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ABSTRACT: 

Benefiting from the high cadence and spatial resolution of the new generation of Earth observation satellites, remote sensing technology 

is allowing us to derive more valuable information for the agricultural sector. Crop classification is one of the fundamental information 

derivatives from Earth observation data researchers used for food security, crop monitoring, and economic assessment. The robustness 

of a crop classification model to variations in environmental and management conditions due to time and location is one of the crucial 

requirements. To achieve this, we developed a novel self-supervised method using the advantage of unlabeled samples and transformer 

architectures. We used six different areas in Germany and four years to evaluate the robustness of the model. Our experiments showed 

that self-supervised deep learning methods could provide a significant advantage in handling these variations. In some cases, we 

observed around 30 percentage points improvements in F1-score performance compared to a Random Forest based model. 

1. INTRODUCTION

 Developing agricultural policies and sustainable farm 

management is essential for handling the increasing global 

demand for food. Accurate and timely information about the 

types and extent of crops present in an area is necessary for 

evaluating crop health and productivity, forecasting crop yields, 

and optimizing farming practices. For that reason, developing a 

robust machine learning-based crop classification method has 

become an important research topic. 

Most state-of-the-art crop classification approaches use the 

advantages of supervised learning methods such as Random 

Forest (RF), Support Vector Machines (SVM) (Saini, 2018). As 

with other remote sensing applications, supervised deep learning-

based methods have also become popular for crop analysis in 

recent years (He, 2019), (Zhao, 2021). These deep learning 

approaches have demonstrated strong performance on datasets 

with limited geographical and temporal extent (Metzger, 2021). 

However, large datasets with crop type labels covering multiple 

years and countries have not been readily available until recently 

(eg. EuroCrops (Schneider, 2021)). Due to the data-intensive 

nature of training deep methods, this historical lack of data has 

limited efforts to comprehensively evaluate the potential of deep 

learning methods to perform at continental scale, across the full 

range of climate conditions that require many years of data to be 

fully expressed.   

Self-supervised learning (SSL) represents a paradigm-shift in the 

machine learning domain, enabling the pre-training of deep 

learning models using sets of unlabeled samples. Many studies 

demonstrated that models pre-trained with SSL have better 

classification performance than fully supervised models when the 

number of labelled samples is limited (Wang, 2022). They 

showed that self-supervision outperforms supervision when 

reducing the number of labels using BigEarthNet (Sumbul, 2019) 

land cover classification dataset. In one of the recent studies, 
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Marszalek pretrained a deep learning-based crop classifier with 

SSL on a limited number of unlabeled data (Marszalek, 2022). 

They trained the crop classifiers for a given region by using 

multiple years and measured the performance. According to 

them, it is essential to introduce a few labels for the predicted 

year during the training. 

In this study, we adapt one of the state-of-the-art SSL 

architectures, called SimSiam (Chen, 2021), to pre-train our 

attention-based crop classifier. Since we need a large number of 

unlabeled samples to train our model in a self-supervised manner 

effectively,  we combine the advantages of two datasets: 

RapidAI4EO (Marchisio, 2021) and EuroCrops.  EuroCrops 

provides the boundary of the fields around Europe. On the other 

hand, RapidAI4EO satisfies the need for high-resolution and 

high-cadence time series for some of these fields.  To provide a 

reliable crop classification approach, spatial and temporal 

robustness become essential, where spatial robustness refers to 

the ability of an algorithm to classify crops in different locations 

accurately, and temporal robustness refers to its ability to classify 

crops accurately in different years. Therefore, we design a set of 

experiments to compare the ability of a deep learning model pre-

trained with SSL to generalize to unseen spatial and temporal 

contexts, against a baseline of deep learning models (without SSL 

pre-training) and Random Forest models.  

The following Section 2 will describe the proposed method, 

including the sample selection strategy using an unlabeled SSL 

dataset and the deep learning architecture. Section 3 introduces 

the dataset used for the crop classification downstream task. 

Section 4 presents the results of our experiments, including data 

analysis to observe the impact of these (temporal and spatial) 

variability on crops and quantitative evaluations of the classifiers' 

performance. Finally, in Section 5, we conclude the paper by 

summarizing our main findings and discussing their implications 

for future work. 
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2. PROPOSED METHOD 

The proposed method includes two important steps. In the first 

one, we combine publicly available datasets to prepare a large 

number of positive pairs, which will be used during the 

pretraining of the model in an SSL fashion without any crop type 

information. After that, we pretrain our model using SSL and 

apply supervised training to our model to handle crop 

classification downstream tasks.  

 

2.1 Self-Supervised Learning Dataset 

As mentioned in the introduction, we integrate the advantages of 

two datasets: RapidAI4EO and EuroCrops. 

The RapidAI4EO corpus, which was produced under 

Horizon2020 Project RapidAI4EO (https://rapidai4eo.eu/), is one 

of the most extensive remote sensing datasets, and it is publicly 

available to the machine learning and remote sensing community. 

It contains two data sources, Sentinel-2 and Planet Fusion (Planet 

Fusion, 2021), and covers 500,000 patches of 600m x 600m, 

distributed across Europe (Figure 1). 

In this study, we use Planet Fusion data, which provides a sensor-

harmonized, gap-filled, and cloud-free time series. It represents 

the highest spatial and temporal resolution data in the corpus with 

a ground resolution of three meters, five-day cadence, and four 

spectral bands (VNIR) for 2018 and 2019. A major advantage of 

using Planet Fusion imagery was that it provided regular, 

complete and high-quality time series that required almost no 

pre-processing to prepare them for use in our machine learning 

pipelines, highlighting its suitability for these types of 

workflows. 

 

The EuroCrops dataset, an initiative of the Technical University 

of Munich (https://www.eurocrops.tum.de/), aims to combine all 

publicly available self-declared crop reporting datasets from 

countries of the European Union. It provides the boundaries of 

the fields and the crop type for a given year. 

 

We observed that 91,944 RapidAI4EO locations intersect with 

862,691 EuroCrops fields in total. However, for most countries, 

EuroCrops includes the crop type information after 2019. Since 

the temporal range of the RapidAI4EO corpus does not cover this 

period, we use only the field boundary information. We assume 

that farmers planted only one type of crop at a given time. As a 

result, we can assume that randomly selected samples in a field 

will represent the same crop type. 

 

 
Figure 1.  The approximate location of the 500,000 

RapidAI4EO patches 

 

To prepare our unlabeled dataset, we select 24,407 RapidAI4EO 

locations and use the largest two fields for each location. For each 

field, we randomly pick ten samples (Figure 2). During the 

training of the SSL model, two of these samples are randomly 

selected as positive pairs and fed to our model as described in 

Section 2.2.    

 

 

 
Figure 2. Left: An example RapidAI4EO patch, a field inside 

that patch (red polygon in the left image), and ten sample points 

inside the field. Right: 2-year NDVI time-series (right) of the 

collected ten samples for the given field. 

 

2.2 SSL  Crop Classification Architecture 

In this study, we adapted  SimSiam to introduce a simple and 

effective framework for unsupervised representation learning 

based on the Siamese network architecture without requiring any 

negative pairs. In SimSiam, the model is trained to predict the 

parameters of a fixed encoder network, given the inputs of an 

augmented view of the same data. Thus the model learns to 

identify essential characteristics in the data, creating a valuable 

representation that can be utilized for the downstream tasks. 

After the positive pairs are generated, as explained in Section 2.1, 

we use them for self-supervised learning. For each pair, we obtain 

daily time series of the surface reflectance (SR) values and feed 

these time series to SimSiam to train our attention-based encoder. 

The encoder is inspired by (Garnot, 2020). The encoder combines 

the Pixel-Set Encoder (PSE) and the Transformer architecture to 

extract features from the input images. We adapt the PSE to use 

a single SR value for each field by using fully connected layers. 

After the pretraining, we modify our encoder to handle crop 

classification downstream by adding fully connected and soft-

max layers. 

 

3. CROP CLASSIFICATION DATASET 

For the crop classification downstream task, we create a new 

dataset that will allow us to evaluate the temporal and spatial 

robustness of the models across a single-nation context. To 

achieve our goal, we selected six areas in Germany (Figure 3). 
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Area-5 and Area-6 were previously used in the AI4FoodSecurity2 

challenge. The selected 4 new  areas were longitudinally 

stratified, to ensure variability in climate, planting practices and 

environmental conditions, each being part of a distinct region. 

Each area has a size of 24 km x 24 km. All areas except Area-5 

and Area-6 have a daily Planet Fusion time series between 2019 

and 2021. On the other hand, Area-5 and Area-6 have only the 

daily samples for 2019 and 2018, respectively. 

 

 
Figure 3.  Location of the six areas in Germany used during the 

crop classification experiments. Red and Purple tiles are used 

for testing and the remaining four are used for the training 

phase. 

 

Crop planting information and field boundaries for these areas 

were sourced from publicly available user submitted datasets that 

form the basis of official EU reporting (Integrated Administration 

and Control System). The datasets were accessed through the 

region specific data portals3. After consideration, we decide to 

focus on six crop types:  winter wheat, winter barley, winter rye, 

maize, winter oilseed rape, and sugar beet. These crops were 

well-represented across all tiles in the dataset and with adequate 

numbers to avoid wildly imbalanced classes. Figure 4 shows the 

NDVI time series of the selected crop types. 

 

 

 
Figure 4.  Extracted NDVI time series for the selected crop 

types by using our dataset. 

 
2 https://platform.ai4eo.eu/ai4food-security-germany 
3 Brandenburg: https://geobroker.geobasis-bb.de 

Finally, we split the dataset into training and test sets by 

considering the class distributions and geolocations of the areas. 

The Area-3 and Area-6 are used for testing, and the rest are used 

for training. Ten percent of the training samples are randomly 

selected for validation purposes. Table 1 summarizes the number 

of samples for each crop class  used for training, validation and 

testing purposes. 

 

 

Crop Type Training Validation Testing 

Maize 11,618 1,295 1,190 

Winter barley 5,158 602 1,072 

Winter oilseed rape 1,418 155 1,218 

Winter rye 2,304 275 946 

Winter wheat 7,079 744 4,144 

Sugar beet 1,766 190 1,160 

Table 1. The number of samples for each crop class. 

 

 
Figure 5. False-color images of a field in our dataset with 15 

days cadence. 

 

4. EXPERIMENTS 

 

4.1 Data Analysis 

Before starting to measure the classification performance of 

different models, we prefer to visually observe the impact of the 

temporal and spatial variances on crops. For that reason, we 

analyze  the Normalized Difference Vegetation Index (NDVI) 

time series of selected crops under different scenarios.  

 

First, we aim to focus on temporal impact. Therefore, we focus 

on a single area, Area4 and plot the NDVI time series of winter 

barley fields for  three sequential years (Figure 6).  Although the 

harvesting time for the three years are close to each other, the 

earlier phases show significant differences. Similar pattern is 

observed also for different areas. 

 

 

Lower Saxony: 

https://sla.niedersachsen.de/landentwicklung/LEA/ 

North Rhine-Westphalia: https://ckan.open.nrw.de/ 
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Figure 6.  The average NDVI times series of winter barley in 

Area 4 for three years 

Then we analyze the impact of spatial differences on crops. In 

Figure 7, we plot the NDVI time series of winter barley fields for 

a single year (2020) in four different areas. Since we focus on a 

single country, we believe that the spatial variance is not as 

problematic as the temporal variance for this dataset. However, 

when we need to solve temporal and spatial variability 

simultaneously, the intra-class dissimilarity and inter-class 

similarity may create some problems for some of the classifiers. 

Figure 8 displays the NDVI plots of two different cereals, which 

are obtained from four different areas and three years. A similar 

issue is observed between sugar beet and maize. 

 

 

 
Figure 7.  The average NDVI times series of winter barley for 

our 4 areas. 

 

4.2 Experiment Methodology 

In order to evaluate the robustness of our approach, we design 

two experimental setups. For each setup, we train our proposed 

model for ten epochs. Similarly, to observe the impact of SSL, 

we trained the same encoder without any SSL pretraining for ten 

epochs. In addition to deep learning-based methods, we train two 

different Random Forest (RF) classifiers.  

 

 

 

Figure 8.  The average NDVI times series of winter barley and 

winter wheat  for each different area and different years. 

 

 

As a feature set of the first RF classifier, we use NDVI, 

Normalized Difference Water Index (NDWI), and Green-Blue 

NDVI (GBNDVI) indices. The second RF classifier uses only 

surface reflectance values obtained from Planet Fusion. We use 

grid search to optimize the hyper-parameters of both RF 

classifiers. 

 

To evaluate the effectiveness of the classifiers, we employ three 

commonly used evaluation metrics: F1-Macro, F1-Micro, and 

F1-weighted average. F1-Macro calculates the F1 score for each 

class and takes the average of all the classes. F1-Micro calculates 

the F1 score by considering the total number of true positives, 

false negatives, and false positives across all classes. F1-

weighted average calculates the F1 score for each class and takes 

a weighted average of all the classes. 

 

 

4.3 Experiment 1- Evaluate Spatial Robustness 

The spatial robustness of a crop classifier is a crucial aspect of its 

accuracy and reliability. To evaluate the spatial robustness of a 

crop classifier, it is essential to train and test it in different 

locations with varying environmental and management 

conditions. In the first experiment, we aim to understand the 

spatial robustness of the proposed model. Therefore we use the 

same years (2019, 2020 and 2021) for training and testing. Since 

Area-6 has only samples from 2018, we exclude it from our test 

set. Table 2 summarizes the selected areas for this experiment. In 

total, we used 29,343 fields during the training and tested on 

8,668 fields. 
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Tile Selected Year(s) Subset 

Area-1 2019, 2020, 2021 Train 

Area-2 2019, 2020, 2021 Train 

Area-4 2019, 2020, 2021 Train 

Area-5 2019 Train 

Area-3 2019, 2020, 2021 Test 

Table 2. The selected areas for the Experiment-1 

 

We compare four models’ performances based on metrics 

described in section 4.2 (Table 3). The proposed model with SSL 

pretraining achieves the highest performance values. The second 

best model is the same encoder without any pretraining. We 

observe that SSL pretraining helped us to distinguish winter 

wheat and rye crop types in a better way for this experiment. The 

crop-based precision values of the winter rye are 63% and 91% 

without and with SSL, respectively. 

 

Interestingly, we observe that RF performs significantly better 

when we use surface reflectance values instead of indices. The 

indices-based RF had a lower classification performance, 

especially for sugar beets and maize classes. 

 

 

 

Model Name F1-Micro F1-Macro F1-Weight. 

Random Forest (indices) 87.64% 83.99% 87.43% 

Random Forest (SR) 92.52% 90.39% 92.38% 

Our model without SSL 93.62% 92.58% 93.95% 

Our model  96.09% 95.41% 96.06% 

Table 3. Performance Comparison under spatial variance 

 

4.4 Experiment 2- Evaluate Spatial and Temporal 

Robustness 

The second experiment is an extension of the first, and in addition 

to spatial variability, it involves temporal variability by training 

and testing samples from different years. The goal is to evaluate 

the classifiers' ability to handle variations in environmental and 

management conditions over time. During the experiment, we 

trained the models using daily PF data of 20,012 fields captured 

in 2019 and 2020 from Areas 1, 2, 4, and 5. After the training, we 

evaluated the models on 3,865 fields captured in 2018 and 2021 

from Area-6 and Area-3, respectively. Table 4 shows the 

classification performance of four different models. 

 

In this experiment, we observe that deep-learning models have 

better performances. Again the proposed model with an SSL 

pretraining achieves the highest performance values. On the other 

hand, RF-based classifiers face a significant performance 

decrease under the spatial and temporal variability between train 

and test sets. After including the temporal variability, the 

performance decrease is more than 20 percent for the indices-

based RF classifier. When we compare two different RF-based 

classifiers, we observe that the indices-based one has a lower 

capability to distinguish cereals from each other (i.e., wheat, 

barley, and rye). Similarly, it confuses sugar beets and maize 

classes.  

 
 

 

Model Name F1-Micro F1-Macro F1-Weight. 

Random Forest (indices) 69.39% 61.73% 67.30% 

Random Forest (SR) 86.18% 83.14% 85.79% 

Our model without SSL 94.15% 93.19% 94.13% 

Our model   95.21% 94.77% 95.20% 

Table 4.  Performance Comparison under temporal and spatial 

variance 

These results are consistent with our preliminary data analysis 

explained in Section 4.1. It is possible to observe the NDVI 

similarity within cereals and the NDVI similarity of maize-sugar 

beet pairs in Figure 4. The generated feature space for indices-

based RF is not enough to handle intra-class dissimilarity and 

inter-class similarity with high accuracy. 

 

 
Figure 8.  The performance Comparison under temporal and 

spatial variance. The blue, orange and green colors represent 

F1-Micro,  F1-Macro and F1-Weighted respectively. 

 

When we analyze the proposed model, we observe that it 

achieves very satisfying results for all crop types. Table 5 

displays each crop type's class-based precision, recall, and f-

score values. Although our dataset has some imbalance issues 

and the number of sugar beet fields used for training is 10x less 

than maize fields, the model was able to classify sugar beets with 

very high accuracy.  

Crop Type Precision Recall F-score 

Maize 97.72% 98.41% 98.07% 

Winter barley 86.05% 94.13% 89.91% 

Winter oilseed rape 99.84% 99.52% 99.68% 

Winter rye 92.11% 83.60% 87.65% 

Winter wheat 95.16% 95.29% 95.23% 

Sugar beet 98.63% 97.55% 98.09% 

Table 5. Crop based classification performance for DL with SSL 

pretraining under temporal and spatial variance 

Winter barley and rye had the lowest classification performances, 

with 89.91% and 87.65% F-scores, respectively. To understand 

the reason, we generated the confusion matrix (Table 6), and as 

expected, we observed that distinguishing between cereal types 

is relatively more challenging than classifying other crops. 
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  Prediction 

  

A 

c 

t 

u 

a 

l 

 Maize W. 

Barley 

W. Oil. 

R. 

W. Rye W. Wheat S. Beets 

Maize 558 1 0 3 2 3 

W. Barley 1 401 0 5 18 1 

W. Oil. R. 1 1 623 0 1 0 

W. Rye 1 22 0 362 48 0 

W. Wheat 4 40 1 22 1377 1 

S. Beet 6 1 0 1 1 359 

Table 6. Confusion matrix for DL with SSL pretraining under 

temporal and spatial variance 

 

5. CONCLUSION 

 

In this study, we focus on crop classification, an important 

research area for remote sensing in agriculture. We observe that 

the characteristics of crops vary significantly in terms of both 

time and location. For a reliable crop classification solution, it's 

essential to satisfy both temporal and spatial robustness. We 

successfully apply self-supervised learning methods to our 

transformer-based deep learning techniques to achieve our goal. 

We test our model under two different scenarios to see the impact 

of temporal as well as temporal and spatial variability. The results 

show that our method provides the best results in both scenarios, 

with a performance difference of over 30 points  compared to a 

traditional random forest classifier based on indices. 

 

Our findings show that: 

● Our Deep Learning architecture outperforms RF on our 

single-nation, multi-year dataset up to 30 percentage 

points. 

● SSL pre-training delivers a performance improvement 

over standard supervised training when testing on 

unseen spatial and temporal contexts 

● The total performance gain from SSL pre-training is 

variable. The gain was largest when evaluating spatial 

generalization, which is also the dimension in which 

the pre-training dataset expressed the greatest 

variation. The gain was smaller when evaluating 

generalization to new years, which may be partly 

explained by the fact that the pre-training dataset only 

covered two years. 

 

Based on our results, we would expect SSL pre-training to deliver 

a more substantial performance improvement over the other 

methods when: 

● limited training labels are available and for only a 

limited spatial or temporal extent; or 

● the unlabeled dataset covers larger regions of time and 

space that are not covered in the labelled data, but are 

relevant to the domain. 

 

For our dataset, the deep learning-based method without SSL 

pretraining already has very high F1-micro and F1-weighted 

values above 94%. Therefore it is unclear whether SSL pre-

training delivers enough of a performance advantage to warrant 

the additional computational effort required. We believe it is 

important to validate the performance impact of SSL on more 

challenging problems. 

 

In future work, we plan to use more labelled samples from around 

Europe to increase the number of classes and to test for higher 

spatial variability. As another exciting topic, the high-frequency 

data from Planet Fusion may be beneficial for early-season crop 

classification which would be a valuable building-block for real-

time food security and supply monitoring across field, regional 

and national scales . 
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