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ABSTRACT: 

There is a natural tendency from the remote sensing community to extract area statistics (i.e. “Pixel counting”) from EO 

based geospatial products to produce statistical indicators for various purposes. However, geospatial map products suffer 

from misclassification errors and “pixel counting” can only be justified when the accuracy of such map products reaches 

a level when these misclassification errors can be considered negligible, but this is possible only in very specific 

circumstances. Nevertheless, there has been some effort in the Remote Sensing community to assess the accuracy of map 

products against some form of reference data to ensure that the maps could reach a sufficient level of accuracy. However, 

there is generally a lack of standards and guidelines and how to perform rigorous map accuracy assessment and rigorous 

methods for assessing map accuracies and extracting statistics are still lacking as highlighted by McRoberts (2011). 

Despite substantial advances in this topic in the scientific literature in recent years notably with the paper from Olofsson 

et al (2014), this has yet to be fully implemented in operational projects. In addition, even if map accuracy assessment is 

performed correctly, high accuracy does not necessarily mean that area statistics can be directly extracted from a map. 

This study is focused on developing the rigorous and appropriate use (i) of geospatial map products from satellite imagery 

and (ii) statistically sound methods for reporting area estimates and their associated uncertainty. 

1 INTRODUCTION 

There is a natural tendency from the remote sensing 

community to extract area statistics (i.e. “Pixel 

counting”) from EO based geospatial products to 

produce statistical indicators for various purposes. 

However, geospatial map products suffer from 

misclassification errors and “pixel counting” can only be 

justified when the accuracy of such map products 

reaches a level when these misclassification errors can 

be considered negligible, but this is possible only in very 

specific circumstances. Nevertheless, there has been 

some effort in the Remote Sensing community to assess 

the accuracy of map products against some form of 

reference data to ensure that the maps could reach a 

sufficient level of accuracy. However, there is generally 

a lack of standards and guidelines and how to perform 

rigorous map accuracy assessment and rigorous 

methods for assessing map accuracies and extracting 

statistics are still lacking as highlighted by McRoberts 

(2011). Despite substantial advances in this topic in the 

scientific literature in recent years notably with the paper 

from Olofsson et al (2014), this has yet to be fully 

implemented in operational projects. In addition, even if 

map accuracy assessment is performed correctly, high 

accuracy does not necessarily mean that area statistics 

can be directly extracted from a map. 

To illustrate this, the Table below shows a confusion or 

error matrix that was produced from the comparison of 

a set of reference data collected from the visual 

interpretation of sample units and a corresponding map 

product of Forest (F), Non-Forest (NF) and Change (C). 

The error matrix below is based on a probability sample 

(i.e. the probability of inclusion of each sample unit is 

known and unequal sampling intensity from different 

strata was corrected to ensure that each sample unit 

carries an equal weight in the error matrix) and different 

accuracy metrics can be extracted from the matrix such 

as overall accuracy for the entire matrix / map and user 

and producer accuracies for individual thematic classes 

which are indicative respectively of commission (i.e. 

over-classification) and omission (i.e. under-

classification) errors. Confidence intervals can also be 

added to assess whether the differences between the 

different metrics are statistically significant at a certain 

confidence level. 
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Table 1. Error Matrix of a Forest (F), Non-Forest 

(NF) and Change map 

 

In the example shown, the overall accuracy is relatively 

high with a value close to 97%. However, the overall 

accuracy can be misleading in that it can hide some 

imbalance for individual map classes. This is 

particularly true for small classes such as the change 

class for which the accuracy is often lower when in fact 

changes are the most important indicators to be 

generated from a policy perspective. In this particular 

case changes are overestimated by a factor of 2/3 as 

compared to the reference data considering that the 

proportion of each classes in the matrix is properly 

respected. In other words, if the total area considered is 

100,000km², the area of change from the reference data 

would represent 300km² whereas it would represent 

500km² from the map. 

The issue of the impact of map inaccuracies or rather 

imbalance between omission and commission errors has 

been known for some time when satellite-based products 

were used in combination with reference data for crop 

area statistics first in the USA during the 1980’s (Allen 

1990) and then in Europe as part of the Monitoring of 

Agriculture with Remote Sensing programme during the 

late 1980’s and 1990’s (Taylor et al 1997). More 

recently, similar approaches were developed and 

adapted for tropical forest monitoring to support 

reporting of activity data for the Forest sector as part of 

the United Nations Framework Convention on Climate 

Change (UNFCCC). Under UNFCC, there are strict 

requirements that estimates should neither over or 

underestimate reality and that their uncertainty should 

be known. In this context, “pixel counting” violate this 

statement in that there is no way of knowing (i) if the 

estimate is realistic (i.e. neither over or under 

estimation) and (ii) the associated uncertainty. The 

approaches from Olofsson et al (2014), but also Sannier 

et al (2014) were identified as suitable methods to 

estimate activity data and its associated uncertainty 

(GFOI, 2016). Methods are therefore well known and 

documented, but there is still a lack of widespread 

implementation among the remote sensing community. 

On the other hand, remotely sensed based products are 

still not very widely used as part of traditional statistical 

reporting systems whereas there could potentially be 

strong synergies between traditional purely sample 

based methods and the use of remotely sensed based 

products. Notably map products produced from satellite 

imagery can be: 

• A cost-efficient basis for stratification thus 

contributing to reducing the uncertainty 

• Combined with reference data through a model 

assisted approach to further reduce the 

uncertainty of the estimate 

Therefore, this study is focused on developing the 

rigorous and appropriate use (i) of geospatial map 

products from satellite imagery and (ii) statistically 

sound methods for reporting area estimates and their 

associated uncertainty. 

2 TECHNICAL APPROACH AND 

METHODOLOGY 

The sections below provide a detailed description of the 

approach that was applied based on the extensive 

experience of the project team in the validation of 

Copernicus HRL products. 

2.1 Area estimation and map validation  

Both problems may seem different to each other at first 

sight, but they are deeply linked to each other. Most map 

validation indicators are computed from the confusion 

matrix (Table 1). Each term Agc of a confusion matrix 

should be extrapolated to the area that belongs to the 

ground class g and has been classified as c. However, for 

the area as well as map accuracy estimates calculated 

form a confusion matrix, each sample unit included in 

the matrix must be based on a probability sample for 

which the sampling intensity will need to be accounted 

for in case of unequal sampling intensities, which may 

occur if a stratification has been applied. Therefore, 

estimating a confusion matrix is a problem of area 

estimation as outlined by Olofsson et al. (2014).  More 

details are provided in the following sections. 

2.2 Sample design 

 Choosing sampling units: clusters or 

unclustered points? 

Samples for assessing the accuracy of map products and 

area estimation are usually drawn from area frames as 

opposed to list frames to provide a better representation 

of the population (Gallego, 2004a). In an area frame, 

sample units can be points, lines (often referred to as 

transects) or areas (often referred to as segments, 

described by Gallego, 1995). The first step is to define 

the geographical area for which the accuracy assessment 

is to be reported and the type of sample units. Point 

samples are very often used, but clusters or segments 

have advantages in many cases: they reduce the 

distortion generated by co-registration and may improve 

the outcome when not only thematic accuracy need to be 

reported, but also the geometry of mapped objects such 

as for CLC. 

A two-stage sampling approach is implemented by 

further selecting Primary sampling units (PSUs) and 

secondary sampling units (SSU) within PSUs in the 

 
 

 
Reference 

  

 

 

 
Stable NF Stable F Change Total 

User's 
accuracy 

 

M
ap

 

Stable NF 276 6   283 0,977 

 
Stable F 20 691 1 712 0,970 

 
Change 1 2 2 5 0,427 

Total 
 

297 699 3 1000 
 

Producer's 
accuracy 

 
  0,930 0,988 0,651 

Overall 
Accuracy 

0.969 
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second stage. Two-stage sampling is considered suitable 

for accuracy assessment of land cover maps or area 

estimation (Stehman, 2009) and can be adopted in 

certain cases because it represents a good compromise 

between the ease of data collection and a good 

geographic distribution. 

In the case of the validation of HRL density product for 

EEA a 2-stage sampling approach was applied as shown 

below in which 1ha square PSUs were selected and a 

grid of 5x5 or 10x10 SSUs was applied to facilitate the 

data collection as shown in Figure 1. The same approach 

is suggested to be adopted here although the 

implementation or not of the second stage is discussed 

in the response design section. 

 

Figure 1: Example of SSUs organised in a 5x5 20m 

grid  

 Stratification 

A probability sampling design is essential for map 

validation and area estimation (Stehman and Foody, 

2008, Olofsson et al., 2014), but this is less clear for 

collecting training data. In exchange, a purposive 

selection of locations for training data can be an 

acceptable choice, for example collecting data along 

roads (Gallego et al, 2014).   

Simple random, stratified random, clustered random and 

systematic designs are all examples of probability 

sampling designs. In simple random designs, classes 

covering a small portion of the population may not be 

adequately sampled. Cluster sampling is often used to 

reduce the costs of the collection of reference data, but 

does not resolve geographic distribution problems. 

Stratified approaches overcome this drawback; 

therefore, the stratified random sampling of points is one 

of the most common approaches to assess map accuracy. 

Stratified systematic with random origin also overcome 

this drawback and has the advantage of enhancing 

traceability. The main limitation of systematic sampling 

is that there are no unbiased estimators of the variance, 

although the estimators of the target variance is unbiased 

(Bellhouse, 1988). In practice, the random sampling 

estimator of variance is used even though it may slightly 

overestimate the true variance. In addition, there is also 

a strong advantage of a systematic approach in that there 

is better traceability as compared with a random 

approach: a sample drawn systematically cannot be 

changed since its location is known a priori. For 

example, LUCAS is based on a stratified systematic 

sample. 

In many cases, the land cover map to be assessed or 

validated is directly used as stratification (Lowell and 

Jaton, 1999). This is a good approach to estimate 

commission errors in a binary classification, but may be 

weak for other cases. If we have some information that 

quantifies the likely proportion of errors, for example a 

measure of landscape complexity, it can be a more 

efficient stratification for all types of errors: we shall 

choose a higher sampling rate in more difficult areas, 

where both the errors and their variances are higher.  

Experience has shown that a too complex stratification 

will not bring major improvement and that there needs 

to be a clear case for stratifying the Area of Interest 

(AoI). A clear case is when there are marked 

geographical differences. Experience in Europe from the 

Regional Inventory programme of the MARS project in 

the 1990s from (Taylor, 1997) showed that the more 

complex the analysis on which the stratification is based, 

the less efficient it tends to be. In addition, there should 

not be too many strata because even if the stratification 

will make it possible to reduce the number of sample 

unit needed for a single stratum, the benefits will be lost 

if too many strata are present. (Cochran, 1977, p. 134) 

recommends no more than 6-8 strata in total. 

If we are looking at commission errors in a binary map 

(impervious-non impervious, or forest-non forest) and 

we have decided to use both classes as strata and 

unclustered points as sampling units, , it is possible to 

estimate a suitable sample size for each stratum based 

on the expected acceptable error rate. The standard error 

of the error rate can be calculated as follows: 𝜎ℎ =

√
𝑝ℎ(1−𝑝ℎ)

𝑛ℎ
 where nh is the sample size for stratum h and 

ph is the expected error rate. This can be reworked to 

express the sample size nh as a function of ph and desired 

standard error 𝜎ℎ: 𝑛ℎ =
𝑝ℎ(1−𝑝ℎ)

𝜎ℎ
2 .  

 Sample allocation 

When using stratified sampling, the main issue to 

maximise the efficiency of the stratification is to 

optimize the sample allocation per strata. A simple way 

is the use of equal allocation, such as is used e.g. for the 

verification of the 2012 HRLs, but this is usually not 

very efficient. Proportional allocation is an option, but it 

will give disappointing results for important classes 

covering a small proportion (e.g. impervious land). If we 

have a high priority for a class , the Neyman allocation 

rule is a better alternative  (Cochran, 1977): 

 𝑛ℎ =  𝑛 ∗  (𝑁ℎ ∗  𝜎ℎ ) / [ 𝛴 ( 𝑁𝑖  ∗  𝜎𝑖  ) ]  where 𝑛ℎ  is 

the sample size for stratum h, n is the total sample size, 

Nh is the population size for stratum h, and 𝜎ℎ  is the 

standard deviation of stratum h. According to Stehman 

(2009), Neyman optimal allocation should be preferred 

for estimating area of change as well as overall accuracy, 

whereas equal allocation is effective for estimating 

user's accuracy. 
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In practice (Särndal et al., 1992, p. 267 and 407) 

recommend a minimum within-stratum sample sizes of 

10-20; (Cochran, 1977, p. 134) recommends minimum 

within-stratum sample sizes of 20; and for temperate 

forest inventories (Westfall et al., 2011) recommend 

within-stratum sample sizes of at least 20. Therefore, for 

this work, if the use of a stratification approach is 

suitable, the maximum number of strata should not 

exceed 6-8 strata and the smallest number of sample 

units should be not be less than 20 for a single stratum. 

 Selected approach 

The approach for drawing sample units as part of the 

validation undertaken at pan-European level by EEA 

was based on the LUCAS grid which makes comparison 

with LUCAS results easier. However, considering the 

different characteristics and class definition of the HRLs 

the thematic information of LUCAS points was not 

directly used even though the LUCAS photos proved 

particularly useful for identifying land cover / use 

classes. A similar approach is suggested to be adopted 

here using the LUCAS grid as the sampling frame 

corresponding to approximately 1,100,000 points 

throughout the European Union where land cover or 

land use type is observed. Using LUCAS points ensures 

traceability and coherence between the different layers. 

In the case of the HRL, the LUCAS point is then used to 

define the origin of the 1ha plot to be selected as 

described above. 

LUCAS points are located every 2 km on a regular grid, 

as illustrated below. A set of 81 points located on an 

18x18 km square constitutes a group in which every 

point is associated with a number comprised between 1 

and 81 (the numbers do not follow each other spatially). 

The same pattern with the same numbers allocation is 

repeated all over the grid. A replicate refers to the points 

with the same number selected on the whole LUCAS 

grid. 

 

Figure 2. LUCAS points located on a regular grid 

At first, the number of samples to allocate to each 

stratum (or thematic class) is calculated as a function of 

their area. In this manner the sampling design is not only 

systematic but also stratified. The number of sample 

units per stratum is to be defined to ensure sufficient 

level of precision at reporting level: The number of 

replicates to be selected for a stratum depends on its area 

and the number of LUCAS points intersecting the 

stratum. 

For thematic classes covering a large proportion of the 

study area, 1 replicate may already exceed the defined 

number of samples for this class. To solve this problem, 

replicates are split into four sub-replicates, as illustrated 

by the blue numbers in the Figure below.  

The opposite problem is encountered for land cover 

classes covering a small proportion of the study area: 

even by selecting 81 replicates (the maximum number), 

the intersecting area between the stratum and LUCAS 

points may be too small to reach the required number of 

samples. Therefore LUCAS grid can be densified by 

creating one point every 200 m. 

Based on the lessons learnt, from previous validation 

exercises, the stratification procedure is simplified to 

only include a commission (tree cover mask 1-100) and 

an omission stratum (rest of the area) in order to ensure 

the efficiency of the approach. Stratification is based on 

the strata defined as follows: 

o Commission: tree cover density 1-100% 

(minimum of 75 PSUs per country / group of 

countries) 

o Omission: tree cover density 0% (minimum 

of 75 sample units per country / group of 

countries) 

o Commission Change: all changes from 2012-

2015 & 2015 -2018 

If the minimum of 75 PSUs per country / group of 

countries is not reached at the first level of stratification, 

a second level is applied, per country to ensure the 

minimum number of PSUs. 

2.3 Response design 

 Overview 

Response design is the methodology used to obtain the 

reference data from the sample units (Stehman & 

Czaplewski, 1998). Stehman (2009) asserted that 

accuracy assessment is often made relative to some 

“higher quality determination of land cover”. 

Czaplewski (2003) indicated that visual interpretation is 

acceptable if the spatial resolution of EO data is 

sufficiently better compared to the thematic 

classification system. For this exercise, visual 

interpretation of selected sample units will be used as a 

basis of the response design. 

In a quality assessment of an EO product, the response 

design is a critical element: it includes all aspects of the 

quantification of the agreement to determine whether the 

map and reference data on the selected sample. The 
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response design should closely follow the definition of 

the product to be assessed both in terms of geometric 

and thematic characteristics. 

When we discuss the use of EO for statistics, the 

response design is still relevant especially in this case 

for which the use of the map products can be combined 

with the sampled observation in a model assisted 

regression estimation. Therefore, it will be important to 

ensure that the following characteristics are followed 

and closely monitored as part of the visual interpretation 

of selected sample units and that discrepancies between 

the map and sampled reference data are due to actual 

thematic errors: 

• Minimum Mapping Unit (MMU) 

• Minimum Mapping Width (MMW) 

• Class definition: what is an impervious surface 

and what is forest? 

• Ensure that the image data used is as closed as 

possible temporally to that used for the map 

production 

A 2-stage sampling approach was applied: 

• 1 ha square PSUs were selected based on 

LUCAS points as describe in section 2.2.4 

• SSUs were selected in a systematic grid of 5x5 

points 

 Bias Estimation and mitigation 

The bias of pixel counting is the difference of the 

extrapolated commission and omission errors. With the 

notation introduced in section 2.3:  

𝐵 = 𝜑 − 𝜓 

The reason why classification algorithms introduce a 

bias is that there is no theorem than ensures that the 

mathematical expectation of commission and omission 

errors compensate each other. There is nothing similar 

to the Law of Large Numbers in sampling theory. 

Example of bias are provided in Erreur ! Source du 

renvoi introuvable.. 

Table 2: Estimates Forest cover/change proportion 

forest from segments, figures in bold indicates 

estimates not significantly different from 0 (Source: 

Sannier et al., 2014). 

 

In some algorithms the result of pixel counting can be 

adjusted by tuning explicit parameters. In particular the 

classical maximum likelihood classifier uses the a priori 

probability of each class to push the total number of 

pixels of that class to higher or lower numbers. It is 

empirically well known that a uniform a priori 

probability usually introduces a negative bias for large 

classes and positive for small classes, while a 

proportional a priori probability makes the opposite.  

More complex algorithms, such as random forests, 

neural networks and support vector machines are usually 

more accurate, although less robust. In these complex 

algorithms the parameters are hidden and cannot be 

tuned by the user, but the total number of pixels can be 

adjusted by cleaning training data or adding/removing 

the amount of training data in each class. Moreover, 

most current classification algorithms usually provide 

an additional probability layer which can be used to 

adjust the area classified by a given thematic class. 

These layers are not part of the products delivered for 

the forest layer. However, the binary layers used for the 

area estimation are based on density layers, the tree 

cover density for forest. Different threshold can be 

applied locally to the density values to adjust the area 

covered by the layers and reduce the amount of bias. 

Such a procedure was applied for forest cover in Gabon 

by Sannier al (2016b) using the global forest change 

dataset from Hansen et al (2013) concluding that at 

national level, a 70% threshold applied to the dataset 

was a closer depiction of the actual 30% threshold from 

the national forest definition, but for some areas, a more 

localised threshold adaptation was needed as illustrated 

in Figure 3 below. 

 

 

Figure 3: Comparison of (a) the national forest cover 

map, (b) the Global Forest Cover based forest cover 

map with a 30% tree cover threshold and (c) the 

Global Forest Cover based forest cover map with a 

70% tree cover threshold over a 100 x 80 km extract 

in Eastern Gabon (Source Sannier et al, 2016) 

 

 Unbiased area estimates 

The most usual bias correction methods are regression 

and calibration estimators. It should be mentioned that 

the “calibration estimators” used in remote sensing is 

not exactly the same as the “calibration estimators” as 

defined by Deville and Särndal (1992), more familiar to 

official statisticians.   

Small area estimators are a larger family of more 

complex methods (Rao, 2003). For this study we do not 

intend to describe in depth small area estimators, 

although a brief description is foreseen for the training 

course.   

One of the main purposes of this exercise is to produce 

reliable indicators of area and area change for a range of 

land cover/use types at selected NUTS levels based on 

Copernicus and map products. In addition, the efficiency 

of the stratification and the contribution of the map 

products in terms of improvements of the precision of 

the area and area change estimates can be evaluated by 

 Forest Cover    Forest Cover Change 

  1990 2000 2010   1990-2000 2000-10 1990-2010 

Direct mean 0.8568 0.8534 0.8532   -0.0034 -0.0002 -0.0036 

Direct SE ±0.0185 ±0.0186 ±0.0186   ±0.0009 ±0.0008 ±0.0012 

Map estimate (pixel counts) 0.8633 0.8616 0.8613   -0.0017 -0.0003 -0.0020 

Bias estimate 0.0027 0.0042 0.0049   0.0015 0.0007 0.0023 

MAR Adjusted estimate 0.8606 0.8574 0.8564   -0.0032 -0.0010 -0.0043 

MAR Adjusted SE ±0.0028 ±0.0026 ±0.0025   ±0.0009 ±0.0008 ±0.0012 
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calculating the stratification efficiency (Gallego, 1995) 

and the relative efficiency of the maps combined with 

reference data (Taylor et al. 1997). Finally, this 

approach can also be used to identify the level of 

thematic accuracy (there is always a strong relation 

between thematic accuracy and precision levels) that 

would be required to get reliable and precise estimates 

of area and area change, which for the latter is always 

the most difficult to obtain. This level could then be used 

as a target for the improvement of Copernicus Land 

products in terms of the following: 

• Minimum level of thematic accuracy to reliably 

detect changes for a range of Copernicus Land 

products and typical themes 

• Minimum duration between observation periods to 

reliably detect change, given a specified thematic 

accuracy target 

Area estimates can be derived from directly from the 

field data alone using the so-called direct expansion 

method as long as the data has been collected based on 

a probabilistic sample. The estimate of proportion (y) of 

class (c) and its variance are given by: 

�̅�𝑐 =
1

𝑛
𝑦𝑖  and 𝑣𝑎𝑟(�̅�𝑐) = (1 −

𝑛

𝑁
)

1

𝑛(𝑛−1)
∑ (𝑦𝑖 −𝑛

𝑖=1

�̅�𝑐)2 

where: yi is the proportion of segment i covered by class 

c, N is total number of segments in the region, n is 

number of segments in the sample. The proportion of the 

study region sampled (n/N) is the sample fraction. The 

variance calculation above assumes a single stage 

sampling, if a 2 stage sampling is applied, this needs to 

be accounted for as described by Sannier et. (2014). The 

estimate of class area (Z) and variance in study area (D) 

are as follows: 

�̂�𝑐 = 𝐷 ∗ �̅�𝑐 and 𝑣𝑎𝑟(�̂�𝑐) = 𝐷2 ∗ 𝑣𝑎𝑟(�̅�𝑐) 

where D is the area of the region. It is better to compute 

the estimates first as proportions rather than as absolute 

areas because this automatically takes account of errors 

resulting from small localised variations in the scale of 

segment maps and drawing or digitising errors. The 

Direct expansion estimators are calculated for each 

stratum present in the AOI and the total estimate just 

correspond to the weighted average of the proportions 

according to the area covered by each stratum. The 

standard error for the whole area is then the square root 

of the sum of the variance times the square of the area 

for each stratum:  

𝜎𝑇𝑜𝑡𝑎𝑙 = √∑ 𝐷ℎ
2. 𝑉𝑎𝑟ℎ 

where 𝐷ℎ    is the stratum area. The 95% confidence 

interval is +/- 1.96. 𝜎𝑇𝑜𝑡𝑎𝑙. 

However, the confidence interval of the estimate derived 

from direct expansion is likely to be relatively broad. To 

improve the precision of the estimates the sampling 

fraction needs to be increased or field segment data can 

be combined with classified satellite imagery. 

A so-called Model Assisted Regression (MAR) 

estimator can be applied, this is more reliable than any 

other area estimation methodology as it provides both an 

area estimation per cover type together with an 

indication of its uncertainty. 

As a summary, it relies on the combination of area 

estimates made at the segment level for both reference 

data and classified satellite imagery. The observation is 

paired, and a regression analysis is performed as 

illustrated in Figure 4. 

The regression estimator methodology is fully described 

by Taylor et al. (1997). 

The estimation of land cover type areas can be very 

variable from pixel counts because image classification 

is affected by misclassification errors affecting classes 

differently causing omission and commission errors. 

Area estimates derived from the regression estimator 

method are corrected from misclassification errors 

whilst exhibiting a more precise precision estimate than 

that of the direct expansion estimate thanks to the 

complete coverage provided by the image classification. 

In summary, direct expansion estimates are unbiased, 

but suffer from high sampling error, pixel counts from 

classified satellite imagery are biased but have no 

sampling errors and the combination of ground data and 

classified imagery are unbiased and exhibit a reduced 

sampling error. 

 

 

Figure 4: Relationship between digital classification 

and ground survey for wheat in the UK (after 

(Taylor, 1997). 

The so-called regression estimator yreg is calculated 

based on the regression formulae: 

𝑦𝑟𝑒𝑔 = �̅� + 𝑏 ∗ (�̅�𝑝𝑜𝑝 − �̅�) 

where �̅� is the mean field data sample value, b is the 

slope of the regression line, �̅�𝑝𝑜𝑝  is the proportion of 

pixels classified as the land cover in the whole of the 

region of interest and �̅�  is the classified image mean 

sample value. The variance of the estimate is calculated 

as: 

𝑣𝑎𝑟(�̅�𝑟𝑒𝑔) =
1

𝑛
𝑣𝑎𝑟(𝑦)(1 − 𝑟𝑝𝑦

2 )  

where 𝑟𝑝𝑦
2  is the regression coefficient. The variance 

calculation above assumes a single stage sampling, if a 
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2-stage sampling is applied, this needs to be accounted 

for as described by Sannier et. (2014). 

Therefore, the higher the regression coefficient the 

smaller the variance and as a result the precision of the 

estimate. Experience for the MARS programme (Taylor, 

1997) showed that high classification accuracy was 

correlated with high regression coefficient. 

The efficiency of the regression estimator is estimated 

by the relative efficiency, which is the ratio of the 

radiance from the regression estimator method and the 

direct expansion estimate:  

𝑛𝑟𝑒𝑔 =
1

1−𝑟𝑝𝑦
2 . 

During the MARS project, it was shown that relative 

efficiency above 2 could easily be obtained, but with 

multi-temporal image coverage, higher classification 

accuracy could be achieved as part of this project 

resulting in reduction of variance by a greater factor. For 

land cover types that are very distinct such as tropical 

rainforest, very high relative efficiency i.e. reduction of 

the uncertainty can be obtained with the Regression 

Estimator as shown by (Sannier et al., 2016) for forest 

cover in Gabon for which relative efficiency close to 60 

were obtained. This means that the variance of the 

regression is reduced by a factor of 60 as compared to 

the direct expansion estimate. In other words, to obtain 

the same level of uncertainty with the direct expansion 

i.e. without using the EO-based forest cover map, the 

sample size would need to be increased by a factor of 

60. The 95% confidence interval of the direct expansion 

estimate is around 2% of the total area of Gabon when it 

is reduced to 0.25% for the regression estimate. It is also 

worth noting that this is a rare case for which the pixel 

count from the map is relatively close to unbiased 

estimates considering that it is invariably contained 

within the bounds of the, most precise, regression 

estimates. 

 

  

(a) (b) 

Figure 5: Illustration of the importance of the quality 

of the linear regression with (a) all observations and 

(b) one observation removed. 

One of the issues with the regression estimator as 

described above is that it is potentially very sensitive to 

the quality of the linear regression which is sometimes 

poorly reflected by the r² as shown in the example below 

(see Figure 5). 

A slightly adapted estimator is also available in the form 

of the GREG estimator described by (Särndal et al., 

1992, sec. 6.5) which focuses on the average of the 

differences from each observation to the mean of 

observations: 

�̂�𝑔𝑟𝑒𝑔 =
1

𝑁
∑ �̂�𝑖

𝑛

𝑖=1

−
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

with variance: 

𝑣𝑎�̂�(�̂�𝑔𝑟𝑒𝑔) =
1

𝑛(𝑛 − 1)
∑(𝜀𝑖 − 𝜀)̅2

𝑛

𝑖=1

 

where N is the number of map units, n is the reference 

set sample size, yi is the observation for the ith reference 

set sample unit, 𝑦�̂� i is the map class, 𝜀 =  𝑦�̂� − 𝑦𝑖 , and 

𝜀 ̅ =
1

𝑛
∑ 𝜀𝑖

𝑛
𝑖=1 . The variance calculation above assumes a 

single stage sampling, if a 2-stage sampling is applied, 

this needs to be accounted for as described by Sannier 

et. (2014). 

It has the advantage of not being sensitive to the quality 

of the linear regression but could potentially provide an 

estimate with a larger confidence interval compared 

with the direct method when the EO-based map is of 

poor quality for the land cover class considered. Such an 

approach was applied by Sannier et al. (2014) in Gabon 

and was applied here over Europe for Tree Cover (no 

forest definition was applied). 

3 RESULTS AND CONCLUSIONS 

The Stratified Random Sampling or Direct Estimates ad 

well as the GREG or Model Assisted Regression 

estimates were produced for the entire area of the EEA 

38+UK countries covered by the Copernicus High 

Resolution layer on Tree Cover Density, the estimates 

are shown in the table below for 2012, 2015 and 2018. 

Table 3. Tree cover area proportionestimates at 

EEA38+UK level for 2018, 2015 &nd 2012 

 
2018 2015 2012 

 Estimate CI95% Estimate CI95% Estimate CI95% 

Direct 
mean 0,305 0,004 0,290 0,004 0,273 0,005 

Map  

(pixel 

counts) 0,250 n/a 0,269 n/a 0,250 n/a 

MAR 0,287 0,002 0,294 0,002 0,256 0,004 

Relative Efficiency 1,42  3,32  5,34 

 

It appears that there has been a significant increase in 

Tree cover between 2012 and 2015. Which seems to 

have stabilised in 2018. It should be noted that the 

combination of sample and map observations provides 

estimates with reduced uncertainty and that the quality 

of the HRL TCD appears to have improved substantially 

between From 2012 with a relative efficiency of just 

1.42 in 2012 and over 5 in 2018. 
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