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ABSTRACT: 

Vital aspects of transportation networks, such as the extraction of road information and analysis of road conditions, have become 
increasingly important research topics as they outline the foundation of many applications such as high-precision mapping, 
infrastructure planning and maintenance, intelligent transportation, or road design analysis. Therefore, regularly obtaining accurate 
high-density point cloud data of infrastructures supports many transportation-based applications and provides up-to-date information 
for smart cities or digital twins. Low-cost smartphone platforms equipped with a variety of sensors provide new and powerful data 
acquisition capabilities that can be exploited in the geospatial field. For example, mobile phones are now capable of collecting valuable 
data to generate accurate models to support digital reconstruction of infrastructures. These platforms can provide simple and effective 
data acquisition, while offering useful geospatial data that can be an alternative to traditional measurement techniques. However, the 
sensor performance with respect to spatial accuracy of point clouds generated in different applications have not yet been fully 
investigated. Thus, this paper evaluates the feasibility of using the point clouds generated by the built-in camera and LiDAR sensors 
integrated into iPhone 14 Pro for extracting road-related information. Additionally, the use of the viDoc RTK Rover on the iPhone 14 
Pro increases the platform positioning accuracy, consequently improving the georeferencing accuracy of the point clouds. To validate 
the performance of the point clouds obtained by the iPhone 14 Pro, a reference dataset of the road features was obtained by measuring 
with a single-point RTK-GNSS receiver, receiving corrections from the Turkish CORS network (TUSAGA-Aktif) which provides two 
to three centimetres of accuracy. In addition, reference point cloud data over the same area was obtained from different platforms such 
as Mobile LiDAR and UAS, and the road features were extracted from these dataset and performance validated. The data acquired by 
the iPhone 14 Pro was processed and evaluated with respect to the reference datasets. The advantages and disadvantages of using 
iPhone 14 Pro are analysed in detail and the findings are reported. 

1. INTRODUCTION

The extraction of road information from high accuracy point 
clouds has become an important tool in the geospatial field in 
recent years, thanks to the development of a variety of sensors 
that provide powerful data acquisition capabilities. Some of these 
methods include Mobile Mapping Systems on vehicles like 
automobiles or aircrafts to collect data with sensors to generate 
point clouds.  Point clouds are three-dimensional data sets that 
consist of many points in space, each of which has a set of 
coordinates and frequently other attributes such as colour or 
intensity. Point clouds can be generated using a variety of 
sensors, including lasers and cameras. The use of the LiDAR 
(Light Detection and Ranging) sensor significantly improves 
point cloud creation by capturing more points in areas where 
camera sensors may struggle to see, as well as the speed at which 
they can be collected. Using a camera sensor, images can be 
taken at a set interval and stitched together utilizing 
photogrammetry to reconstruct the entire site. The accuracy of 
data collected could be improved with the use of RTK 
corrections, which would be essential  for point clouds generated 
,  as VRS provides the best solution currently(Puente, I., et al. 
2013). 

Smartphones offer a convenient and accessible means of data 
acquisition for various mapping applications, including road 
infrastructure mapping. With the advancements in sensors and 
technologies, such as the integration of LiDAR and RTK 
systems, mobile phones can provide accurate and precise data for 
mapping applications, making them potentially a useful and 
efficient tool for road infrastructure mapping. 
Early testing of the iPhone shows the framework of research that 
indicated the potential use of mobile phones for collecting data 

for mapping purposes. (Sirmacek, B. et al. 2014) conducted a 
study to assess the accuracy of building point clouds generated 
from iPhone 3GS’s images. They used the iPhone's camera 
sensor to capture images of building facades, and then used 
specialized software to process the images and generate point 
clouds. The accuracy of the building point clouds generated from 
the iPhone images was compared to the reference point clouds 
obtained using a total station, a precision surveying instrument. 
The results showed that the building point clouds had an average 
accuracy of 3-5 cm, with a maximum error of 15 cm. The authors 
also analysed the distribution of the errors and found that most of 
the errors were concentrated near the edges of the building 
facades, where the texture and features were more complex. The 
accuracy of the point clouds generated from iPhone images was 
concluded to be sufficient for many mapping applications, and 
that the technology had the potential to be a useful tool for 
quickly and efficiently generating building point clouds in the 
future. 

More recent studies with iPhones include a LiDAR sensor. 
(Luetzenburg. et al. 2021) carried out a series of experiments to 
evaluate the performance of the iPhone 12 Pro LiDAR for 
engineering applications. They used the iPhone to measure a 
range of objects, including trees, buildings, and terrain, and 
compared the results to those obtained using other LiDAR 
systems. The authors found that the iPhone was able to provide 
accurate and precise measurements for these objects, with an 
average accuracy of 0.5-1.5 cm and an average precision of 0.2-
0.5 cm. The iPhone performed particularly well when measuring 
flat surfaces and objects with clear features, such as buildings and 
trees. However, it performed less well when measuring objects 
with complex shapes or rough surfaces, such as rocks and terrain. 
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This case study investigates the feasibility of using a mobile 
phone like the iPhone 14 Pro with its integrated camera and 
LiDAR sensor, along with a viDoc RTK Rover to capture data to 
generate a point cloud and assess the accuracy for road 
infrastructure mapping. LiDAR-based systems have been 
extensively utilized in road-related applications, including the 
extraction of geometric characteristics, road surface analysis, 
traffic sign detection, and inventory mapping, as demonstrated in 
previous literature (Gargoum and El-Basyouny 2017; Ma et al., 
2018;). The present study aimed to compare the advantages and 
disadvantages of iPhone 14 Pro data with respect to the 
commonly used mobile LiDAR and unmanned aerial vehicle 
(UAV) LiDAR in such applications. The study area was 
previously surveyed and mapped using a GNSS receiver with a 
Virtual References System (VRS) on the Turkish Continuously 
Operating Reference System (CORS) network (TUSAGA-Aktif) 
to generate a reference dataset for result comparison. The purpose 
of this paper is to evaluate the performance and accuracy of the 
mobile phone geospatial sensor technology, including 
performance validation in a controlled environment. This will 
provide insight into the capabilities of using an iPhone 14 Pro and 
viDoc RTK Rover for road infrastructure mapping, and how it 
compares to traditional methods. 
 

2. MATERIALS AND METHODS 

2.1 Study Areas, Data Acquisition Systems and Datasets 

 
2.1.1 iPhone 14 Pro + viDoc RTK Rover 
 
The viDoc RTK Rover was an essential component of the 
mapping process, providing real-time kinematic (RTK) 
positioning to improve the accuracy of the mapping results with 
respect to the stock GNSS receiver built in the iPhone. The CORS 
stations continuously monitor signals from satellites and transmit 
RTK correction signals to the viDoc RTK Rover, which uses this 
information to provide centimetre-level accuracy positioning. 
The viDoc RTK Rover was connected to the iPhone 14 Pro via 
Bluetooth, allowing the iPhone 14 Pro to receive real-time 
corrections, and improve the positioning of the system. The 
iPhone 14 Pro was equipped with a high-resolution camera and 
LiDAR (light detection and ranging) sensor, which were used to 
capture imagery and depth data, respectively. The camera 
captured images of the road infrastructure, while the LiDAR 
sensor generated a point cloud of the area, providing a 
comprehensive 3D representation of the object space that allows 
us to interpret road infrastructure. The Pix4Dcatch app was 
utilized for image processing and automatic alignment between 
the images and LiDAR data, improving the accuracy and 
efficiency of the mapping process. The Pix4Dcatch app was used 
to process the data collected by the iPhone 14 Pro and RTK Rover 
to create a 3D reconstruction of the road infrastructure. The app 
automatically aligned the images and LiDAR and used the RTK 
data to improve the geolocation accuracy of the mapping results. 
The Bluetooth connectivity between the iPhone 14 Pro and the 
RTK Rover allowed for real-time corrections to be received by 
the iPhone 14 Pro, further improving the accuracy of the mapping 
results.  
 
2.1.2 UAV-LiDAR  
 
Another survey of the study area was performed using a UAV-
LiDAR system. The specific system used in this study was the 
Phoenix Alpha-32 LiDAR system (see Figure 1). The system 
consisted of several components, including a Velodyne laser 
scanner, a high-precision inertial measurement unit (IMU) from 

OEM-ADIS16488, NovAtel OEM6 dual-frequency GNSS 
receivers and a microcomputer. 
 

 
Figure 1. UAV-LiDAR System (Phoneix, 2023) 

 
 
2.1.3 Mobile LiDAR 
 
Another measurement system used in the study area was a Mobile 
LiDAR system. The system consisted of several components, 
including a Velodyne laser scanner, a Ladybug5 camera, two 
dual-frequency GNSS receivers a high-precision inertial 
measurement unit (IMU), and an odometer (refer to Figure 2). 
 

 
Figure 2. Mobile LiDAR System (AnkaGeo, 2023) 

 
2.1.4  Study Areas and Datasets 
 
The experiment took place on the Davutpasa Campus of Yildiz 
Technical University in Istanbul. The study area was a 90-meter-
long and 7-meter-wide corridor with a 5.5% slope, as shown in 
Figure 3. This corridor is a two-lane road that includes a change 
in slope both across and along the road, as well as sidewalks. 
 

 
Figure 3. Study Area:  

3D view of the point cloud (a), 2D image (b) 
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2.2 Methodology  

2.2.1 Point Cloud Generation 
 
The combination of the iPhone 14 Pro and the Pix4Dcatch app 
allowed for real-time data collection and processing of the 
LIDAR point cloud data in the field. The Pix4Dcatch app 
processed the data from the LiDAR sensor to generate a point 
cloud. To improve the geolocation accuracy of the mapping 
results, it also utilized data from the viDoc RTK rover received 
via the VRS network. The LiDAR point cloud data captured by 
the Pix4Dcatch app on the iPhone 14 Pro provided a preliminary 
representation of the point cloud, but further processing of the 
images was required to create a high-resolution point cloud by 
providing more data captured by the camera sensor. The data 
collected on the iPhone 14 Pro was then transferred to the 
Pix4Dmatic software on a computer for further processing. The 
Pix4Dmatic software utilized the LIDAR point cloud data in 
combination with the imagery data captured by the iPhone 14 Pro 
by fusing both point clouds to generate a more detailed and 
accurate representation of the road infrastructure. The software 
also employed advanced algorithms and computer vision 
techniques to further improve the accuracy of the mapping 
results. Besides using RTK GNSS data, the Pix4Dmatic software 
incorporated georeferencing data, control points gathered by a 
GNSS receiver in the field. This data was used to reference the 
positions in the point cloud that were marked and easily 
identifiable by the user.  Photogrammetric image processing used 
in Pix4Dmatic allowed for the creation of a highly detailed and 
accurate 3D representation of the object space. The software 
automatically aligned the LIDAR point cloud data and imagery 
data and used the RTK GNSS data and georeferencing data to 
improve the accuracy of the mapping results. . 
 
2.2.2 Accuracy Assessment of Point Cloud 
 
The absolute accuracy of the point cloud data was assessed by 
comparing manually measured RTK-GNSS ground control 
points (GCPs) with digital elevation models (DEMs) created 
from the point cloud data. Point clouds generated by systems, 
such as UAV-Lidar, MLS, and iPhone, needs some common 
reference from to perform comparisons. Here we used a regular 
DEM for our evaluation and 
selected interpolation method of inverse distance weighting 
(IDW), which is widely used for interpolating irregularly spaced 
data sets, such as point clouds (Shams et al., 2018; Barbarella et 
al., 2019). The optimal grid resolution for this study was 
determined using Equation 1, which was suggested by Hengl 
(2006) and it can accurately calculate the minimum grid 
resolution (p) based on the data density. Different DEM surfaces 
were generated at various grid resolution calculations for each 
dataset.  

                                     𝑝 ൌ 0.5 ∗ ට
ଵ

஽
                                        (1) 

 
where D is the average point density (number of point/dm2) 
 
The elevation difference was calculated between each RTK-
GNSS GCP (ZGCP) and the elevation of the point at the same 
position (ZDEM) in DEM. Furthermore, the root mean square error 
(RMSE) and standard deviation (SD were computed by utilizing 
the vertical discrepancies between the observed RTK-GNSS 
control points (ZGCP) and the points on the DEM surface at 
corresponding positions (Smith et al., 2014, Tamminga et al., 
2015). These points are independent of the point cloud and DEM 
generation and spaced throughout the study area. Figure 4. 
illustrates the study area's as shaded relief DEM, derived from 

point cloud data along with the spatial distribution of 170 ground 
control points. The RMSE and SD were calculated as follows:  
 

Root-Mean-Square-Error ሺ𝑅𝑀𝑆𝐸ሻ ൌ ඨ
∑ ሺ௓

ಸ಴ುቀ೉İషೊİቁ
ି௓ವಶಾ൫೉೔షೊ೔൯

ሻ೙
೔సభ

௡
    (2)   

Standard Deviation   ሺ𝑆𝐷ሻ ൌ ඨ
∑ ሺ൬௓

ಸ಴ುቀ೉İషೊİቁ
ି௓ವಶಾ൫೉೔షೊ೔൯

൰ିµሻ೙
೔సభ

௡ିଵ
   (3) 

 
 

Figure 4. Example of shaded relief map of DEM where red dots  
shows distribution of RTK-GNSS ground control points 
  
 

2.2.3 Trajectory based Partitioning and Road Edge 
Detection 
 
To reduce processing time and increase the accuracy of the road 
infrastructure assessment, the images captured by the iPhone 14 
Pro’s camera sensor position at each measurement point during 
the test run was used as trajectory data. The point cloud data was 
partitioned perpendicular to the trajectory data from the iPhone 
using a predefined length. Subsequently, numerous cross sections 
were formed from each data block with a predefined width. Each 
cross section thus contains data belonging to the road surface, 
curbs, sidewalks, and various objects including trees, traffic 
lights, and vehicles. As seen in Figure 5(a), the study area is 
divided into rectangular blocks, and cross-sections extracted 
from each block are projected perpendicular to the plane, as 
shown in Figure 5(b). The red dots indicate the trajectory data for 
iPhone 14 Pro camera sensor. Since all three datasets were 
obtained from the same area, the same trajectory data was also 
used to divide the MLS and UAV-LiDAR data into blocks. 
 
Based on the extracted cross-sections from each data block, curb 
points were determined from the raw point cloud data using our 
proposed methodology, which is based on the slope and elevation 
difference parameters. In general, road surfaces consist of smooth 
surfaces with low slope and height differences, and there are 
serious variations in slope and height in the transition to 
sidewalks. However, as there are points belonging to different 
objects (such as trees and streetlights) in each section, these 
points must first be identified and removed from the dataset. 
Therefore, the detection and filtering of these points were 
performed using the elevation difference in each cross-section. 
For this, the elevation difference between points with maximum 
and minimum height was calculated and compared with the 
height of the curb in the study area. The point is classified as an 
object point if its elevation differences are higher than the curb 

RTK-GNSS 
Control 
Points 
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elevation. This iterative process continued until there were no 
more points than the curb height in each cross-section. 
 
 

∆𝑍௜ ൌ maxሺ𝑍௜ሻ െ min ሺ𝑍௜ሻ 
                         if 𝑍௖௨௥௕ ൏  ∆𝑍௜  → object points                      (4) 

otherwise 𝑝௜non-object points 
 
Where, ∆𝑍௜ maximum elevation difference, curb height, which is 
20 cm in the study area. After detecting the object points, our 
slope-based methodology was applied to detect curb points. 
Thus, the search algorithm was implemented from the scan centre 
to two different directions in each cross-section, and slope values 
were calculated between consecutive points using the formulas 
in equation 5. As stated above, the elevation of the pavement 
points is higher than the road surfaces, and in general, there are 
abrupt slope changes in the transition from road surfaces to 
sidewalks. Accordingly, the curb points were determined by 
comparing the calculated slope values with the threshold value.  
 

                        𝑆𝑝௜
௜ାଵ ൌ

௓೔శభି௓೔
ඥሺ௑೔శభି௑೔ሻమିሺ௒೔శభି௒೔ሻమ

                          (5) 

 
Where, ሺ𝑋௜ାଵ,௜ ,𝑌௜ାଵ,௜ ,𝑍௜ାଵ,௜ሻ express the coordinate values of 
consecutive points, 𝑆𝑝௜

௜ାଵ denote calculated slope values. If the 
calculated slope value is greater than the predetermined slope 
threshold value (𝑆௧௛௥௘௦௛௢௟ௗሻ, it is classified as a curb point.  
 

     
 
Figure 5, a) Splitting the study area into rectangular blocks and 
forming cross-sections, b) red dots show reference longitudinal 

profile points in the study area, black dashed lines indicate 
reference cross-sections. 

 
Following the detection of candidate curb points, the road 
boundaries were segmented into left and right road boundaries 
based on trajectory information. Subsequently, falsely detected 
curb points were identified and eliminated through the 

implementation of the RANSAC algorithm (Fischler and Bolles, 
1981). This methodology enabled the removal of erroneous data 
points and improved the accuracy of the curb detection process.  
Consequently, the boundaries of the road were extracted using 
detected curb points with the polynomial curve fitting method. 
 
2.2.4 Extraction and Comparison of Road Geometry 
Parameters (road width, road centerline, Longitudinal 
Profile and if possible cross-slope) 
 
The data obtained from the previous step, which involved 
determining the road surface and boundaries, was utilized to 
determine the geometric parameters of the road. Thus, many 
important geometric parameters such as road width, elevation, 
and slope for longitudinal and cross-sectional profiles of the road 
surface were calculated quickly and accurately together with the 
road centreline. 
 
The methodology proposed by Yadav et al. (2018) was employed 
to determine the road width and road centreline. Firstly, refined 
curb points identified in the previous section were selected and 
segmented by sequentially aligning them along the road 
boundary. Next, a polynomial line was fitted to the points within 
this segment, and the slope values (𝑠௜ሻ of the line were calculated. 
The slope of the perpendicular line (𝑠௝ሻ with respect to this line 
was determined using equation 6. Lastly, the points on the other 
side of the road boundary were substituted into equation7, and 
the points with the minimum residuals were chosen (Yadav et al., 
2018). 
                                         𝑠௜ ∗ 𝑠௝ ൌ  െ1                                    (6) 
                               𝑦 െ  𝑦ଵ ൌ  𝑠௝ ∗ ሺ𝑥 െ  𝑥ଵሻ                           (7) 
 
As mentioned earlier, one of the significant geometric parameters 
that were obtained is the longitudinal profile information. To 
obtain this information, the planimetric coordinates and height 
values of the reference longitudinal profile points were measured 
using the RTK-GNSS technique, with intervals of approximately 
8 meters on average as seen in Figure 5(b). To compare the 
reference longitudinal data with point clouds data obtained by 
MLS, UAV-LiDAR and iPhone-viDoc RTK, the points closest 
to the reference longitudinal points within these point clouds 
were determined using a k-nearest neighbour search (k is selected 
as 1). 
 
The following step involved identifying eleven transverse 
sections along the road line, as shown in Figure 5(b), and 
measuring and calculating the cross-slope values of these 
sections. To evaluate performance accuracy, the cross-slope 
values derived from the point clouds were compared to the 
reference cross-slope values of the identified sections. The 
reference cross-slope values were calculated by measuring the 
pavement points or lane lines using the RTK-GNSS technique 
providing 2-3 centimetre accuracy (Badescu et al.,2011; Garrido 
et al.,2011).. The cross-slope value was obtained by applying 
linear regression to the extracted data of the point clouds within 
specified cross-sections, and the cross-slope values were 
determined as the slope of the regression line. All the procedures 
were implemented in the MATLAB environment. 
 
 

3. RESULTS 

3.1 Accuracy Assessment of Point Clouds 

Absolute accuracy was evaluated based on manually measured 
RTK-GNSS measurements. The calculated error statistics for 
DEM surfaces with respect to each RTK-GNSS point are given 
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in table 1. As seen in the table, all statistical values are below the 
centimetre level. Upon analysing the error statistics of both 
systems, it was determined that the point cloud data obtained 
from all systems exhibited minimal discrepancies. Furthermore, 
the results indicated that the vertical accuracy of all point cloud 
data was notably high, and the datasets were georeferenced with 
satisfactory precision at the centimetre scale, which was deemed 
suitable for the purpose of this study. 
 

Table 1. Error statistics for point cloud data 
 
Figure 6 presents a comparative analysis of longitudinal profiles 
between the reference data and the data derived from UAV-
LiDAR, MLS, and iPhone-viDoc. The dashed black line, blue 
circle, and orange crosshair indicate the height differences 
between the reference longitudinal profiles and those derived 
from UAV-LiDAR, MLS, and iPhone-viDoc, respectively. 
Statistical values for these height differences are given in Table 
2. Upon examining the height differences obtained from all three 
systems, deviations were observed in certain areas. However, 
further investigation revealed that the error values remained 
within the centimetre level, indicating highly consistent results 
across all three systems. In addition, the variances of the height 
differences are slightly higher with MLS and UAV-LiDAR, 
compared to the iPhone. As a result, the georeferencing of iPhone 
data may exhibit greater consistency in this regard. 
 

Table 2. Error statistics values of longitudinal profile 
differences 

 

 
Figure 6. Comparison of different longitudinal profiles: UAV-

LiDAR, MLS, and iPhone 
 
 
 

The result of our road boundary extraction is depicted as a set of 
red points and a vectorized road boundary represented by a green 
line. These representations have been overlaid onto the point 
clouds obtained from unmanned aerial vehicles (UAVs), mobile 
laser scanning (MLS), and iPhone sources, respectively, as 
presented in Figure 7. 
 
We visually inspected several parts of typical road scenes that 
have been enlarged using our method. The road boundaries are 
generally extracted correctly, but there may be instances where 
our method fails to draw boundaries due to the nature of the point 
cloud data or because of differences in pavement structures. 
Thus, as illustrated in Figure 7 (c, d), it has been determined that 
road boundaries are unable to be extracted due to insufficient data 
on the curb points using the UAV LiDAR system in those road 
sections. To alleviate the limitations of this system, several scans 
should be acquired from different viewpoints to generate 
comprehensive point clouds of a scene. As shown in Figure 7 (g-
k-l), deviations from the curb boundary were observed in certain 
sections due to the incorrect detection of some points as 
pavement points from MLS and iPhone-based point clouds. Both 
systems have the ability to acquire a more comprehensive and 
complete representation of the road surface, primarily due to 
sensors scanning angles and positions. This feature ensures that 
the proposed methodology is capable of obtaining appropriate 
data. However, it should be noted that the scanning capacity of 
the iPhone is restricted to shorter routes, limiting its application 
in certain scenarios. 
 
In addition, the average road width was calculated from the 
obtained refined boundary points. The calculated road width 
values were compared with field measurements to determine any 
deviations from the reference values. The results indicated that 
the road width values obtained from MLS, UAV-LiDAR, and 
iPhone deviated from the reference values by 2.7%, 0.5%, and 
3.4%, respectively. Additionally, The UAV-LiDAR performed 
better than the MLS and the iPhone because, as shown in figure 
7, both systems had faulty boundaries detected in some parts of 
the road. 
 
In the Table 3, reference cross-slope values were determined 
using RTK-GNSS data and subsequently compared against 
values obtained from UAV-LiDAR, MLS, and iPhone. The 
cross-slope difference between reference and UAV-LiDAR 
ranged from 0.01% to 0.65%, with an average difference of 
0.25%. Similarly, the difference between reference and MLS 
cross-slope values ranged from 0.03% to 0.44%, with an average 
difference of 0.20%. For the iPhone, the cross-slope difference 
ranged from 0.02% to 0.69%, with an average difference of 
0.19%. The acceptable accuracy for cross-slope differences, as 
defined by relevant literature and technical guidelines, is 
generally considered to be 0.2% (Shams et al.,2018; Hunt et al., 
2013). Based on the obtained results, it can be concluded that the 
average difference values obtained by all three methods were 
close to this acceptable limit. Therefore, the systems evaluated in 
this study show promising results for cross-slope evaluation. 
 
 
     

 Min (m) Max (m) STN (m) RMSE (m) 

UAV-LiDAR -0.03 0.10 0.02 0.03 
MLS -0.05 0.10 0.03 0.03 

iPhone-viDoc -0.06 0.01 0.02 0.04 

Reference 
Profiles 

Comparison  

Min 
(m) 

Max 
(m) 

STN 
(m) 

RMSE 
(m) 

UAV-LiDAR -0.03 0.02 0.01 0.01 
MLS -0.04 0.02 0.02 0.02 

iPhone-viDoc -0.02 -0.01 0.01 0.01 
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Figure 7: Road boundary extraction results for UAV-LiDAR (a-b-c-d), MLS (e-f-g), and iPhone (h-j-k-l). (a-e-h) shows the initially 
detected curb points, (b-f-j) shows the refined curb points (in red), and the vectorized road boundary is shown in green. Enlarged 

images in (c-d-g-k-l) show missing road parts and false curb boundaries. 
 
 

4. DISCUSSION AND CONCLUSIONS 

 The study aimed to evaluate the accuracy of road 
infrastructure mapping and cross-slope evaluation using an 
iPhone 14 Pro with the viDoc RTK Rover. The absolute 
accuracy of the point cloud data was evaluated based on 
manual measurements taken from a GNSS receiver. The 
iPhone-viDoc point cloud was also compared to MLS and 
UAV-LiDAR data obtained in the same study area. The results 
indicate that the vertical accuracy of the iPhone-viDoc point 
cloud data was noticeably higher, with error values around the 
centimetre level. The dataset was georeferenced with 
satisfactory precision at the centimetre scale. This suggests 

that all three methods can be used for road boundary extraction 
and cross-slope evaluation with a high level of accuracy. 
 
The road boundary extraction results for all three systems 
indicated that road boundaries were generally extracted 
correctly. However, there were instances where the method 
failed to draw boundaries due to the nature of the point cloud 
data or differences in pavement structures. Deviations from the 
curb boundary were also observed in certain sections due to 
the incorrect detection of some points as pavement points from 
MLS and iPhone-based point clouds. The longitudinal profiles 
derived from all three systems showed highly consistent 
results with deviation values within the centimetre level. 
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Table 3. Cross-slope comparison between ground truth and 
UAV-LiDAR, MLS, and iPhone 

 
The cross-slope evaluation results indicate that the average 
difference values obtained by all three methods were close to 
the acceptable limit of 0.2%, including the data obtained by the 
iPhone 14 Pro with the viDoc RTK Rover. 
 
In conclusion, the study demonstrates the potential of using an 
iPhone 14 Pro with the viDoc RTK Rover for road 
infrastructure mapping and cross-slope evaluation with high 
accuracy. The results also show that the iPhone-viDoc point 
cloud data can be used interchangeably with MLS and UAV-
LiDAR data for these purposes. To further improve the 
experiments, future studies could consider using PPK on the 
viDoc RAW data to achieve even higher accuracy in 
georeferencing. Additionally, incorporating machine learning 
techniques could help improve the road boundary extraction 
results by automatically identifying and removing pavement 
points from the point cloud data. The study provides valuable 
insights for the use of mobile mapping systems in road 
infrastructure mapping and evaluation. 
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Differences at Ground Truth 

Sec. Ground 

Truth (%) 

UAV 

LiDAR (%) 

MLS 

(%) 

iPhone 

(%) 

1 0.74 0.04 0.34 0.69 

2 0.02 0.10 0.12 0.17 

3 0.29 0.58 0.29 0.22 

4 0.27 0.65 0.27 0.02 

5 0.31 0.19 0.13 0.09 

6 0.23 0.26 0.03 0.12 

7 0.40 0.17 0.09 0.00 

8 1.01 0.31 0.44 0.28 

9 0.85 0.16 0.33 0.19 

10 0.04 0.01 0.10 0.04 

11 0.25 0.25 0.10 0.30 
     

Mean  0.25 0.20 0.19 
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