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ABSTRACT: 

Environmental sustainability assessment is a crucial part of the management of natural resources. Remote Sensing based 
environmental land cover indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 
(NDWI), Normalized Difference Built-up Index (NDBI), Normalized Difference Moisture Index (NDMI), and its associated Land 
Surface Temperature (LST) are the major governing factors for the environmental processes that happen on the surface of the earth. 
These NDVI, NDWI, NDBI, NDMI, and LST are generated for 2020 using the Landsat satellite datasets. The process-based 
relationship among them is complex and involves various parameters but may be easily represented by multiple linear regression 
models. Principal Component Analysis (PCA) is one such type that efficiently handles and evaluates the contribution of each of these 
factors to each other based on the sampling units. The study area is the upper Ramganga catchment in the Indian Himalayas, 
consisting of 117 sub-catchments. These catchment units (samples) are entangled with these environmental factors. The results of the 
PCA reveal the relationship between each of the environmental factors and their priority. Based on the uncorrelated factors priority 
suggestion from the PCA, catchment units were classified as high, moderate, or low categories based on their dominance in the 
relationship among the factors. These spatial variations in the environmental factors can help to assess the sustainability of resources in 
the Himalayan catchment.

1. INTRODUCTION

1.1 Environmental Sustainability Assessment 

Environmental sustainability assessment is an essential p ar t o f  

the conservation and management of natural resources of a 

region for the existence of life. Remote Sensing based land 

cover indices help feature extraction of land and water resources 

and are used for modelling various environmental and 

ecosystem processes concerning environmental sustainability 
(Robinson et al. 2017). Remote Sensing based Land Surface 

Temperatures (LSTs) play a vital role in monitoring and 

modelling the global or local Surface Energy Balances (SEBs) 

and water exchange processes at the land-atmosphere 

interactions (Zhao et al. 2019). The land cover indices and LST 

are useful in studying water resources management, 

agrobiodiversity conservation, soil health, climate change 

mitigation and adaptation strategies, and environmental 

sustainability (Singh et al., 2021). As per the United Nations 

(UN) Global Sustainable Development Report (GSDR, 2019) 

and the Sustainable Development Goals Report (SDGR, 202 2 ) ,  

it is essential to formulate policy-making and implementation of 

SDGs at the local stakeholder level. The effects of climate 

change and land use changes need to be benchmarked in river 

basins (regional scale) so that the role of global trends versus 
local changes can be assessed and factored into decision-making 

(Lawford et al., 2013). Monitoring and managing natural 

resources at the local/regional scale as sub-catchments, 

administrative blocks or village levels is the current 

implementation scenario required for several policy-making. 

Science, economic viability, and community expectations is 

varying significantly over time. There is subsequently an 

increase in model complexities and difficulties in evaluating th e 

sustainability of river basins (Horne, 2017). It is important to 

understand the interactions of societal factors that influence 

people's preferences in policy-making or decisions for 

sustainability (Roobavannan et al., 2020). Several studies  were 

reported on the environmental sustainability aspects such as 

Eco-Hydrological sustainability (Khatun et al., 2021; Shiran et 

al., 2021), eco-environmental vulnerability (Nguyen et al., 

2016; Liou et al., 2017; Venkatesh et al., 2020; and Kurn iawan  

et al., 2022), vegetation dynamics (Qureshi et al., 2020),  Soil 

moisture-LST based drought characterization (Saha et al., 

2018). Several hydrological, ecological, environmental, and 

socio-economic problems and their solutions have been 

addressed by analyzing the Remote Sensing based land cover 

changes for environmental sustainability (Liou et al., 2017; 

Venkatesh et al., 2020; Kurniawan et al., 2022; Saleh et al., 

2022). It includes changes in the built-up area, wetlands, fo res t 

cover, agricultural cropping patterns, and hydrological 
responses. The applicability and usage of those studies may 

vary based on the geographical prevalence of the study area an d  

its spatial scales.  

The Himalayas are notable for the richness of resources in terms 

of water, biodiversity, and varied ecosystems (Khare and 

Ghosh, 2016; Singh et al., 2021; Taloor et al., 2021; Gurjar et 

al., 2022; Piyoosh and Ghosh, 2022). Himalayan catchments are 

prone to several natural, anthropogenic, and other 

environmental problems associated with the hydrological cy cle  

and the impact of climate change on the resources (Gurjar et al. ,  

2022). In this study, using the geospatial approach, the 

assessment of environmental sustainability of the Upper 

Ramganga catchment has been carried using various land cov er  

spectral indices and their relationship with LST. The study area 
has been delineated into 117 sub-catchments through the Shuttle 

Radar Topographic Mission (SRTM) Digital Elevation Model 

(DEM). Remote Sensing datasets efficiently monitor and 
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manage these changes at variable scales. The Google Earth 
Engine (GEE) Platform has been used for data extractio n  f ro m  

Landsat 8 for 2020. The land cover indices, such as the 

Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI), Normalized Difference Bu ilt -

up Index (NDBI), Normalized Difference Moisture Index 

(NDMI) and LST, are chosen as major land Remote Sensing 

based environmental variables that help to regulate the 

environmental flows, their vulnerabilities and sustainability of 

natural resources (Nguyen et al., 2016; Firozjaei et al., 2021; 

Khatun et al., 2021; Kurniawan et al., 2022). The results of 

these indices and LST are used to delineate the sub-catchment 

units as the sampling units. The threshold limits of the results 

are based on statistical measures such as minimum, max im u m , 

mean, and standard deviation of the factors. The results of the 

indices and LST have been classified into low, moderate,  h igh ,  

and very high classes. 
 

The relationship between these factors  considering the 

catchment unit as samples is established using statistical 

measures such as Pearson's correlation coefficient, Regres s io n 

analysis and Factor analysis , including the Principal Component 

Analysis (PCA). Since the number of factors is five, the PCA 

method is applicable and efficiently analyses the relationship 

among them. It is clear to identify the influencing factors u s in g 

the eigenvector values and their percentage of variance among 

the principal component (PCs) (Qureshi et al., 2020; Abhir  an d  

Saha, 2021; Kumar et al., 2021). The results of the classification 

of the indices and LST are ranked based on the conceptual 

relation to the idea of sustainability and weighted based on the 

PCA results. These results are taken into the Geographical 

Information System (GIS) as layers, and the overlay operation is 

performed. The results show the variations of environmental 
sustainability classes such as low, moderate, high, and very high 

for the sub-catchments. The study is unique and deviates f ro m  

other works by portraying a catchment unit-based geospatial 

approach for analyzing environmental sustainability results. 

 

2. MATERIALS  

2.1 Study Area 

The study area is the Upper Ramganga Catchment in the 

Western Himalayas, which partially covers the states of 

Uttarakhand (53%) and Uttar Pradesh (47%) of India. I t  is  o n e 

of the major tributaries of the Upper Ganga Basin. The 

geographical location of the study area lies between 28°15' 

32.55" N to 30°6'32.42" N latitude and 78°15'45.37" E to 

79°50'45.74"E longitude, as shown in Figure 1. The 

geographical area is about 18,000 km2, and the elevation ranges  
from 76 m to 3000 m. As per the revised Koppen climate 

classification system, it falls under the categories of sub-tropical 

humid (cfa) and monsoonal (cwa). The mean annual rainfall 

varies from 2200mm to 800mm, and the average temperature 

ranges from 5°C to 25°C in winter and from 20°C to more th an  

40°C in summer. The average annual pan evaporation rate for 

Ramganga Basin is 4.88mm/day. The major towns such as 

Bareilly, Moradabad, Pilibhit, Rampur, and Shahjahanpur h av e 

populations ranging from 1 to 10 lakhs (Ramganga Basin  Plan ,  

2020). 

 

2.2 Datasets Used 

The Digital Elevation Model (DEM) is one of the preliminary 

datasets for catchment or basin-level studies since any river 

pattern follows the topography. The catchment delineation for 

the study area has been obtained from the recent 

NASADEM_HGT version 1 an updated version of Shuttle 
Radar Topographic Mission (SRTM) DEM data of one arc-

second resolution (~30m spatial resolution) with improved 

accuracy in height (Tran et al., 2023). The GEE platform has 

been used in this study to get the Landsat 8 Operational Land 

Imager (OLI) / Thermal Infrared Sensors (TIRS) Surface 

Reflectance (SR) collection products for 2020. Since the data  is  

mostly available in the pre-processed format, there is no 

requirement for atmospheric and radiometric correction to the 

datasets. A known error exists in the Landsat Surface 

Temperature retrievals relative to clouds and possibly cloud 

shadows. These issues have been characterized by Cook  et a l. ,  

2014. However, the presence of cloud cover in the data could be 

a problem. So, the cloud masking procedure has been inclu d ed  

in the GEE program to remove 10% of the cloud cover in the 

data. Land cover indices such as NDVI, NDWI, NDBI,  NDMI ,  

and LST are derived from the pre-processed Landsat 8 datas ets  
in the GEE platform. 

 
Figure 1. Study Area 

 

Satellite Datasets 

Used 

Band(s) used for 

analysis 
Data Resolution 

NASADEM 

(updated SRTM in 

Height 

measurements) 

Single band raster 

NASADEM_HGT 

dataset 

1-Arc Second 

(about 30m 

Ground Sampling 

Distance (GSD)) 

Landsat 8 

OLI(LC08) 

Collection-2 Tier-

1 Level-2 SR 

datasets 

Band 4 – Red; Band 5 

- Near Infrared 

(NIR); and Band 6 – 

Shortwave Infrared 1 

(SWIR1) 

30m X 30m GSD 

Landsat 8 TIRS 
(LC08) Collection-

1 Tier-1 Level-1 

datasets accessed 

before 30th 

December 2022. 

Band 10 – TIRS (this 
is used because 

USGS suggests band 

10 for LST estimation 

rather than band 

11(with uncertainty) 

Resampled from 
100 m to 30 m 

GSD data using 

the cubic 

convolution 

technique. 

Table 1. Datasets Used 
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3. METHODS 

Remote Sensing based degree of Environmental Sustainability 

has been assessed at the sub-catchment level through a 

workflow as shown in Figure 2. 

 

 
 

Figure 2. Flow Chart showing the methodology adopted. 

 

3.1 Catchment delineation and Land Cover Spectral 

Indices 

The catchment delineation has been carried on the upgraded 

NASA SRTM DEM with improved height measurements. 

Several approaches have been proposed for studying the various 

aspects of environmental sustainability. It is observed that the 

spectral indices such as NDVI, NDWI, NDBI, NDMI, and  LST 

are used frequently, and that the same has been chosen in this 

study with catchment units as sampling units. Landsat 8 data 

has been chosen for the year 2020, with the catchment boundary 

as the area of interest in the GEE platform. The NDVI, NDWI, 

NDBI, NDMI and LST are derived from the GEE platform 

using the formulas suggested by Gao (1996); Weier and Herring 

(2000); Stathopoulou and Cartalis  (2007); He et al. (2010); 

Khare et al. (2016); Piyoosh and Ghosh (2020) and Taloor et al.  

(2021) respectively. 

 

3.2 Land Surface Temperature (LST) 

The LST is calculated using the Single Channel Algorithm 

(SCA) (Jimenez-Munoz et al., 2014), which follows the spectral 

radiance of the Landsat 8 band 10. Since USGS recommends 

using band 10 Landsat 8 TIRS-1 datasets for the LST 
estimation, the same has been adopted for this study. The 

readily available Surface Temperature (ST) products from 

Collection-2 L2 ST is not used since it uses the emissivity 

derived from ASTER NDVI datasets which is of coarser 

resolution when compared with NDVI derived from Lan d s at 8  

SR products (Table 1). The calculation of LST also exhibits 
known inaccuracy to pixel dimensions, clouds, and cloud 

shadows, which was characterized by Cook et al. (2014) .  So ,  a  

minimal cloud coverage of 10% has been chosen for the 

analysis. The prior knowledge of Land Surface Emissivity 

(LSE) is necessary for calculating LST (Chander et al., 2009; 

Valor and Caselles, 1996; Sobrino et al., 2004). So, an 
operational procedure to estimate LSE (i.e.,  ) using the 

NDVI-based proportion of vegetation as proposed by Sobrino et 

al. (2008) and Van de Griend and Owe (1993). It has been us ed  

with the NDVI values of study area. Sobrino et al. (2004) 

proposed LSE calculation for the mixed pixels of vegetation.  In  

case of unknown vegetation and soil, the emissivity valu es  ar e  

taken as 0.985v = and 0.960s = (Valor and Caselles, 1996; 

Sekertekin and Bonafoni, 2020), respectively. The proportion of 

vegetation is also referred to as fractional vegetation cover, 

which is used for determining the surface emissivity of the area.  

In this study, the resulting emissivity is calculated by the ab o v e 

methods as 0.981. Based on the emissivity value, the Land 

Surface Temperature (LST) is calculated using the formula 

given by Stathopoulou and Cartalis  (2007); Piyoosh and Gho sh  

(2020). 

 

3.3 Thresholding 

The factors contributing to the environmental sustainability  ar e  

quantitatively assessed by the zonal statistical measures fo r th e 

catchment unit areas. The thresholding of the statistical 

measures is based on the standard deviation from the mean of 

the histogram of data. The factors are classified as low, 

moderate, high, and very high based on the thresholding classes  

for each of the sampling catchment units in relevance to the 
concept of sustainability. 

 

3.4 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a multivariate 
statistical technique that applies a linear transformation to the 

original data to study the complex relationship between those 

environmental and ecological variables (Estornell et al., 2013; 

Jolliffe and Cadima, 2016; Firozjaei et al., 2021; Kurniawan et 

al., 2022; Kumar et al., 2022). PCA also reduces the 

dimensionality of the data matrix through Singular Value 

Decomposition (SVD) algorithm, and to segregate the dominant 

information in the data (Zhou et al., 2018; Qureshi et al., 2020) .  

The uncorrelated linear principal components (PCs) after the 

orthogonal transformation gives the variance relationship 

between the components. The PCA is also supported by the 

Pearson’s correlation coefficient to study the linear one- to -o ne 

relationship between the factors. 

 

3.5 GIS Overlay 

The weights of the GIS layers are obtained from PCA, and the 

corresponding conceptual ranking has been assigned to each  o f  

the layer classes relevant to the sustainability of environment. 

Later the intersection of GIS layers by overlay operation 

provides the final environmental sustainability with the 
threshold classes. 

 

4. RESULTS 

4.1 Catchment Delineation 

The SRTM DEM with a spatial resolution of 1-arc second 

(approximately 30 m) is sufficient for this study and the 

catchment delineation threshold of about 30 km2 area coverage.  
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This size is optimal for planning and managing catchment-lev el 
environmental sustainability studies, where the shape may vary  

subject to the village or block boundary. Also, the variation s  in  

the size of the catchments are subjective and relevant to the type 

of applications and planning purposes where it is implemented .  

Here, the number of catchment units delineated were 117 as 

given in Figure 1. 

 

4.2 Results of the Spectral Indices and LST 

NDVI is the most appropriate indices for studying vegetation 

cover in general and its characteristics. The NDVI values of 

zero or less than that indicate an area with no vegetation, such 

as barren lands or urban or water bodies. The results of the 

NDVI for the study area range from -0.126 to 0.898 and sho wn  

as in Figure 3 as NDVI (A) and NDVI (B). The results also 

show that the vegetation is higher along the stretch of lower 

hilly areas where the reservoirs are seen and along some 

portions of the higher elevations. All other areas are devoid of 

waterbodies, while urban areas show moderate vegetation 

cover. At the sub-catchment levels, lower vegetation is seen in 

fewer basins. 
 

NDWI index segregates water bodies from the remote sensing 

datasets. The downside of the NDWI is reflectance observed  in  

the green band from build-up or barren areas added to the 

calculation of the index with an overestimation of water bodies .  

However, from the results, it is observed that the NDWI can 

classify the waterbodies efficiently, but meanwhile, it is also 

considering the urban areas moderately to some extent in their 

index range. The NDWI is values range between -0.805 and 

0.378. The thresholding of the NDWI class is based on 

statistical measures, and the results are illustrated in Figure 3  as  

NDWI (A) and NDWI (B). The results show that higher v alu es  

represent as waterbodies, mostly the moderate values are fou n d 

in the plain regions of the basin, and the higher vegetation 

regions show less water index values which is a downside of 

NDWI trade-offs.  
 

NDBI is the mapping index for the build-up areas. The results 

are shown in Figure 3. It is observed from the results that NDBI  

classifies the barren land into the built-up area to some extent 

because of the reflectance observed in the SWIR and NIR band .  

Users should consider the trade-offs between the efficiency an d  

accuracy of these indices when choosing between the actual 

performance of the indices to the desired application. The valu e 

of the NDBI ranges between -0.433 to 0.246. The results  s ho w 

that the NDBI segregates the build-up area at higher values an d  

moderately classifies barren land or less/no vegetation areas. 

Some higher potential build-up areas are identified at the sub-

catchment level based on the statistical thresholding of NDBI 

results.  

 

The NDMI is a Remote Sensing based indices for calculating 
the overall moisture content in vegetation, soil, and water 

areas/wetlands. The NDMI is calculated using the same bands 

of NDBI with slight changes in the numerical operation of the 

bands. Also, it can overcome the drawbacks of the NDWI in 

calculating the waterbodies/wetlands or soil moisture area by 

taking advantage of the Shortwave Infrared band (SWIR1). Th e 

value of the NDMI ranges between 0.602 and -0.337, as 

illustrated in Figure 3 as NDMI(A) and NDMI(B). 

 

 

 
Figure 3. Land Cover Indices and LST 

The Land Surface Temperature (LST) results show that it varies  

from 5.7°C to 35.9°C for 2020. It is calculated from the NDVI -

based Land Surface Emissivity (LSE) given in Section 2. of  th e 

paper. The build-up areas show higher temperature ranges,  an d  

mostly the plain areas where the agricultural cover and 

waterbodies/wetlands show moderate to higher temperature 

ranges. The hilly areas with higher elevations show lower 

temperature ranges. The results of the LST are illustrated in 

Figure 3. 

 

4.3 Results of the Statistical thresholds 

The results of the thresholding based on the zonal statistical 

measures for the catchment unit corresponding to the facto r s  is  

given in Table 2.   
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Factors Threshold values Category Rank Weight 

NDVI 

< 0.362 Low IV 

0.216 
0.362 < 0.463 Moderate III 

0.463 < 0.564 High II 

0.564 < 0.720 Very High I 

NDWI 

< -0.542 Low IV 

0.188 
-0.542 < -0.452 Moderate III 

-0.452 < -0.362 High II 

>-0.362 Very High I 

NDBI 

< -0.165 Very High I 

0.203 
-0.165 < -0.118 High II 

-0.118 < -0.0071 Moderate III 

>-0.0071 Low IV 

NDMI 

< 0.122 Low IV 

0.259 
0.122 < 0.174 Moderate III 

0.174 < 0.226 High II 

> 0.226 Very High I 

LST 

< 17.416 Very High I 

0.187 
17.416 < 21.7 High II 

21.7 < 25.984 Moderate III 

25.984 < 29.502 Low IV 

Table 2. Threshold values for factors 

4.4 Results of the Correlation and the PCA analysis 

The results of the correlation matrix given in Table 3. shows a 

strong negative correlation between the NDVI-LST; NDMI-
LST and a good positive correlation between the NDWI-LST; 

NDBI-LST, respectively.  

 

The NDVI has a strong negative correlation with all the facto r s  

except NDMI, which has a strong positive correlation. It is 

observed that the NDWI can classify the waterbodies efficiently 

while also classifying the urban areas moderately.  It is 

important to note that, the NDWI has a strong negative 

correlation with the NDVI. In general comparison it may seem s  

to be a wrong correlation, here, the results of the land cover 

indices are given as a mean of the catchment units and hence, 

the correlation takes the average of the pixels of NDWI apart 

from the water pixels, it also considers the non-water pixels 

areas, resulting in a strong negative correlation. 

 

Factors NDVI NDWI NDBI NDMI LST 

NDVI 1     

NDWI -0.95 1    

NDBI -0.70 0.48 1   

NDMI 0.71 -0.51 -1.00 1  
LST -0.70 0.60 0.62 -0.64 1 

Table 3. Correlation Matrix of the factors  

So, a positive correlation is seen among the NDWI-LST,  an d  it  

must be noted that seasonal factors also play a role in  d ef in in g 

the correlation results (Guha and Govil, 2021). However, here 

only the annual data have been considered for this study. The 

results of the NDMI show a positive correlation with the NDVI  

negative correlation with NDWI, NDBI, and LST. Here, the 

NDMI and the NDBI use the same bands with slight changes  in  

the sign operations; hence, there is a strong negative correlatio n  

of -1 between them. Meanwhile, there is a negative correlation 

between the NDBI-NDVI and a positive correlation between 

NDBI-NDWI and NDBI-LST, respectively.  

 

The relationship between the factors can be further studied more 

accurately using the PCA technique. The eigenvalues 

corresponding to each principal component (PCs) provid es th e  
hierarchy of the components in the relation. The eigenvalues  o f  

PC factors, their corresponding variances, and the cumulative 
variances are given in Table 4.  

 

PCs Eigenvalues 
Standard 

deviation 

Proportion 

of 

Variance 

Cumulative 

Proportion 

of Variance 

PC1 3.778 1.943 0.755 75.555 

PC2 0.798 0.893 0.159 91.521 

PC3 0.410 0.639 0.081 99.712 

PC4 0.013 0.115 0.002 99.977 

PC5 0.001 0.034 0.000 100.000 

Table 4. Results of all major PCs and its variance 

Based on these results, the PC1 with an eigenvalue greater th an  

one with a higher variance of about 75.60% is considered for 

the weightage analysis.  
 

Factors PC 1 

Component 

Score 

Coefficients 

Corresponding 

Weights Calculated 

with Sum=1 

NDVI -0.936 -0.248 0.216 

NDWI 0.815 0.216 0.188 

NDBI 0.881 0.233 0.203 

NDMI -0.894 -0.237 0.206 

LST 0.813 0.215 0.187 

Table 5. Weightage of the factors using PC1 score coefficients. 

The scores of the PC1, as given in Table 5., are rescaled to the 

weightage of the factors with sum equals to one. 

 

4.5 Results of the Environmental Sustainability Assessment 

Based on the results of PCA, the weights of the factors that 

contribute to the Environmental sustainability are calculated  as  

given in Table 5. is then assigned to the corresponding factors 

as given in Table 2.  

 

 
Figure 4. Environmental Sustainability Zones 
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All the factors that contribute to the analysis are classified as 
low, moderate, high, and very high classes based on the Table 2. 

The factors are taken into the GIS platform, where the layers are  

weighted, based on the PCA results and the corresponding ranks 

have been assigned to each class in all the layers, and the GIS 

overlay operation is performed. The final environmental 

sustainability zones for the sub-catchments were identified  an d  

classified as low, moderate, high, and very high classes based 

on the GIS overlay result, as shown in Figure 4. The results 

show that the low sustainability catchments are identified at th e 

lower region of the basin, very high sustained zones are 

identified at the higher elevation regions, and along the stretch 

of the lower hilly regions of the Himalayas, where the reservoirs 

and dams are located. Higher sustainable catchment zones are 

found on either side of the very high sustainable zones. Most o f  

the moderate zones of sustainable catchments are identified in 

the plain areas, and few are in the hilly areas. 
 

5. DISCUSSION 

The results of the land cover indices, such as the NDVI, NDWI,  

NDBI, NDMI, and LST, are studied for 2020 only. Their 
seasonal relationship with the factors also plays an important 

role in the seasonal assessment. However, this study has not 

considered it, which is one of the limitations. The results of 

NDWI in the zonal statistics with catchment areas yield a 

negative correlation with the NDVI which may leads to 

contradictory results because of considering the non-water areas 

in calculating the mean. The other limitations are that the 

number of factors contributing to environmental sustainability 

assessment is less. The limitation of the study includes the 

watershed prioritization based on the morphometric 

characteristics, several other socio-economic statuses of the 

region, and demographic factors, like population density and 

migration is not included and may be considered in future 

works. The correlation and the PCA technique uses the 

relationship the uncorrelated factors with eigenvalues and 

eigenvectors, where the relationship is established among of 
one-to-many factors has been established, and the individual 

factor contribution is identified. Since the number of PCs that is  

more than the eigenvalue of 1 is only one principal componen t,  

and hence there is no rotated component matrix exists for the 

same. If the number of significant components is more th an  1 ,  

then we should consider the rotated component matrix for 

determining the weight of the factors contributing to 

environmental sustainability. Based on the environmental 

sustainability assessment results, the regions at the lower 

elevation or plain areas are identified as low sustainable 

catchment zones, where the presence of built-up and the LST 

are higher and favorable for the likelihood of urban 

agglomeration. The moderately sustainable catchments are the 

region where there is a need for mitigation measures to ensure 

or stop the degradation of environmental sustainability. The 

higher and very high zones are less vulnerable to the 
degradation of sustainability. 

 

6. CONCLUSION 

The overall study uses minimal remote sensing-based land 

cover indices and LST for the analysis. Despite the limitations 

discussed above, this  study tried to assess the environmental 

sustainability of a catchment based on the remote sensing inputs 

at the sub-catchment level. The results of the PCA analysis their  

relationship between the factors helps in modelling the scenar io  

and may help in prediction of future conditions using the 

Machine Learning (ML) algorithms. This study may help 

planners and decision-makers to formulate strategies and 

adaptation policies or measures for environmental sustainability 
under climate change initiatives. 
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