm 

 

To further evaluate the prediction results, mean relative error 

and root mean square error are calculated in Table 4. 

 

Algorithm Mean relative 

error 

Root mean square 

error 

BP 0.0925 0.1163 

PSO-BP 0.0595 0.0703 

Table 4. Evaluation of algorithm prediction results 

 

From Table 4, the mean relative error and root mean square 

error of PSO-BP algorithm are smaller than those of BP 

algorithm, which indicates that the PSO-BP algorithm has better 

prediction results. Tables 5 show the number of test sets in 

different error rate ranges for each of the two algorithms. The 

proposed PSO-BP algorithm achieves better accuracy 

comparing with traditional BP algorithm. 

 

Algorithm Error <= 5% Error <= 

15% 

Error > 5% 

BP 1004 2371 567 

PSO-BP 1302 2908 30 

Table 5. Error statistics on test set 

 

5. CONCLUSION 

This paper proposed an improved PSO-BP algorithm by 

introducing the accuracy dynamic adjustment function and the 

learning factor adjustment function. Finally, a comparison 

experiment between the improved PSO-BP algorithm and the 

BP algorithm is conducted on the real data set to verify the 

feasibility of the prediction model and the improved PSO-BP 

algorithm. 
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