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ABSTRACT: 

Recurring outbreaks of dengue during past decades have affected public health and burdened resource constraint health systems 

across the world. Transmission of such diseases is a conjugation of various complex factors including vector dynamics, transmission 

mechanism, environmental conditions, cultural behaviours, and public health policies. Modelling and predicting early outbreaks is 

the key to an effective response to control the spread of disease. In this study, a comprehensive framework has been proposed to 

model dengue disease by integrating significant factors using different inputs, such as remote sensing, epidemiological data, and 

health infrastructure inputs. This framework for Dengue Disease Monitoring (DDM) model provides a conceptual architecture for 

integrating different data sources, visualization and assessment of disease status, and prediction analysis. The developed model will 

help forewarn the public health administration about the outbreak for planning interventions to limit the spread of dengue. Further, 

this forecasting model may be applied to manage the existing public health resources for medical and health infrastructure, also to 

determine the efficacy of vector surveillance and intervention programmes. 

1. INTRODUCTION

1.1 BACKGROUND 

Dengue is the fastest-spreading vector-borne diseases with a 

growth rate of 8 times in the last two decades (WHO, 2021). 

The highest burden is observed in tropical and sub-tropical 

regions (Fig 1). With about 128 countries currently at risk of 

infection, 70% of the burden is contributed by Asia for 2019. 

For dengue prevention is the only measure to reduce the health 

burden as no specific therapeutics are defined (WHO,2021). 

Therefore, there is a need to undertake a holistic approach and 

adopt adequate measures to control the onset of such a disease. 

Developing a disease surveillance system that has the 

capability to detect disease outbreaks may provide proactive 

and effective control measures during the onset of the outbreak. 

Further, it should be able to monitor the trends of incidences 

including temporal and geographic distribution of cases, but 

also be able to assess and confirm the possibility of an outbreak 

considering various aspects of the surrounding environment 

and demographic factors, geo-spatial physiographic features, 

entomological, epidemiological and serological evidence by 

aiding an Early warning system (EWS).  

1.2 DETERMINANTS OF DENGUE TRANSMISSION 

The ecology of the dengue vector has been widely studied and 

modelled using weather dependency as its occurrence is highly 

seasonal (Jayaraj et al., 2019; Nuraini et al., 2021). In addition, 

complex dynamics of dengue is governed by the interaction of 

multiple agents i.e. humans (host), mosquitoes (vector) and 

dengue virus over time and space. Despite complexities, an 

analysis involving identified dengue cases linked with 

significant factors, analysing and modelling their dependence 

for predicting future cases, may be used to analyse the impact 

of public health and vector intervention measures opted for 

disease control. For efficient planning, implementation and 

evaluation of the interventions to reduce dengue transmission, 

equal emphasis on the virus, vector, and their interaction with 

humans along with environmental factors is required. Well-

timed and reliable estimates of dengue emergence, including 

location, time, and intensity, may enhance proactive disease 

management.  

Fig 1: Geographic distribution of dengue cases (Data 

Source: CDC, 2021) 

Dengue is extremely sensitive to weather conditions as the 

vectors hence its highly seasonal. However, this seasonality is 

not uniform across the globe. It varies with geographical 

location, macro and micro climatic patterns like draught cycle, 

and trend of rainfall. The geographical range in which vectors’ 

movement occurs along with their habitat preferences increases 
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the exposure of humans to vectors(Vanwambeke et al., 2007). 

In addition, the growth, and development of the viruses in 

vectors and hosts occur under specific environmental 

conditions. The geographical shift in the distribution of dengue 

cases across the globe owing to climate change is being widely 

studied. It has been observed under warmer conditions, the 

extrinsic incubation period of the dengue virus may be 

shortened, which may lead to increased efficiency of viral 

transmission by mosquitoes. In contrast, extreme conditions 

like very high temperatures and low temperatures may hinder 

mosquito growth as it may lead to high mosquito mortality or 

hinder the development of the virus, therefore decreasing the 

risk(Sirisena et al., 2017). Rainfall, on the other hand, is 

necessary to create and maintain breeding sites for Aedes 

mosquitoes and therefore has a strong influence on vector 

distribution. The major governing factors for dengue 

transmission identified in various studies are summarised in 

Table 1. 

Table 1: Major contributing factors for dengue occurrences 

Determinant 

Factor 

Author Impact/Magnitude 

Built-up Machault et 

al., 2014 

Maximum dengue cases were found 

in the built-up area with a 300-m 

radius buffer. 

(Dom et al., 

2016) 

High levels of dengue cases were 

reported within a buffer of 600 m 

around residential areas. 

(Zahouli et 

al., 2017) 

Development time of larvae in 

urban areas is significantly shorter 

than that in rural and sub-urban 

areas due to comparatively warmer 

temperatures.  

(Ferraguti et 

al., 2016) 

Vector abundance were higher in 

vegetated and rural areas as 

compared to urban areas. 

Water Bodies (Ferraguti et 

al., 2016) 

High mosquito distribution is found 

in wetland areas. 

Vegetation 

Density 

(Sarfraz et 

al., 2012) 

Land cover consisting of orchards, 

rangeland and deciduous forests 

contributed more towards vector 

growth. Standing water in paddy 

fields and swamp forests upto 2.5 

cm to 30 cm in depth are observed 

as most common habitats for the 

dengue vector 

Temperature Wu et al., 

2007 

Every 1 °C increase in average 

monthly temperature above 18°C 

increased the risk for dengue 

transmission by 1.95 times. 

(Xiao et al., 

2018) 

It was observed the biting activities 

of mosquitoes were restricted to 

temperatures between 15 °C and 35 

°C. 

Season (Appawu et 

al., 2006) 

A high number of cases in the dry 

season is due to the increase in the 

storage of water. 

(Sirisena et 

al., 2017; 

Zahouli et 

al., 2017) 

Bimodal rainfall patterns 

corresponded to two peaks in 

dengue distribution noted on an 

annual scale. 

(Captain-

Esoah et al., 

2020) 

Unimodal rainfall pattern 

corresponded to a single peak in 

dengue case distribution  

Elevation (Gyawali et 

al., 2020) 

The suspected elevation limit for 

Aedes spp. was found to be up to 

2100 m. However, an increased 

incidence of dengue was found to 

be in cities located above 1300 m of 

elevation compared to cities in the 

same elevation due to urban heat 

island effects. 

The major risk components of dengue transmission are 

classified into exposure, sustainability and adaptive capacity 

(Fig 2). Exposure determines the vector-human interaction in 

an environment while susceptibility governs the proneness of a 

community to be infected by dengue. The adaptive capacity 

provides the ability to the community to deal with the disease. 

It may be enhanced by enhancing the quality of healthcare 

facilities, vector control measures, and spreading awareness 

among the public. 

Fig 2: Factors affecting dengue risk and susceptibility 

1.3 DENGUE INCIDENCE MODELLING 

The high global burden of dengue led to much research across 

the globe depending upon the severity of the problem and 

varying from studying the distribution of cases, assessing 

contributing factors, determining the population at risk and 

predicting future incidences. A variety of statistical and 

machine learning methods are applied to model dengue 

transmission and produce risk maps. While plotted disease 

incidence may facilitate the allocation of public health 

resources, but also there is a need for methods that allows an 

assessment of interventions over time and space. Disease 

modelling utilizes existing estimates of disease incidence to 

predict impact depending on the expected changes in 

population demographics, environmental and climatic 

conditions. It is crucial to plan the resources, create emergency 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023 
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-317-2023 | © Author(s) 2023. CC BY 4.0 License. 318



SOPs, task allocation and most important restrict the disease in 

case of occurrence. While most of the studies undertaken in the 

past decade used different statistical models to analyse 

contributing factors to dengue or to carry out prediction. 

However, the latest researches are more focused on using 

advanced methods like the use of machine learning or deep 

learning tools in order to predict disease occurrences. The 

various significant modelling techniques along with 

contributing variables for dengue used across the globe are 

shown in Table 3. 

Table 3: Modelling Techniques used for dengue prediction 

Model Name Developed By Parameters Used 

Logistic 

Regression 

Joseph 

Berkson,1944 

(Cramer, 2002) 

Land use, vegetation density, 

slope, aspect, distance from 

open areas and gold mining sites 

along with malaria incidence 

data. 

Generalised 

Linear Model 

John Nelder 

and Robert 

Wedderburn 

(Nelder et al., 

1972) 

Temperature, humidity, and the 

total number of dengue cases 

per week. Remote sensing-

derived products like NDVI, 

NDWI, Daytime Temp, Night-

time Temp, and Precipitation in 

both urban and rural areas are 

used as a proxy for 

environmental conditions, 

mosquito population 

Analytical 

Hierarchy 

Process 

T.L. Saaty 

(1971-1975) 

(Saaty, 1987) 

Dengue data, land use, housing 

type, residential buffering, 

elevation, population density, 

Land Surface Temperature 

Support 

Vector 

Machine 

Cortes and 

Vapnik (Cortes 

and Vapnik, 

1995) 

Dengue incidence data, mean 

temperature, rainfall, relative 

humidity, vector density, 

elevation, remote sensing 

derived products like NDVI and 

NDBI as a proxy for vegetation 

and urban density 

Poisson 

Regression 

Simon Poisson, 

1837 

Weekly dengue cases, Oceanic 

Ni˜no Index (ONI), temperature, 

rainfall, humidity, sunshine 

hours, wind speed, built-up and 

vegetation density. 

Auto-

Regressive 

Integrated 

Moving 

Average 

Box and Jenkins 

(Wilson, 2016) 

Temperature, rainfall, humidity, 

dengue cases, vector density, 

wind speed and direction 

Gradient 

Boosting 

Jerome H. 

Friedman 

(Friedman, 

1999) 

Confirmed dengue incidence 

data, Land surface temperature, 

precipitation, LULC, population 

density, urban accessibility, 

wind speed and direction 

Random 

Forest 

 Leo Breiman Minimum temperature, 

maximum temperature, 

precipitation, NDVI, relative 

(Breiman, 2001) humidity, urbanicity, population 

density, urban accessibility, 

vector data, land surface 

temperature 

Generalised 

Additive 

Model 

Trevor Hastie 

and R. 

Tibshirani 

(Hastie and 

Tibshirani, 

2005) 

Dengue incidence data mean 

temperature, average relative 

humidity and rainfall, and 

population density. 

The advantage of using a statistical model against a machine 

learning model is that a statistical model may be easily 

interpreted, and the governing factors may be assessed and may 

be understood by public health managers (Mudele et al., 2021). 

Moreover, it may be further integrated into real-life health 

systems and aid robust decision-making. Another advantage is 

the ease of processing and visualization which in contrast, for 

machine learning methods specialized libraries are required, 

followed by parameter tuning and long training cycles. 

However, machine learning algorithms may help by 

determining hidden patterns by combining different variables, 

which is not possible in statistical analysis. Overall it is 

observed that ARIMA, GAM, regression, RF and BRT have 

got maximum accuracy while modelling dengue transmission. 

However, these models have not been simultaneously applied 

to the same datasets for a region. Therefore, it is proposed to 

verify the suitability of the such model for a given region after 

a comparative analysis.  

2. DENGUE DISEASE MONITORING MODEL

2.1 CONCEPTUAL FRAMEWORK 

Lack of data availability in many under-developed countries 

led to the development of frameworks like the Water 

Associated Disease Index, Analytical Hierarchical Process, and 

Spatial Multi-Criteria Evaluation. Such frameworks worked on 

determining highly vulnerable areas based on a set of criteria 

like risk factors, and computing pair-wise comparisons and 

lacked maintaining consistency itself. Very few studies 

incorporated the socio-environmental aspects of dengue 

transmission including their spatial association and relative risk 

concerning neighbourhood regions. Moreover, the risk 

associated with neighbourhood regions and the non-availability 

of the medical facility on dengue occurrences has not been 

studied. Thus, this study aims to overcome these limitations 

and aims to bring together a conceptual framework that may 

assist in modelling and predicting dengue cases and addresses 

how the dynamics of DENV transmission are modulated by 

significantly identified factors. Therefore, this study proposes a 

framework model which provides a comprehensive support for 

exploratory analysis, spatiotemporal analysis, risk analysis and 

prediction depending upon the level of analysis required at the 

time of the outbreak. The framework aims at (i) identifying 

hotspots and rate of disease spread, (ii) determining risk zones 

that may be prone to future outbreaks and (iii) predicting the 

occurrences of dengue in time and space. Based on the findings 
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from the various literature, the conceptual framework is 

presented in Fig 3. 

Fig 3. Conceptual framework of the proposed model for 

dengue disease monitoring 

This framework integrates the three important aspects of 

dengue transmission i.e. environmental component, the 

database containing disease-related information and analysing 

of the dengue outbreak. The base layer consists of integrating 

all the factors associated with dengue incidence. Thereafter, the 

database consisting of dengue illness, the demography of the 

study region and its geographic information is integrated to 

model the existing situation of the outbreak. The final layer 

consists of the outputs based on the type of support required 

depending on stages of the disease outbreak viz disease 

occurrence, spread, and fall. For robust prediction, the such 

model will be trained to predict dengue occurrences in the 

region over time. The analysis may provide graphical output in 

terms of hotspot maps, risk maps and prediction of dengue 

incidence. The advantages of having graphical output are 

interpretation, ease of data sharing, and communication across 

various sectors and levels of administration including public 

communication. DDM may be further used for developing an 

early warning system which may alarm public health 

administrators to take preventative measures to minimize the 

further spread of the outbreaks by enforcing required 

interventions.  

2.2 PROPOSED WORKFLOW: 

The workflow followed for the DDM model is summarised in 

Fig 4. Overall it consists of input, processing and output 

blocks. The input block includes data harvesting processes 

from different sources like remote sensing, station data, 

ground-truth data, and surveying. A database will be generated 

containing geo-coded reported cases with supplementary 

information about the patient details, demographic information 

and the area/ward from which the patient belongs. The standard 

and homogeneous form of such data are required such database 

will contain epidemiological data of at least 5 years or the latest 

available data, whichever is earliest. The datasets for 

environmental parameters like vegetation density, built-up, and 

water bodies and hydro-meteorological parameters like 

temperature, rainfall, and humidity will be collected. The 

preliminary data processing carried out at the input block 

includes data aggregation, homogenisation, storing, filtering 

and visualisation. The data aggregation process as a part of data 

governance will integrate structured, semi-structured and 

unstructured data coming from various sources after 

homogenisation based on the spatial resolution of acquired 

data. Thereafter the dataset will be processed and analysed in a 

processing block using a set of algorithms and equations to 

determine the trend, regions of dengue risk, and predicted 

dengue occurrences. The processing block of the DDM model 

is further divided into three distinct modules, with further 

descriptions of these modules provided in subsequent 

subsections. 

Module I: Dengue Spread Model 

Spatio-temporal patterns of DF cases will be determined to 

study the variation of DF cases over time and geographical 

regions. Surface Trend Analysis will be used to determine the 

rate and direction of outbreak spread. Such analysis is useful 

for Public Health administration by planning 

preventative/control measures to limit the further spread by 

enforcing interventions. The geo-coded epidemiological data 

will be first converted from a daily scale to a weekly scale in 

the respective wards of the municipal boundary. The rate of 

disease spread will be estimated using polynomial regression 

models (Tutt-gu et al., 2021; Zinszer et al., 2015). The rate of 

change (in weeks/km) of dengue incidences will be obtained 

based on the best fit linear model, using partial derivatives with 

respect to x and y. The vectors will then be converted for 

determination of magnitude and direction.  

Cluster Analysis is used to determine significant clusters of DF 

outbreaks. Such analysis is useful for planning a medical 

facility or for additional resource allocation as a mitigation 

measure to control an outbreak. The discrete Poisson Model 

will be used to identify overlapping spatiotemporal and spatial 

clusters. The temporal unit may be selected depending on the 

incidence of DF cases in the region. For example, in case the 

incidence is low, an annual DF occurrence per municipality per 

year will be selected (Tutt-gu et al. 2021) and the case it is 

highly seasonal variation per municipality may be considered 

(Henry and Mendonça 2020). 

Relative Risk (RR) will be calculated for each significant 

cluster providing risk within that cluster relative to that of the 

outside cluster and calculated as per equation (1) 

  𝑅𝑅=𝑐/𝐸(𝑐)(𝐶−𝑐)/(𝐶−𝐸(𝑐))………  (1) 
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Where, c= observed cases within the cluster, E(c) expected 

number of cases, C= total number of cases in the dataset.  

Fig 4 Workflow of the DDM model 

Module 2: Dengue Risk Model 

A multivariate temporal approach will be used to identify 

vulnerable regions prone to DF outbreaks. A risk model along 

with a spatial Poisson point process model will be generated 

using individual layers of epidemiological data consisting of 

patient locations, land-use maps, roads, and total buildings in 

high-risk areas determined in the first objective. Raster layers 

will be developed separately for patient data, breeding places 

and road map layers using the kernel density function and the 

euclidean distance function will be used to calculate distances 

of roads, water bodies, and buildings.  Spatial correlations 

between DF case locations in each high-risk area and other 

layers will be determined using Pearson’s product correlation 

coefficient (Mala and Jat, 2019; Withanage et al., 2021). The 

risk values will be ranked for each layer depending upon their 

contribution to DF occurrence in the range of 0(minimum) to 

10(maximum). The resulting risk map may help healthcare 

workers and decision-makers in taking preventative measures 

in vulnerable areas. 

Mathematical modelling of patient cases with developed 

layers: Spatial Poisson point process model will be used to 

determine high-risk localities using patient locations as a 

function of raster layers created from breeding places, road 

maps, water bodies and buildings. 

ln (i) = α + β1  Breeding Places- + β2(Roads) + β3 (water 

bodies) + β4(buildings)…                              (2) 

where (i) is the modelled point pattern intensity for dengue 

incidences at location “i”, α is the base intensity derived from 

the multivariate model and β1 to β4 are the estimated 

coefficients for each respective variable. Thereafter, model 

outputs will be used to plot the predicted intensity of dengue in 

the areas to identify high-risk localities.  

Module III: Dengue Prediction Model 

The disease data will be split into 2:1 for training and testing. 

Different statistical- machine learning models will be 

developed and compared to forecast the dengue outbreaks 

based on the epidemiological data and predictive variables such 

as monthly rainfall, rainy days and temperature. Different 

models will be generated using ARIMA, GAM, regression, 

Random Forest and Boosted Regression Trees. The best model 

will be selected based on the lowest Akaike’s information 

criterion (AIC), Bayesian Information criterion (BIC), R-

squared (R2), root mean square errors (RMSE), mean absolute 

errors(MAE) and mean absolute percentage error (MAPE) of 

prediction and will be used for analysing dengue disease data 

for prediction. 

The processed output will be presented to the users in the form 

of a graphical representation using a web application. By using 

a graphical user interface the user experience may be enhanced 

and allow for eased data communication and sharing. Based on 

a detailed literature review on dengue surveillance and 

modelling, this proposed framework provides an overview and 

foundation for a new approach to handling public health 

problems.  

3. CONCLUSION

This framework provides different stages of analysis depending

upon the severity of the situation which may provide

information about the location, timing, and intensity of

infectious diseases that will help public health stakeholders in

taking proactive disease containment and management efforts.

This framework includes comprehensive, end-to-end support

for exploratory analysis, spatiotemporal analysis, disease

spread modelling and prediction. It provides an architecture for

epidemiologists to break up disease management into sub-

problems and solve the sub-problems with appropriate

modelling approaches. The framework supports the integration

of structured data (disease incidents, environmental conditions,

demographics, health status, and other data. The study will

provide support to the different stages of the disease viz disease

occurrence, spread, and fall which will allow public health

administrators to better planning and preparedness.
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