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ABSTRACT:

Regular inspection and maintenance of infrastructure facilities are crucial to ensure their functionality and safety for users. However,
current inspection methods are labor-intensive and can vary depending on the inspector. To improve this process, modern sensor
systems and machine learning algorithms can be deployed to detect defects based on rapidly acquired data, resulting in lower
downtime. A quality-controlled processing chain allows to provide hence informed uncertainty assessments to inspection operators.
In this study, we present several Deeplab V3+ models optimized to predict corroded segments of the quay wall at JadeWeserPort,
Germany, which is a dataset from the 3D HydroMapper research project. Our models achieve generally high accuracy in detecting
this damage type. Therefore, we examine the use of a Region Growing-based weakly supervised approach to efficiently extend our
model to other common types in the future. This approach achieves about 90 % of the results compared to corresponding fully
supervised networks, of which a ResNet-50 variant peaks at 55.6 % Intersection-over-Union regarding the test set’s corrosion class.

1. INTRODUCTION

Infrastructure buildings must meet high construction standards
and require regular maintenance throughout their complete life
cycle to ensure safe and reliable usage for its users like ped-
estrians, workers or even machines. Scheduled inspections are
performed to detect emerging defects that could affect the fa-
cility’s functionality and stability, supplemented by additional
inspections as needed. National legislation, inspired by norm
standards, typically regulates this process. Commissioned in-
spection companies compile reports detailing damaged parts or
sections and providing a complete infrastructure assessment, al-
lowing for informed maintenance decisions.

Besides commonly known infrastructure objects as bridges or
tunnels, this concept has also to be applied for port facilities or
similar building objects such as watergates or canals. However,
the traditional approach of performing inspections by hand, with
only basic tools for documentation, causes significant down-
time for the facility, especially in underwater sections where
divers face complicated visual conditions. This downtime leads
to high costs for the facility operator. To shorten this process
step, an automated inspection process should be introduced,
which rely on the capabilities of today’s high accurate sensors.
An example of such capabilities can be found within the 3D
HydroMapper research project, in which (Hesse et al., 2019)
developed a swimming multi-sensor system (MSS) sensing the
environment below and above the water surface. By that ap-
proach, the complete facility can be captured within several
minutes or a few hours depending on its size, allowing to de-
tect for instance regular appearing corrosion spots in the so-
called splash zone more objectively afterwards. Therefore, vari-
ous software systems can assist building inspectors digitally by
providing data-driven predictions and optionally uncertainty in-
formation for damaged areas in order to assess the infrastructure
knowledgeably.

In this study, we aim to enhance the damage detection process
by adapting the Deeplab V3+ segmentation network (Chen et
al., 2018) to analyze an image corrosion dataset obtained from

the 3D HydroMapper project. Initially, we establish a baseline
model, and explore different combinations of backbone net-
works and loss functions to create a robust feature-rich net-
work. Subsequently, we conducted an extensive performance
analysis and examined the impact of introducing weakly super-
vised ground truth images obtained through the Region Grow-
ing algorithm during the training process.

The structure of the paper is as follows: Chapter 2 gives a
brief overview on related studies to damage detection of in-
frastructure buildings, with a focus on corrosion investigations.
In Chapter 3, we describe the methodology used for the data-
set acquisition and preparation. Chapter 4 presents the process
of obtaining the best performing segmentation model in detail.
Subsequently, we provide and discuss the evaluation results of
the validation and test sets. Finally, Chapter 6 presents the con-
clusion and an outlook of further investigations.

2. RELATED WORK

The field of infrastructure inspection can nowadays be approached
using a wide variety of sensors or tools. Among these, cam-
eras are an excellent acquisition instrument that can effectively
examine building surfaces due to their universal and simple
deployment. Because of the progress achieved in image pro-
cessing and computer vision, especially in the last decade, early
damage detection became a feasible goal. This particular task
has been investigated recently i. a. by (Duy et al., 2020), (Kat-
samenis et al., 2020) and (Tanveer et al., 2022). They were able
to detect different damage types to a certain extent by means
of Deep Learning (DL) segmentation models on concrete and
metal surfaces, respectively. However, some damage types are
more recognizable than others due to their colour, shape or size.
While corroded segments can be unambiguously distinguished
from the concrete quay wall and background in general at a cer-
tain severity level, their shape and size can vary significantly,
which may lead to erroneous detections. On the other hand, for
instance cracks can have more similar properties overall, but in-
dividual examples can be overlooked due to their small width
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or low resolution. Nevertheless, DL models like Convolutional
Neural Networks (CNN) are currently the dominant objective
in this research field and have a high potential to classify, de-
tect, or even segment these damaged areas correctly due to their
self-learning feature capabilities. Hence, this image processing
strategy is a promising approach to digitally assist the inspec-
tion operator effectively.

In the study by (Duy et al., 2020), corroded areas on electric
poles are detected using several architectural modified segment-
ation networks ranging from hundred thousands to ten millions
trainable parameters. Three models were evaluated with and
without prior background removal, achieving high Intersection-
over-Union (IoU) scores for the pole and background class, but
struggled to detect corrosion reliably. To overcome this limit-
ation, the dataset was extended with a focus on the corrosion
class, and the Mask R-CNN architecture (He et al., 2017) was
investigated to partition these segments based on their sever-
ity level. But this network type was already examined with
common CNNs by (Katsamenis et al., 2020) in the same year
achieving 71 % F1 score on another corrosion dataset. In their
experiments, Mask R-CNN outperforms the other candidates
significantly. Their purposely developed boundary refinement
approach, a data projection method dividing the model predic-
tion in confident and fuzzy regions, effects the quantified res-
ults of this model barely. In addition, (Tanveer et al., 2022)
evaluated the performance of various low parameter segment-
ation CNNs compared to the Deeplab V3+ architecture with
ResNet as backbone network. The group trained these on a
concrete dataset containing the damage types cracks, efflores-
cence, rebar exposure and spalling and found on average a re-
lative maximum discrepancy of around 17 % in terms of F1
score to the reference. All these groups use Cross-entropy loss
for the classification purpose in model training and no extens-
ive optimization or evaluation was performed. Moreover, only a
single model instance was learned, which limits the uncertainty
investigation. Here comes (Nash et al., 2022) into play. This
group trained different models of modified HRNetV2 (Sun et
al., 2019) networks by Variational Inference, Monte Carlo Dro-
pout and an Ensemble method on a further corrosion dataset.
These Bayesian transformed models were evaluated especially
in terms of aleatoric and epistemic uncertainty. In our study, we
combine these concepts to provide an informed overview of dif-
ferent modified Deeplab V3+ models trained on an optimal loss
function that is selected from a pool of distribution- and region-
based error terms using our self-labeled port dataset. In con-
trast, (Hake et al., 2023b) focused only on single trained model
instances and restricted architecture changes with the smaller
and differently structured 3D HydroMapper dataset.

The most precise network structure is iteratively trained on sim-
ulated weakly supervised label images generated once by a Re-
gion Growing algorithm (Adams and Bischof, 1994) before any
model training begins. However, (Huang et al., 2018) proposed
a more sophisticated approach by using this algorithm on seed
cues generated by a classification network in their segmentation
pipeline. Their Deep Seeded Region Growing method works
hence on image-level label information. We aim to estimate still
the expected performance decline for this straight-forward ap-
proach when the manual labeling effort is significantly reduced
in our investigation. These findings will guide our approach to
further datasets containing other damage types that will be fed
to the same model architecture to support the infrastructure in-
spection process. It is currently intended to mark a small region
in the damage segment instead of bordering it completely by

a polygon if that procedure is proven successfully. Due to the
nature of the current dataset, we cannot efficiently benefit from
bounding box or class activation map approaches.

3. DATASET

3.1 Data acquisition

The dataset used in this work was specifically acquired within
the 3D HydroMapper project to aid the development of AI-
assisted software for future port inspections based on MSS data.
This image sequence shows the quay wall of the JadeWeserPort
in Wilhelmshaven (Germany) in an overlapping manner. We
observe similar coverage of up to 80 % between subsequent
captures. Occasionally, the perspective is adjusted during the
acquisition process by flying closer to the wall. This provides a
wide variety of real-world information for the detection models
to be trained on. The complete dataset was recorded on a single
day using a controlled drone equipped with a Canon EOS 5D
Mark III reflex camera, hovering or flying over the water a few
meters in front of the wall. For this project the focal length
was fixed at 35 mm and the resolution of pre-processed im-
ages are either 5760 x 3840 or cropped to 4608 x 3456 pixels.
The dataset consists of 1300 high-resolution digital images of
the infrastructure, where the object pixel size varies approxim-
ately between 2 and 5 mm depending on the individual capture.
Due to this, we can find fine or arising defects and achieve ac-
curate results in terms of position and shape of the damaged
segments. This allows us to retrace the growing process over
time and modify the inspection period or maintenance meas-
ures accordingly to related predictions. The labeling process
neglected damages besides corrosion, such as cracks, efflores-
cence, or spalling due to their seldom occurrence. Therefore,
our trained models cannot detect them yet. However, (Hake et
al., 2023a) have already demonstrated an AI-assisted approach
to detect geometrical related damage types in heightfields ex-
tracted from point cloud data. Currently, we had images of an
efflorescence-damaged watergate available, which were taken
by means of a tripod at several locations within this facility.
Hence, these are not suitable for the current inspection concept
based on a swimming or consistent moving sensor platform.

3.2 Generate ground truth images

To train the supervised segmentation models, we required labeled
images indicating which pixels or segments correspond to the
corrosion class. Initially, our own Matlab program was used
to obtain these ground truth images, which converts manually
drawn polygons successively into a 8-bit black/white (b/w) im-
age. Later on, we used the service of Supervise.ly (Supervisely
contributors, 2023) to complete our currently considered data-
set consisting of 84 image-label pairs. Thereon, we can in-
corporate model predictions directly into the labeling process.
These image pairs are uniformly distributed over the quay wall,
showing a big portion of the total infrastructure, because over-
lapping areas were avoided for the most part. The ground truth
images are based on our knowledge in this field and the gained
experience over the time of this procedure, but have not been
validated yet by experts. However, due to investigations in
handling label noise in the DL context especially by (Nash et
al., 2019), particular for corrosion detection, we expect no sig-
nificantly improved corrosion detection capabilities. Nonethe-
less, we can not ensure that the achieved metric scores listed
in chapter 5 correspond to the true values, especially with the
provided number of digits.
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To adapt the Deeplab V3+ structure for the corrosion segment-
ation in the beginning by means of cross validation, and evalu-
ate the performance of the various models methodically correct
afterwards, we divide the created dataset randomly into six sub-
sets à 14 images each. Four of them form the train set, and each
of the remaining ones forms the validation and test sets, recept-
ively. The validation set determines the optimal parameter state
of any model based on the corresponding lowest epoch-wise
loss value, and the test images act as independent evaluation
measures. An example of the aforementioned image-label pairs
is illustrated in Figure 1. As visualized by the ground truth
image (black: damage-free/background, white: corrosion), cor-
roded segments represent the minority class of this segmenta-
tion task. Because damage detection has to deal regularly with
highly imbalanced datasets due to its underlying nature, mod-
els will by design favor the majority class to minimize the pre-
diction error or maximize the total accuracy. To reorder the
model’s behaviour in terms of equal class detection abilities,
data processing itself can be modified or the optimization pro-
cess of the considered learning method has to be adjusted. In
this study, we focus mainly on the second point by selecting
more robust loss functions with (additionally) integrated class
weights.

3.3 Simulating weakly supervised images

For the weakly supervised approach, we label the same images
as before by simulating a starting region for each corroded seg-
ment. These regions are subsequently extended using the Re-
gion Growing algorithm. The quality of this process is evalu-
ated using the original label images serving as reference. This
procedure was chosen primarily because of the labor-intensive
and time-consuming nature of manual labeling, which is espe-
cially true for the here investigated segmentation task. By using
a brush annotation tool to mark only a small fraction or region,
rather than labeling the entire segment pixel-accurately with a
polygon, the process can be significantly sped up. Based on
our own experience with the port dataset, labeling a single ≥
16 megapixel image can take up to 30 minutes, even one with
only a few damaged areas requires between five to ten minutes.
Assuming that the suggested brush method reduces the manual
effort by only 50 %, it can still result in time savings of 1-2
working days for the small image dataset we considered. This
scales proportionally to the true labeling duration, which may
vary between individual samples due to the number of damaged
segments, their variable sizes and shapes. The subsequent Re-
gion Growing processing can be conducted after working hours
to minimize utilization of the available computing capacity, or
directly after labeling a single image to reduce the total pro-
cessing time. On the other hand, this approach can also lead to a
higher number of image and ground truth pairs in the same time
period, resulting in a more robust trained segmentation network.
However, a major disadvantage of the chosen algorithm in par-
ticular is that it is not suitable for all kinds of damage types or
every segmentation class in general. For Region Growing to
approximate fully supervised labels qualitatively, the true dam-
age segments must have homogeneous colours and must clearly
distinguish themselves from the background and surrounding
classes. While this may be true on average for corrosion and ef-
florescence in this domain, it does not to concrete spalling, for
example.

The version of Region Growing used here is based on standard-
izing each colour channel c independently to determine whether
an adjacent pixel should be added to the growing start region.

A pixel xi is added if the maximum standardized absolute de-
viation from the expected colour is within a given threshold t.
Equation 1 defines the deviation:

∆xmax = max

(∣∣∣∣xi − µc

σc

∣∣∣∣) ≤ t (1)

Here, ∆xmax represents the deviation, µc and σc contain the
channel-wise statistical quantities, and the max function se-
lects the largest element of the standardized RGB vector ∈ R⊯.
The threshold is set to a strict value of 1.25 to prevent over-
growing damage segments, especially for this pile quay wall
and to provide the segmentation network with mostly correctly
classified pixels, even if they represent only a small fraction of
the true damaged areas. We believe that it is better to add ini-
tial missing corrosion pixels along the way than to include a
large number of incorrect background pixels in the weakly su-
pervised damage segments. To counteract wrongly generated
corrosion segments during training, we use Conditional Ran-
dom Field (CRF) implementation1 by (Krähenbühl and Koltun,
2012) in each iteration. The threshold parameter is not spe-
cifically tuned to optimize certain metrics based on the original
labeled data but is selected by visually comparing different out-
comes for a small set of images. At the end of the algorithm,
we apply equation 1 once again to every pixel within the grown
region to possibly remove outliers. The starting segments for
Region Growing are created by a randomly orientated ellipse
that satisfies a certain overlapping condition with the reference
label. The initial set semi-axes are dependent on the segment’s
size and are shrunken every time to the condition is not fulfilled.
Using this method, the weak labels were evaluated in order to
gain insight into the model’s performance in the iterative train-
ing process. The initial weak labels achieved IoU scores of 92.4
and 36.2 % for the background/undamaged and corrosion class,
respectively, with respect to the manual images. In Figure 1, we
present the original RGB and both labeled ground truth images
for a visually appealing sample of the test dataset.

4. SEGMENTATION NETWORKS

4.1 Baseline model

The Deeplab V3+ architecture is widely recognized for its im-
pressive segmentation capabilities, and its basic modules, such
as spatial pyramid pooling (SPP) and encoder-decoder struc-
tures, which are broadly applied even outside the core AI re-
search community. The network captures object boundaries to
some extent by gradually upsampling concatenated low- and
high-level feature maps, and detects variable-sized objects with
ease thanks to the Atrous SPP (ASPP) module, which encodes
multi-scale contextual information (Chen et al., 2018). Gen-
erally, object boundaries can be refined using post-processing
steps, but in this work, we orient ourselves on feature attention
mechanisms ((Azad et al., 2020), (Hsu et al., 2022), (Zeng et
al., 2020)) within the encoder part to achieve this. Such mech-
anisms recalibrate the functional relationship represented by the
model to rely more on meaningful feature extractions. We aim
to mimic this behaviour by modifying the dilation rates within
ASPP’s convolutions. By backpropagating the prediction error
through the network during training, the feature maps or re-
sponsible filter blocks should be modified accordingly to boost
detection capabilities of certain spatial resolutions slightly. This
1 https://github.com/lucasb-eyer/pydensecrf
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Figure 1. Example of a cropped RGB image showing the
east-facing sheet pile wall of the JadeWeserPort and

corresponding weakly and manually supervised ground truth
images (top to bottom).

approach is expected to be beneficial due to the limited variab-
ility of occuring damaged areas in the particular port images
we use, and for further related datasets that will be captured
by similar systems to (Hesse et al., 2019). In other words, the
damaged areas on quay walls or buildings can be closely sensed
with high-resolution, allowing the ASPP module, regradless of
the damage size, to segment the border area of different classes
with high quality by taking optimized local context into ac-
count.

To improve segmentation results, we investigate different dila-
tion rates of the corresponding Atrous convolution operation.
The combined pyramid pooled features regain spatial context
when merged with low-level features from the feature extrac-
tion network (alias backbone), primarily consisting of object
boundaries. In the decoder, two 4x upsampling operations re-
construct the original image size, and contiguous segments are
produced. To prevent information loss in the network structure,
we apply some convolutions to combat the simplicity of linear
interpolation. We examine whether adding additional blocks
(0, 1 and 2) in between the Upsampling layers can significantly
improve the segmentation result. For the dilation rates we con-
sider the single to triple amount of 3, 6 (default), 12 and 24
for the Atrous convolutions. These hyperparameters are tested
with three different models: VGG-16 (Simonyan and Zisser-
man, 2014) (Batch normalizations included), ResNet-50 (He et
al., 2015) (version 1.5), and EfficientNet V2 (Tan and Le, 2021)
(Small). VGG-16 has the most basic structure due to its early
development in 2014 and consists of around 16 million of the
lowest number of trainable parameters. The other two models
are built with more advanced concepts in mind, such as Resid-
ual blocks, Neural Architecture Search optimized model struc-
ture, and Stochastic Depth, but can still be considered as rather
basic or small DL models, with approximately 23 and 20 mil-
lion parameters, respectively. We individually modify the mod-
els such that the output stride is set to 16 by removing the fifth

MaxPooling layer or setting the step size of the last strided con-
volution(s) to one. Furthermore, we freeze the initial layers up
to Deeplab’s low-level feature output to preserve the extensively
learned parameters from the ImageNet database (used weight
version 1 according to the torchvision (Marcel and Rodriguez,
2010) documentation). While the purpose of this work is to
assist inspection operators, fast inference times are not neces-
sarily required. However, to prevent overfitting or long training
duration for new acquired datasets in the future, we have not
examined significantly larger or more complex backbones.

To train our models, we initially divide the image-label pairs
in (non-)overlapping patches of 512x512 pixels. This approach
allowed the models to be fed with rich semantic context that
exceeded their output layer’s receptive field, enabling them to
learn from different perspectives of cut-off corrosion segments
located near the edges. We use a 25 % overlap for the train
dataset but nothing is utilized otherwise. The available 24 GB
VRAM of the GeForce RTX 3090 and later 4090 is fully util-
ized by setting the batch size to 8 (for the EfficientNet) or 12.
For an efficient training advancement, the initial learning rate is
determined to be 5e-4 and 1e-3, respectively, by the most neg-
ative slope of a learning rate finder curve.

To counteract the imbalance between undamaged and corroded
areas, we use image augmentation methods such as affine trans-
formation, colour jitter and Gaussian blur, with individual asso-
ciated probabilities and class weights (1:1 for baseline determ-
ination to emphasize architecture changes effectively) within
the different considered loss functions. To optimize the net-
work architecture robustly, we employ k-fold Cross-Validation
with the four aforementioned training subsets extensively. Each
combination of dilation rates and number of additional convolu-
tions is trained on three of these subsets and subsequently eval-
uated on the validation set to determine the optimal model para-
meter state based on the loss value. Through this procedure, the
maximum number of epochs has never exceeded 30 for all types
of model trainings.

In our experiments, we employ the combination of distribution-
and region-based loss terms in the form of Categorical Cross-
Entropy and IoU loss. To identify the optimal model structure,
we calculate the total uncertainty (entropy of softmax output),
accuracy, F1 and IoU scores based on the validation patches.
The average uncertainty of this subset ranges from 0.06 to 0.12,
while the total accuracy varies only between 95.2 and 96.1 %.
The class-specific F1 and IoU scores reveal the details in the
detection capabilities on the other hand. Overall, undamaged
areas are recognized with more than 97 and 94 %, respectively,
with deviations of around 1 % across all experiments. The most
significant performance differences occur in the corrosion class.
The F1 and IoU scores for this class vary by 8 % between the
best and worst performing Deeplab network, with upper bound
of 59 and 42 %, respectively. By counting the best performing
models for both parameter sets individually, we determined that
no additional convolution leads to a performance boost, and the
standard dilation rates of 3 and 12 are almost equally useful for
the segmentation task. Therefore, we changed the kernel spaces
within the Atrous convolutions to 5, 10 and 20 to combine these
ASPP blocks roughly. Thereby, we focus primarily on a local
field of view in order to detect segment boundaries accurately,
but find more deviating and rich features at the same time due
to the variable dilation rates. To further improve the baseline
model, we consider a wide range of modified loss functions
with class weights, and evaluate all three backbone networks.
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4.2 Training process of (weakly) supervised models

In the first stage of finetuning, we trained the modified Deeplab
V3+ architecture with several pretrained backbones and over-
all five different loss terms on the complete training dataset.
We evaluated them equally to the previous step to determine
the optimal loss function for each feature extraction network.
After that, we adjusted the hyperparameters related to the cost
function to improve the model performance. We then used the
separate testing set to independently assess the best perform-
ing Deeplab V3+ models among the feature extraction networks
(s. chapter 5). The top architecture-loss pairs are then used to
train the Deeplab model on the weakly supervised dataset in an
iterative process, whereby the training and validation sets are
created by the model predictions post-processed with a Potts
model. We changed the standard deviations regarding pixel dis-
tance and RGB difference slightly compared to the default val-
ues listed at Pydense package’s Github page (s. footnote 1) to
account for the properties of our dataset. In particular, we set
sxy and srgb of the bilateral term to 40 and 10, respectively.
This enables predicted corrosion segments to be extended more
strictly based on the colour difference to nearby pixels, which is
necessary for the corrosion segments onto the specific pile quay
wall. We stooped when the IoU scores of the validation set do
not improve compared to the last iteration. The initially trained
models change the datasets extensively, leading to little overlap-
ping segments. For instance, when the complete weakly super-
vised dataset is deployed, the first model achieves around 30 %
IoU for the corrosion class. Subsequently, the other models
benefit from more coherent samples post-processed by a CRF
approach, gradually refining the damage segments. This entire
procedure restricts the final model from learning self-produced
label noise. We provided a detailed visualization of this seg-
mentation approach with respect to the validation and test set in
subsection 5.2.

All the models are in general trained using Stochastic Gradi-
ent Descent with Nesterov Momentum and L2 regularization,
with associated parameters µ and λ set to 0.9 and 1e-5, re-
spectively, in the Pytorch framework (Paszke et al., 2019). The
learning rate is halved when the validation loss does not de-
crease for three epochs in a row, and Batch Normalization layer
momentum starts at 0.2 and gradually decreases to help the
non-frozen network section adapt quickly to the task. The ex-
plored loss functions include Categorical Cross-Entropy, IoU
loss, their combination (compound loss), and the base variants
modified by the Focal term or parameter γ = 2 that shifts the
model’s attention to hard-to-classify pixels (Lin et al., 2017).
Additionally, class weights of 1:3 were added to each error
term. We observed significant performance improvements with
the Focal IoU loss networks. Further Deeplab models were ex-
amined by incrementally increasing the parameter up to 5 for
each backbone individually. The aforementioned weakly super-
vised model was finally trained with ResNet-50 and Focal IoU
loss with γ = 4, and the impact of uncertain ground truth im-
ages was investigated by varying their fraction within the data-
set between 60 to 100 %. Manually labeled images remained
unchanged during each of these training runs to simulate real
conditions.

5. EVALUATION AND DISCUSSION

5.1 Supervised models

The performance of the baseline Deeplab V3+ model is eval-
uated on the dedicated validation dataset after training it with

moderate basic backbones on various distribution- and region-
based loss functions. Each image patch, which lacks surround-
ing context, is processed by the individual segmentation net-
works and analyzed quantitatively using metrics related to total
uncertainty and confusion matrix. In this supervised context,
its evident that VGG-16 performs significantly worse than the
other feature extraction networks on average due to the lower
output mapping capabilities. However, the default Focal IoU
loss variant (γ = 2) is marginally ahead of the correspond-
ing EfficientNet V2 network. Additionally, we observe that
region-based exclusive cost functions exhibit up to one mag-
nitude superior uncertainty scores across all models, indicating
their superiority for segmentation tasks with imbalanced data-
sets. We report only the corrosion class-related F1 and IoU
scores in detail in this step of model optimization, as the back-
ground detection rates are comparable to those in subsection
4.1 with differences of around 3 %. Given the imbalance of this
particular dataset, the total accuracy values can be neglected
completely. Overall, the remaining quantities for the different
Deeplab models are visualized in Figure 2.

Figure 2. Total uncertainties and corrosion class related metrics
of Deeplab V3+ models with respect to validation set consisting
of different backbones and trained on various loss functions. The
hatched bar sections indicate the difference between IoU and F1

score.

Due to the excellent predictive performance achieved using the
Focal IoU loss, we conducted further experiments to optimize
the γ parameter for each backbone network separately. The
best-performing parameter value was then applied for the first
time on the testing set. To obtain complete images instead of
smaller patches for visualization or later applications, we used
a blending method described in (Chevallier, 2017). This method
constructs smooth and continuous segments across patch edges
by means of a window function that combines several orient-
ated model predictions. These original sized images were than
analyzed using a metric designed to assess agreement with com-
plete corroded segments in the ground truth data. This is par-
ticularly helpful because inspection operators are primarily in-
terested in the presence of damaged areas at a certain location,
rather than their exact shape and/or size. The resulting scores
originate from False Positive and Negative corrosion pixels,
and can therefore be understood as supportive for the detec-
tion task. To make it more comprehensible: the remaining per-
centages to 100 represent fully made-up or overlooked damage
segments. These metrics are presented in Table 1, alongside
common quality measures. In total, we trained five different
segmentation network instances by randomly reinitializing the
parameters (except the pretrained backbone) to determine the
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aleatoric and epistemic uncertainties individually. The total un-
certainty is derived by the entropy of the composed Deep En-
semble, while epistemic uncertainty is derived by mutual in-
formation, and aleatoric uncertainty is equivalent to their dif-
ference. Therefore, the computed result(s) may deviate slightly
from the results the single model shown in Figure 2.

Table 1. Results of best Deeplab V3+ segmentation network
with respect to test set

Metric Score
Total uncertainty

(aleatoric, epistemic)
0.03492

(0.03491, 1e-5)
Total accuracy [%] 95.7

F1 Score [%] (backg., corr.) 97.7, 71.5
Pixel-wise IoU [%] (backg., corr.) 95.5, 55.6

Corrosion supporting
FP and FN [%] 80.6, 86.3

The determined uncertainties are in-line with the other Deep
Ensembles in terms of their relative relation. On average, the
individual Deeplab models among the frameworks vary by 1e-6
to 1e-5, while the images themselves are responsible for almost
the complete amount. This implies that the pretrained back-
bones, combined with the available but general small dataset,
do not hinder the segmentation networks from learning corro-
sion damage appropriately, as aleatoric uncertainty remains un-
affected by more training images. However, this information
does not provide a detailed overview of the corrosion predic-
tions in the images themselves. Looking at the other scores,
we see that the non-damaged or background areas are classi-
fied with an accuracy of 95 % or more. The model struggles
with precisely identifying the corrosion areas, but the value is
as good as (Katsamenis et al., 2020) found on their available
dataset. Due to the domain difference, we conclude that the
optimization steps were necessary to achieve this level of per-
formance with the restricted network architecture and overall
available resources.

To get insight into the prediction results and their uncertainties
in relation to the manually labeled images, we provide colour-
coded corrosion segments and greyscale images below for the
same scene as shown in Figure 1. In the top image, green, blue
and red colors represent True Positive, False Positive and False
Negative detections, respectively, while the brightness level in-
dicates regions with higher uncertainty in the bottom images.
The individual greyscale values are computed by converting an
image-level scaled float value to an 8-bit unsigned integer, en-
suring the full spectrum is always occupied despite the signi-
ficant differences indicated by the tabular values. This example
confirms that the trained models usually differ within a narrow
buffer around the manually labeled damage segments.

The trained model often misses or wrongly detects corrosion
near the areas that we identified as damaged with high confid-
ence manually. Our integrated metrics reflect this by showing
values above 80 %. Inspection operators dealing with manual
classification on a daily basis can benefit from this information,
despite other metrics indicating lower performance. If we also
provide them additionally for example with the uncertainty im-
ages, they can adjust the segment boundaries using a prospect
software package as part of a digitally assisted procedure.

Figure 3. ResNet-50 Deeplab V3+ model’s cropped blending
prediction with post-processed colour-coding according to

corrosion segments from ground truth data (green: True Positive,
blue: False Positive, red: False Negative). Aleatoric and

epistemic uncertainty calculated from a related five instance
Deep Ensemble network.

5.2 Weakly Supervised model

The best-performing segmentation network, Deeplab V3+ ResNet-
50, in the supervision context is then demonstrated in our simple
designed training pipeline. This pipeline starts with ground
truth images generated from a strict Region Growing algorithm
applied to the challenging JadeWeserPort dataset. Due to the
lack of accurate label images over the complete iterative train-
ing process, performance degradation is inevitable. However,
the time-consuming labeling effort is significantly reduced. This
gives researchers the possibility to obtain a larger dataset, if
necessary, in order to improve model’s generalization. In the
following Figure 4, we show the performance development for
different fractions of weakly label images used within the train-
ing process.

We draw here for the first time conclusions based on the agree-
ment of blended patch predictions to the test set regarding the
individual model training procedures. Especially the initial train-
ing phase can be highlighted, because the corresponding Re-
gion Growing labeled images achieved only 24.3 and 39.1 %
in terms of corrosion IoU and F1 score, respectively. The final
model of each training pipeline was determined by the highest
IoU damage value of the individual evolved validation set, re-
quiring 3, 2, 3, 3 and 2 iterations in descending order of the
weakly label fraction. According to these results, the models
iteratively trained on the complete weakly supervised dataset
were the most successful, while the optimal Deeplab networks
learnt from 70-90 % weak labels had a 5-10 % lower perform-
ance in terms of corrosion IoU. The dataset with the largest
fraction of manual labels performed worst, with an additional
10 % drop in performance. This outcome was expected, as the
strategy of finding the best model relys on monotonically in-
creasing metric scores, which is equivalent to efficient conver-
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Figure 4. Total uncertainties and corrosion class related metrics
of optimal Deeplab V3+ ResNet-50 with respect to test set

trained on weakly supervised dataset. Different colours stand for
the fraction of deployed weak labels. The hatched bar sections

indicate the difference between IoU and F1 score.

gence. When an individual dataset contains inaccurate but ob-
vious corrosion labels, the model can learn the underlying com-
plexity more effectively. However, when a significant amount
of the dataset consists of contradictory image pairs in terms of
weak labels, there is no fast and straightforward solution. But
the iteratively refined images may approximate the true dam-
age segments step by step at different speeds. Hence, we can
achieve supervised-like performance after several model train-
ings when a reasonable amount of accurate labels is available.
However, we cannot measure such an advancement in general
due to a lack of reference data. Nevertheless, we found a signi-
ficant improvement between different models (with weak super-
vised fractions between 0.7 and 1.0) in terms of the labeled test
set after a few iterations, as demonstrated in Figure 4. But how
much labeling effort can be saved to achieve that? If we con-
tinue to calculate with the 50 % example from subsection 3.3,
we would reduce the labeling effort for the complete training
and validation dataset (70 images in total) by roughly 12 hours.
For every accurately produced segmentation ground truth image
taking approximately 10 - 15 more minutes, the model gains
about 0.15 % IoU corrosion performance within an initial lin-
ear growing phase. Afterwards, the training may take more it-
erations than 3 to convergence, resulting in unpredictable per-
formance capabilities, followed by a period in which a single
model recognize weak labels confidently as outliers and take
this into account for its parameter optimization automatically.
Additionally, the determined total uncertainty over the test data
is barely affected for the final models by the relative portion of
manual labeled images. Therefore, we suggest that one should
only label up to one third of small, imbalanced image datasets
precisely to deploy the corresponding model in a short period of
time. This will have a noticeable effect within the process chain
and guarantees, based on our experiments, at least 90 % of the
maximum achievable performance. This gap might be further
closed by applying certain image augmentation methods and/or
domain-specific loss functions.

In this paragraph, we present a detailed analysis of the per-
formance of our best model on the test set, which provides
insights into the potential of our method for real-world dam-
age detection applications. We present the results using the
same format as in the supervised setting, with Table 2 and Fig-
ure 5. Although most of the quantities in Deeplab model have

Table 2. Results of Deeplab V3+ segmentation network trained
on 70 % weakly supervised images with respect to test set

Metric Score
Total uncertainty

(aleatoric, epistemic)
0.02248

(0.02248, 2e-6)
Total accuracy [%] 95.2

F1 Score [%] (backg., corr.) 97.4, 68.5
Pixel-wise IoU [%] (backg., corr.) 94.9, 52.1

Corrosion supporting
FP and FN [%] 81.6, 75.0

only slightly changed compared to the fully supervised model,
it tends to miss corrosion segments more often, resulting in
a higher number of False Negative pixels (75.0 compared to
86.3 % ). Conversely, the number of type 1 error for dam-
aged segments decreases. These factors lead to relatively minor
changes in the metric scores, but has a more visible impact on
the prediction images themselves. Figure 5 illustrates the beha-
viour explicitly for the centrally located corrosion segments. In
contrast, we observe finer, uncertain boundaries around the pre-
dicted corrosion segments, especially in aleatoric case, which
is reflected in the lower scores in Table 2 compared to the fully
supervised results. This difference can be explained by the it-
eratively trained models that learn from individual refined label
images and build up confidence over time.

Figure 5. Cropped blending prediction by best ResNet-50
Deeplab V3+ model trained on 70 % weakly supervised images.

Colour-coded in post-processing according to corrosion
segments from ground truth data (green: True Positive, blue:
False Positive, red: False Negative). Aleatoric and epistemic
uncertainty calculated from an affiliated five instance Deep

Ensemble network.

6. CONCLUSION

In this study, we developed a modified Deeplab V3+ model for
segmentation of corrosion in infrastructure inspections. The
model was optimized using 4-fold Cross-Validation on a cor-
rosion dataset, and we found that the combination of ResNet-
50 backbone and Focal IoU loss with γ = 4 (with integrated
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class weights of 1:3) achieved optimal results for our imbal-
anced dataset. We restricted our optimization to moderate large
feature extraction networks for efficient training on consumer-
level hardware. Our DL model is designed to assist operators
visually in future inspections, and we plan to retrain it on fur-
ther datasets that contain also other types of damage. We also
investigated an iterative weakly supervised approach based on
Region Growing, which can reduce the manual effort required
for ground truth labeling. We found that roughly one third
of manual labels are sufficient to achieve around 90 % of the
fully supervised detection capabilities. The produced Deeplab
V3+ models are part of the automation process of infrastructure
inspections to reduce on-site downtime and subjective assess-
ments (for example under stress). In future research, we plan
to evaluate the model on a wide range of infrastructure datasets
and refine the weakly supervised approach possibly with exist-
ing concepts to train a more robust segmentation network. We
also plan to provide possibly model predicted uncertainty maps
to inspection operators for a justified decision.
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