
IRRIGATED AGRICULTURE MAPPING IN A SEMI-ARID REGION IN BRAZIL BASED 

ON THE USE OF SENTINEL-2 DATA AND RANDOM FOREST ALGORITHM

H. N. Bendini 1, L. M. G. Fonseca 
1, C. A. Bertolini 1, R. F. Mariano 1; A. S. Fernandes Filho 1; T. H. Fontenelle 2; D. A. C. Ferreira 2

1 National Institute for Space Research (INPE), São José dos Campos, Brazil – (hugo.bendini, leila.fonseca, 

alexandre.filho@inpe.br), caio.bertolini58@gmail.com, ravimariano@hotmail.com

2 National Water and Sanitation Agency (ANA), Brasília, Brazil - (thiago.fontenelle, daniel.ferreira)@ana.gov.br 

KEY WORDS: irrigated agriculture, phenological metrics, machine learning, time series, earth observation. 

ABSTRACT: 

Irrigation is important for agricultural production and is often decisive for this, especially in arid and semi-arid areas, where 

precipitation is insufficient. In Brazil, irrigated agriculture is responsible for 46% of withdrawals from water bodies and 67% of the 

consumption of the total volume of water collected, representing the highest consumptive use in the country. Remote sensing 

technologies have great potential for developing methods for monitoring irrigated areas. However, mapping irrigated areas is still a 

challenge, due to the complexity and diversity of irrigation methods and crops, especially in a country with continental dimensions 

like Brazil. Remote sensing techniques for mapping irrigated areas in Brazil have been applied mainly in areas with center pivot 

irrigation in the Cerrado, and with paddy rice in the south of Brazil. But few or no applications, involving mapping of crops irrigated 

by other irrigation methods, mainly in the semi-arid, have been carried out. The objective of this work was to investigate a method 

for classifying irrigated agriculture in a semiarid region of Brazil, based on the use of Sentinel 2 imagery and random forest 

algorithm. We proposed a novel and robust methodology showing with preliminary results that it´s possible to identify irrigated 

agriculture in this region with a class-f1-score of 74% for complementary irrigation and 95% for center-pivots.  

1. INTRODUCTION

Agriculture is the biggest global consumer of water, with 

irrigated areas constituting 40% of the total area used for 

agricultural production (FAO, 2014). The rate of increase in 

irrigated areas was approximately 2.6% per year, going from 95 

million hectares (Mha) in the 1940s to 280 Mha in the early 

1990s (Van Schilfgaarde 1994, Seckler et al. 2000, Siebert et 

al., 2005a, b, 2006). FAO estimates that 80% of food needs in 

2025 will be covered by irrigated agriculture (Schaldach et al., 

2012) and more than 324 million hectares are equipped for 

irrigation in the world (Dubois, 2011). 

In Brazil, irrigated agriculture is responsible for 46% of 

withdrawals from water bodies and 67% of the consumption of 

the total volume of water collected, representing the highest 

consumptive use in the country. It is a dynamic activity that has 

shown increasing and persistent performance in recent decades, 

often against the grain of unstable and negative periods in the 

Brazilian economy. There was an intensification in the most 

recent period, linked to the greater contribution of credit and 

private investments, between 2012 and 2019, and growth was 

around 4% per year in Brazil when around 216 thousand 

hectares of irrigated fields were incorporated per year. In 2019, 

the value of irrigated production surpassed the BRL 55 billion 

mark (ANA, 2021). 

In general, the survey carried out by the National Agency for 

Water and Basic Sanitation (ANA) shows that with the current 

availability of water, only 36% of the agricultural area and 15% 

of the pasture area could be converted into irrigated areas in 

Brazil. However, the potential for expansion of irrigated areas 

(total and effective) must be observed with caution, as local 

particularities, infrastructure expansion, and water infrastructure 

works can change the estimate of additional irrigable area, 

especially when the water supply is increased with transfers 

from other basins or reduced with the installation of other uses 

or with the revision of water supply databases. Furthermore, the 

potentials were estimated only on current agricultural areas 

(agriculture and pasture already consolidated). The expansion of 

the irrigated area in the country has occurred and should 

continue to occur, according to three main aspects: public 

perimeters planned by government agencies; joint private 

initiatives, organized in the form of cooperatives or 

associations; and individual private initiatives. In this context, it 

is important to strengthen planning and organize the State's role 

as a promoter and partner of this development, especially at the 

federal level, in conjunction with states, municipalities, and the 

private sector (ANA, 2021). 

Irrigation is important for agricultural production and is often 

decisive for this, especially in arid and semi-arid areas, where 

precipitation is insufficient. The benefits of irrigation include 

increased productivity and the dissociation of constraints, 

ensuring greater resistance to extreme weather events, 

modifying temperature, humidity, and precipitation regimes on 

local to regional scales, and evapotranspiration (ET) globally. 

However, irrigation can also have significant social and 

environmental impacts, including drainage or maintenance of 

wetlands, disruption of sedimentation, increased soil salinity, 

changes in river temperatures, changes in water table depth, 

decreased water flow, changes in peak discharge and baseflow, 

and conflicts over water use (Ketchum et al., 2020; Pousa et al., 

2019). To mitigate or eliminate negative impacts, the irrigated 

areas must advance observing the different dimensions of 

sustainability. 

As seen, information on the spatial distribution of irrigated areas 

is highly relevant for water management and food security, 

being essential for decision-makers who are facing the transition 

to a more efficient sustainable agriculture. However, the spatial 

patterns, extent, and intensity of water use by irrigated 

agriculture are currently not well understood. In part, this is 

because statistics and reports are costly to produce and can be 

biased due to over- or under-reporting of water use (Rufin et al., 

2021; Deines et al., 2019; Özdoğan et al., 2006). In addition, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023 
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-33-2023 | © Author(s) 2023. CC BY 4.0 License. 33



 

irrigated area statistics often do not include smaller or informal 

irrigated areas (e.g., groundwater, small reservoirs, and ponds), 

due to the difficulty in mapping these smaller areas, as well as 

due to the inherent underreporting of survey systems by 

interviews. However, in many countries, these areas are very 

significant and even exceed the main irrigated areas. 

 

Remote sensing technologies have great potential for 

developing methods for monitoring irrigated areas (Özdoğan et 

al., 2010; Mcallister et al., 2015; Deines et al., 2017, 2019; Xie 

et al., 2019; Vogels et al., 2019; Xiang et al, 2019, 2020; 

Ketchum et al., 2020; Magidi et al., 2021; Rufin et al., 2021; 

Zurqani et al., 2021). However, mapping irrigated areas is still a 

challenge, due to the complexity and diversity of irrigation 

typologies and crops, especially in a country with continental 

dimensions like Brazil. 

 

Remote sensing techniques for mapping irrigated areas in Brazil 

have been applied mainly in areas with center pivot irrigation in 

the Cerrado (Saraiva et al., 2020; Albuquerque et al., 2021). 

Recently, some applications involving flood-irrigated rice crop 

mapping have been carried out (De Bem et al., 2021). But few 

or no applications, involving mapping of crops irrigated by 

other irrigation methods, mainly in the semi-arid, have been 

carried out. There is still a gap in the scientific literature, in 

terms of concerns the development of semiautomatic methods 

for mapping irrigated agriculture by remote sensing, which can 

be transferred to the Brazilian reality. 

 

The objective of this work was to investigate a method for 

classifying LULC in a semiarid region of Brazil, focusing on 

irrigated agriculture, based on the use of Sentinel 2 imagery and 

random forest algorithm. This work is in the context of the 

project “Irrigated Agriculture Based on Remote Sensing 

Technologies to Update and Improve ANA’s Atlas Irrigation”, 

developed by INPE (National Institute for Space Research) and 

ANA, which aims at developing a method for automatically 

mapping irrigated agricultural land and estimating water use in 

Brazilian irrigated agriculture. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Study areas 

 

The study area of the western Ceará agriculture hub is located 

around the municipalities of Guaraciaba do Norte, São 

Benedito, and Ipu, and is within in the Caatinga biome (Figure 

1). Agricultural cultivation areas correspond to small plots, 

usually close to watercourses. There is no presence of irrigation 

with center pivots. Irrigation is based on micro spray and 

dripping systems. In this area, there is a predominance of native 

vegetation composed of deciduous shrub vegetation, that is, 

with loss of foliage in the dry season of the year. There is also 

the presence of evergreen vegetation in the humid areas. The 

predominant climate is Tropical, Equatorial Zone, hot with an 

average temperature > 18° C in all months, semi-arid with 7 to 8 

dry months. The study area of the Petrolina/Juazeiro agriculture 

hub is located around the municipalities of Petrolina, in the state 

of Pernambuco and Juazeiro, in the north of Bahia state, and it 

is also within in the Caatinga biome (Figure 1). Agricultural 

cultivation areas are made up of large groups of plots with 

perennial and annual crops, distributed among a matrix of native 

vegetation. In this area, there is a predominance of native 

vegetation composed of deciduous shrub vegetation, with 

evergreen vegetation on the banks of watercourses. The 

predominant climate is Tropical, Equatorial Zone, hot with an 

average temperature > 18° C in all months, semi-arid with 7 to 8 

dry months. 

 

 

Figure 1. Study areas. 

 

2.2 Sample Generation 

 

The established protocol for sample generation contemplated 

the segmentation of cloud-free Sentinel 2 image obtained during 

the dry period (T24MTA_20190810T1 and 

T24LUQ_20191026T1). Considering bands 2, 3, 4 and 8 (blue, 

green, red and NIR) we applied the multi-resolution algorithm, 

with parameters of 80, 0.2 and 0.5 respectively for scale, shape 

and compactness. Then, with the respective Dynamic World 

classified image (Brown et al., 2022), we intersected with the 

segmented images to obtain the major land use and land cover 

(LULC) class per segment and the probability values of each 

class. We clipped the segmented images in smaller subsets, 

considering representative areas of the regions. The segments 

with the values of the majority classes with the highest 

probability were assigned to a specialist, whom proceeded the 

visual interpretation considering the LULC classes showed in 

Table 1. For the visual interpretation, we assumed that the 

agricultural areas that showed a stronger color pattern in the 

infrared during the dry period were irrigated areas. According to 

information from ANA specialists, in these regions most 

agriculture has some level of supplementary irrigation, with 

rainfed areas basically consisting of areas of subsistence 

agriculture, in small and diffused areas. 

 

Classes Number of samples 

Water bodies 167 

1300 

1659 

29 

2187 

26 

342 

347 

Natural Forests 

Complementary irrigation 

Center-pivot 

Shrublands 

Sugarcane 

Urban areas 

Bare soil 

Table 1. Number of samples. 

 

Finally, for each of the segments, sampled points containing the 

class information of its respective polygon were generated, and 

the set of all points generated in the subsets generated in the 

subsets were used as input data for training. 
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2.3 Datasets generation 

2.3.1    Environmental data: Terrain data were obtained by the 

SRTM (Shuttle Radar Topography Mission) (NASA, 2013), 

from which the elevation and slope images were derived. 

Precipitation data from CHIRPS (Climate Hazards Group 

InfraRed Precipitation with Station data) was also used, which 

is a nearly global rainfall dataset spanning more than 30 years. 

CHIRPS incorporates 0.05° resolution satellite imagery with in-

situ station data to create gridded precipitation time series for 

trend analysis and seasonal drought monitoring. 

 

2.3.2    Sentinel 2 Analysis Ready Data (ARD) generation:  

Recent advances in remote sensing technologies offer great 

opportunities to map land use and land cover over large areas. 

Several operational sensor systems are currently in orbit and the 

development of infrastructure for remote sensing data storage 

and data dissemination allows to derive consistent, analysis-

ready images, eliminating the need for pre-processing and 

storage for the user (Potapov et al. al., 2020, Frantz, 2019). This 

allows exploring the full potential of integrated data analysis, in 

which metrics derived from ARD time series (e.g., phenological 

or spectral-time metrics) are combined with meaningful 

environmental data for a specific domain. In this work, we used 

data cubes developed from optical images of multispectral 

sensors (MSI – Multispectral Instrument) of the Sentinel 2 A 

and B satellites. Images at surface reflectance level were 

accessed from the asset “COPERNICUS/S2_SR”, in GEE, with 

atmospheric correction performed with the Sen2cor method 

(Main-Knorn et al., 2017). The cloud mask was obtained by the 

CDI (Cloud Displacement Index) algorithm (FRANTZ et al., 

2018), which makes use of the three highly correlated near-

infrared bands that are observed with different viewing angles. 

Thus, elevated objects such as clouds are observed under a 

parallax and can be reliably separated from other objects on the 

Earth's surface. Dense data cubes were generated, that is, with a 

temporal resolution of 8 days, for the calculation of 

phenological metrics, which require a shorter interval between 

observations, and that they are equally spaced in time. For this, 

a process was applied to create temporal mosaics of 8 days, 

based on the highest value, to organize cubes with observations 

equally spaced in time, using the GEE itself, through the 

“qualityMosaic” function. For the dense data cubes, in cases 

where no images were found with a cloud cover percentage 

lower than 50% within the 8 days, a synthetic image was 

generated. Subsequently, in a Python programming 

environment, the pixels contaminated by clouds and cloud 

shadows found in the data cubes were interpolated using the 

Radial Basis Funcion method (Schwieder et al., 2016; Bendini 

et al., 2019). Data cubes with a temporal resolution of 16 days 

were also generated to calculate the accumulated sums of 

vegetation indices during the dry period. To identify the dry 

period, an approach was used in which CHIRPS monthly 

precipitation data was considered. For each CHIRPS pixel (1 

km), the three driest months in 2019 were obtained. The dense 

data cubes were generated for the following vegetation indices, 

EVI2 (Two-band Enhanced Vegetation Index) (Jiang et al., 

2008), NDWI (Normalized Difference Water Index) 

(McFeeters, 1996), GI (Greenness Index) (Gitelson, 2003), 

ARVI2 (Atmospherically Resistant Vegetation Index 2) 

(Kaufman et al., 1992), and LSWI (Land Surface Water Index) 

(Jügens, 1997).  

 

2.3.3    Accumulated sum of VI during the dry season: The 

cumulative sum of the vegetation index values of the Sentinel 2 

images was performed by a zonal summation operator on the 

Sentinel 2 images, according to the grid obtained from the 

CHIRPS pixels, where the dry period could vary spatially. In 

this case, as 16 days of temporal resolution would be enough to 

calculate an accumulated sum, not being necessary to generate a 

dense cube, which requires more sophisticated interpolation 

methods not available in GEE, the whole process was carried 

out in GEE, to reduce computational costs, which would also be 

amplified by the strategy of using CHIRPS to identify local dry 

periods. As the presence of null values could impact the 

calculation of the accumulated sum, an interpolation was also 

necessary. However, as the process was carried out in the GEE, 

the interpolation was simpler, being performed by the average 

of the period values. In cases of negative values, which would 

also significantly affect the sum, they were replaced by zero. 

Finally, a smoother based on a moving polynomial function, 

called Whitaker (Eilers, 2003), was applied to remove false 

peaks and remaining noise, which could influence the 

calculation of the accumulated sum. The cumulative sums 

during the dry period were calculated for the following 

vegetation indices: EVI2, NDWI, NDVI (Normalized 

Difference Vegetation Index), NDBI (Normalized Difference 

Built-up Index) (Zha et al., 2003), GI, GCVI (Green 

Chlorophyll Vegetation Index) (Gitelson et al., 2003), LSWI, 

BSI (Bare Soil Index) (Rikimaru, 2003), and ARVI2. 

 

2.3.4    Phenological metrics: We derived the phenological 

metrics from the Sentinel 2 EVI2 dense data cube described 

earlier, during the agricultural year 2019 – 2020, i.e., August 

2019 to October 2020 (CONAB, 2018). A total of 13 

phenological metrics were derived using the Python Stmetrics 

package (Soares, A; Bendini, H. N.; et al., 2019) 

(https://github.com/brazil-data-cube/stmetrics, accessed on 20 

November 2022). We extracted for the 3 seasonal cycles 

observed in the EVI2 time series, totaling 39 metrics. These 

metrics refer, for example, to the beginning and end of the 

season, the maximum value of station EVI2 or the amplitude 

and are inspired by the TIMESAT software, explained in detail 

in Jönsson, Eklundh (2004). Bendini et al. (2019) used them for 

mapping cropping systems and crop types in Brazil with good 

accuracies. 

 

2.3.5    Spectral-temporal metrics (STM): Spectro-temporal 

metrics (STM) (Griffiths et al., 2013, Rufin et al., 2015) were 

calculated for the dry and rainy seasons of the year 2019, 

consisting of statistical values (standard deviation, variance, 

mean, median, and percentiles), obtained from Sentinel 2 

surface reflectance images, free of clouds and cloud shadows, of 

all spectral bands (B, R, G, NIR, Red-edge, and SWIR). Rufin 

et al. (2018) used them for mapping cropping systems in Turkey 

with good accuracies. 
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2.3.6.    Neighborhood Green Chlorophyll Vegetation Index 

(NGCVI): The Neighborhood Green Chlorophyll Vegetation 

Index (NGCVI) was described by Deines et al. (2019) and 

consists of a normalization of the Green Chlorophyll Vegetation 

Index (GCVI) (Gitelson et al., 2005) by a neighborhood index, 

which is defined as the division of the maximum value of the 

GCVI divided by the 15th percentile, convoluted by a kernel. 

Deines et al. (2019) use a 50km radius to map the High Plains 

aquifer, based on the work of Xu et al. (2019), which explores 

the autocorrelation of climate variables. Still in Deines et al. 

(2019), the Landsat image was resampled to 1000 meters, due to 

the computing limitations of the Google Earth Engine platform, 

a procedure that was replicated in this work, however, for 

Sentinel 2 images. Fernandes Filho et al. (2022) used the 

NGCVI for classifying irrigated agriculture in the Brazilian 

semi-arid region with promising results. However, the authors 

suggested incorporating other vegetation indices is necessary to 

increase the accuracy of the classification. 

 

2.4 Classification 

 

The predictor variables were used together with the reference 

data to train a Random Forest (RF) classifier. RF is a non-

parametric machine learning algorithm based on decision trees. 

As individual decision trees are error-prone, RF uses a set of 

many decision trees that have been independently trained with 

random subsets of the input data to overcome this limitation 

(Breiman, 2001). The implementation of the algorithm in 

Python (Python, 2022) also allows evaluating the variable 

importance of each input variable based on the Gini coefficient. 

Different models were trained for each study area, and the 

classification was evaluated using metrics derived from the 

confusion matrix, such as global accuracy and f1-score. 

Validation was performed with 30% of the data, in an n-

partition scheme, with the remaining 70% used in training. 

Subsequently, the robustness of these models was evaluated 

using the same model in an area different from the training area, 

but in the same irrigation hub. The same sample collection 

protocol was applied in these test areas, so that the validation 

was performed with points totally independent of the training 

set. 

 

 

3. RESULTS AND DISCUSSIONS 

 

Figure 2 illustrates the mean time series of all pixels 

corresponding to the training samples used for the global model. 

 

 
Figure 2. EVI2 curves, obtained for the points of the samples 

used in the training model. 

 

We can observe that the agricultural areas present a seasonality 

similar to that of the natural vegetation, however, in the case of 

center-pivots, there is an indication of seasonality at the 

beginning of the agricultural year, suggesting the presence of 

two harvests. This is possibly due to the fact that in this region, 

there is expressiveness in the presence of perennial agricultural 

crops, which have a behavior similar to that of natural 

vegetation. 

 

Figures 3 and 4 illustrate the result of the mapping for 

respectively the study areas in the Juazeiro/Petrolina, and 

Western Ceará hubs. 

 

Figure 3. False Color composition (NIR, Red, Green), and 

result of the classification for training area in the region of 

Juazeiro/Petrolina hub. 

 

 

Figure 4. False Color composition (NIR, Red, Green), and 

result of the classification for training area in the region of 

Western Ceará hub. 

 

Although the global accuracy of the global model was 72%, the 

target class, related to irrigated agriculture, achieve a class-f1-

score of 74%. We can see that the spatial patterns are very 

consistent, reflecting the quality of the mapping. Figure 5 shows 

the confusion matrix of the global model. 
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Figure 5. Classification confusion matrix for the global model. 

 

It is possible to verify that there was confusion between 

agriculture and the classes referring to natural vegetation. We 

can infer that the more pronounced seasonality of the semiarid 

vegetation can lead to confusion with agriculture. A more 

cautious sampling is suggested in this sense, including in the 

sample collection protocol an evaluation of the EVI time series 

in these areas, to verify the characteristic pattern of agriculture, 

as well as an increase in the number of samples, in a more 

distributed way in the scene. 

 

 

4. FINAL CONSIDERATIONS AND FUTURE WORKS 

 

We explored a method for classifying irrigated agriculture in the 

semiarid of Brazil, using Sentinel 2 data and the random forest 

algorithm. We proposed a global model for classifying irrigated 

agriculture in this region. Good results were observed for 

irrigated agriculture, however, there was also a significant 

inclusion of areas of native vegetation (mainly shrubs). This fact 

is associated with the high seasonality of this vegetation, as well 

as its resilience to periods of drought (in the case of native 

forests areas close to water bodies). In the next steps, a more 

careful inspection of these areas of inclusion will be carried out, 

followed by a more representative sampling of these areas. 
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