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ABSTRACT: 
The Smart City concept is taking momentum recently as big metropolises as well as mid-size cities are intensifying their efforts to 
improve the life of people living in dense urban environment. Local governments are eager to have up-to-date information of every 
aspect of city life, including environmental data, such as air and water quality parameters; mobility data, such as traffic flow, including 
vehicles, transit passengers; crowd control, such as public events, mobility in hospitals; life quality data, such as social status, education 
level, health records; etc. Monitoring all these very different data streams in space and time is a formidable challenge. While on the 
data acquisition side, tremendous progress has been achieved, as sensors have been deployed in increasingly large numbers on both 
mobile and static platforms, there is a lack of creating accurate geotags, as the quality of georeferencing varies over a large scale. It is 
important to note that the data acquisition is becoming largely customer-based, as smart devices are efficient sensor systems and with 
advancing communication technologies, crowdsourcing is quickly becoming the dominant data source on mobile platforms. In this 
paper, we investigate the potential to exploit the ranging capabilities of imaging and communication sensors and use the strength of 
the spatial network formed by the sensors to improve the georeferencing of a group of platforms operating in a close environment, such 
as UAS swarm or a platoon of autonomous vehicles. Transportation in cities and in general mobility are of great interest to Smart 
Cities, they represent one of the most significant components of the activities, so having an optimized transportation system is essential 
to reduce carbon footprint, decrease commute time, and just improve the quality of life. To assess the performance of collaborative 
navigation based accurate georeferencing, data was acquired at a simulated intersection area at The Ohio State University, where 
multiple vehicles, pedestrians and cyclists were moving around. In addition, drones were flying above the area. Here we report about 
our initial results. 
.  
 

1. INTRODUCTION 

Smart Cities can be defined in various ways but what makes these 
cities different from the others is practically the level of 
monitoring and data sharing capabilities (Ahvenniemi et al., 
2017). Sensors continuously acquire data from the built-up 
environment as well as from all the dynamic objects, such as 
people and all kind of moving platforms. Digital twins may 
provide a virtual representation of the city environment at a 
variety of levels, including buildings, vehicles, man-made 
objects, and then human beings, vegetation, birds, etc. These 
systems are usually live, i.e., their content is continuously 
updated as new data comes in. Besides monitoring the state of the 
city, they provide an optimal way to control and manage every 
aspect of the city operations; for example, visualization, traffic 
control, decision making, planning, etc.  
 
Location information, including, at minimum, coordinates and 
time is a very fundamental metadat of any piece of information 
acquired and processed in a Smart City environment. Most of the 
data currently come from dedicated sensor networks, but 
crowdsourced data is rapidly increasing and expected to become 
the main source of information (Toth and Jozkow, 2015). Typical 
smartphone has about 30 sensors and there are about 7 billion 
users worldwide. These numbers dwarf the industrial sensor 
market, which is estimated to be about $25 billion worldwide by 
2023. 

 
 
The intricate and multifaceted nature of urban environments 
poses challenges to attaining a precise, stable, and robust 
localization. The uncertainty and lack of GNSS in cities makes 
positioning especially hard, and thus, there is a necessity for new 
methodologies that integrate different sensors and data sources to 
improve the robustness of the localization processes; mainly, to 
assist mobility efforts (Benevolo et al., 2016). Mobility is an 
essential element of Smart Cities, the main challenge is the 
georeferencing of moving objects, such as people, vehicles, UAS, 
UAV, etc. There are many technologies to achieve this as well as 
several methods. Since in most situation the mobile platforms 
closely share the object space, their navigation systems can 
collaborate by sharing location and benefit from it. Knowing the 
location in real-time is critical for optimizing the flow of people, 
vehicles, goods, etc.  
 
In previous works, we have directed efforts towards collaborative 
localization techniques that incorporate Ultra-Wideband (UWB) 
technology (Masiero et al., 2022), vision and LiDAR-based 
positioning (Masiero et al., 2021b, Hosseinyalamdary et al., 
2015) as well as crowdsourced vehicle data (Toth et al., 2018) in 
combination with GNSS/IMU sensors to explore various 
scenarios and environments, including those where GNSS 
signals are challenged.  
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023 
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-355-2023 | © Author(s) 2023. CC BY 4.0 License.

 
355



 

 

This study presents a brief overview of the test scenarios and 
experimental sensor configurations employed during a data 
collection campaign executed at OSU West Campus, including 
preliminary findings. In contrast to an earlier effort, which 
considered a 2D road environment (Retscher et al., 2020), the 
navigation space was extended to 3D by including four UAS 
during the experiments. Thus, the focus here is on jointly 
positioning a group of vehicles, swarms of robots, such as UAS 
and UGV, etc., in urban environment. 
 
 

2. COLLABORATIVE NAVIGATION 

The basic concept of collaborative navigation is that platforms 
navigating in close proximity can share their sensor data and thus 
a joint navigation solution for all the platforms should be better 
than the individual platform solutions. A key condition is that 
platforms should have inter-platform range/distance 
measurements, which allow to geometrically constrain the 
platform locations. In simple terms, for example, good 
GPS/GNSS position information can be propagated to other 
platforms which may have compromised GPS/GNSS. Fig. 1 
shows a simple four-car arrangement, where assuming 2D 
positioning, knowing all the six inter-vehicle ranges, positioning 
of all platforms is feasible if at least two platforms have good 
GPS/GNSS positions. Obviously, the spatial relationship 
conditions the collaborative solutions. For example, if the four 
cars are in a line, then there is no observation in the lateral 
direction, so only compromised solutions can be obtained. 
Similarly, if only one platform has GPS/GNSS data, then relative 
positioning is possible, but the heading is undefined for all the 
vehicles; unless, aiding from other sources is available. 
  

 
Figure 1. Collaborative navigation concept 

  
The concept of collaborative navigation is not really new, but 
lack of affordable technologies prevented implementations until 
recently. Early works focused on integrating the inter-nodal 
range/bearing measurements or locally generated maps 
(Roumeliotis and Beke, 2002; Bryson and Sukkarieh, 2009; 
Grejner-Brzezinska et al., 2009). Also, a similar concept, 
community relative navigation, was studied before GPS was 
introduced, and can be traced back at least to the 1970s (e.g., 
Rome and Stambaugh, 1977; Widnall and Gobbini, 1982; 
Schneider, 1985).   
 
Recent developments in communication and sensors have made 
the implementation of collaborative navigation solutions 
affordable as well as attractive. In the RF domain, for example, 
inter-platform range measurements can be obtained in a wireless 
sensor network through RSS (Received Signal Strength), TOA 
(Time of Arrival), TDOA (Time Difference of Arrival), and 
AOA (Angle of Arrival) techniques. Dedicated technologies, 
such as Ultra-Wideband (UWB) ranging, using a broad 

bandwidth and thus providing for time transfer, communication 
and centimeter level ranging capability, is of particular interest to 
positioning and navigation applications (MacGougan et al., 
2009). In addition, the UWB transceivers can self-localize and 
form an ad-hoc network of beacons (Sluis and toth, 2021; Ladai 
and Toth, 2022). Furthermore, optical sensors, such as cameras 
and LiDAR can also provide range and AOA information that 
can be used alone or combined with RF sensor-based 
observations (Masiero et al., 2021a). Finally, vehicle motion 
modeling and IMU data can further improve the efficiency of 
collaborative navigation implementations.  
 
When clear LOS (Line of Sight) is available, obtaining range and 
angular data (AOA) is generally feasible. But when obstacles 
exist in the space where the platforms are deployed, there may be 
not enough information to estimate the network. Therefore, we 
selected a generally open area with a few buildings where 
reference points could be easily established and surveyed at high 
accuracy. 
 

 
3. DATA ACQUISITION 

A massive field test, including multiple ground and UAS 
platforms was organized and executed on OSU West Campus, 
May 8-16, 2022. The main objective was to simultaneously 
acquire a rich dataset from multiple transportation modalities that 
can support research on collaborative navigation. The ground 
platforms included four vehicles, two cyclists and two 
pedestrians, and four simultaneously flying UAS in the air. There 
was a ground control network established and UWB sensors were 
deployed. The overall effort included more than 22 people and 
the data collection lasted over eight days. Fig. 2 shows a session 
when all platforms were utilized; note that the bird’s eye view 
image was taken from the UAS platform flying at the lowest 
altitude. 
 

 
Figure 2. Test are with ground platforms 

 
The data acquisition campaign included ground control 
deployment and surveying, ground vehicle data collection 
sessions, UAS rehearsals, and combined ground/air data 
acquisitions as well as a few repeat tests in each category. A key 
aspect of the campaign was to obtain highly accurate platform 
trajectory data, which can be used as reference for performance 
evaluation as well as for various simulation scenarios. The 
ground platforms and drones primarily moved/flew predefined 
trajectories and rich sensor data was collected. There was no 
intention to run collaborative navigation software in real-time 
due to lack of communication capabilities, and thus, everything 
was logged for postprocessing. 
 
A remote parking lot of OSU West Campus was selected for all 
the experiments as it was practically unused during the tests and 
allowed to fly UAS without significant restrictions. Another 

2 1 

4 
3 
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consideration was that the selected location was in an open-sky 
and RF friendly area to assure that as accurate GPS/GNSS as 
possible was acquired to obtain high-quality refence solutions. A 
simulated intersection was defined by ground control, as this 
represents one of the most important traffic situations in Smart 
Cities.  
 
From the 50 m by 50 m area used for the main tests, the central 
area of 30 m by 30 m was populated by 13 signalized ground 
targets. During the data acquisition sessions, tripods were 
installed over the target locations and used to mount the UWB 
transmitters. A total of 12 UWB units formed the ground network 
that was used to provide local positioning capabilities; note that 
it was totally independent from GNSS. Fig. 3 shows the ground 
control layout in the area; note that the inter-node ranges are 
marked by green. Fig. 4 shows a ground control point and an 
UWB transceiver mounted on a tripod. 

 
Figure 3. Ground control network deployed at the simulated 

intersection area 
 

 
 

Figure 4. Ground target to support image-based georeferencing 
and UWB transceiver installed on tripod area 

 
 

4. VALIDATION OF GPS/GNSS PNT SOLUTIONS 

 
Creating a reference navigation solution is essential for any 
subsequent investigation, such as validating other sensor data-

based solutions, introducing GPS/GNSS gaps to assess the 
impact on integrated navigation solutions, simulating spoofing 
(Wang et al., 2022), introducing hardware malfunctioning, etc. 
In our tests, most platforms carried geodetic-grade GNSS 
receivers, which provided excellent data in the open-sky 
environment. The Inertial Explorer was primarily used for 
reference solution creation, though RtkLib as well as in-house 
tools were also utilized for validation. The Inertial Explorer 
provides an internal estimate of the precision, which is generally 
viewed as somewhat optimistic, yet it is a good relative measure 
of performance. Table 1 lists the results for all the platforms 
where GNSS data was available. As expected, the component 
values are in 1-2 cm range.  
 
Table 1. Precision of post-processed GNSS/INS and GNSS 
solutions 

Platform 
Solution 

Type 
Position [m] 

East North Height 

GPSVan GNSS/INS 0.001 0.001 0.003 
Pilot GNSS/INS 0.001 0.001 0.003 
CRV GNSS 0.007 0.006 0.013 

CyberCar GNSS 0.007 0.006 0.013 

Cyclist 1 GNSS 0.007 0.006 0.012 
Cyclist 2 GNSS 0.007 0.006 0.013 

Pedestrian 1 GNSS - - - 
Pedestrian 2 GNSS - - - 

UAS1 GNSS 0.007 0.006 0.013 
UAS2 GNSS 0.007 0.007 0.014 
UAS3 GNSS 0.007 0.007 0.014 
UAS4 - - - - 

 
For two vehicles, there were high-end IMU data streams 
available, so attitude data was also obtained, 5-10 arcsec and 20-
30 arcsec range for pitch/roll and heading, respectively. While it 
is not independently validated, they provide a realistic reference 
for performance validation; consider the UWB ranging accuracy 
to be in the 10-30 cm range in open areas (clear LOS).  
 
Reference trajectories computed for ground vehicles are shown 
in Fig. 5. Note the different patterns, such as a car, cyclist and 
then a pedestrian all make turns at different curvature, and 
obviously, the speed varies too; though not shown in the figures. 
 

 
(a) Typical vehicle trajectory of the GPSVan 
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(b) Typical trajectory of a cyclist 

 
(c) Typical trajectory of a pedestrian 

 
Figure 5. Typical platform trajectories from a test run 

 
 

5. UWB PERFORMANCE EVALUATION 

The UWB transceivers played an important role in our 
experiments as they provided the range measurements between 
the various platforms in the first phase. 12 units, as anchors 
formed the ground network, see Fig. 3, and then 8 units were 
deployed on four vehicles and four UAS platforms. Cyclists and 
pedestrians had only GNSS receivers installed on helmets, and 
thus, range data could be estimated from GNSS solutions. 
 
Since UWB transceivers are restricted to operate at a very low 
power level, comparable to GNSS signals, the measurements are 
repeated several times to obtain acceptable results. Obviously, 
the distance between two transceivers as well obstacles, such as 
other vehicles or pedestrians blocking LOS, further decrease the 
performance. Therefore, the UWB acquired range data was 
analyzed first, and then cleaned before it was used for 
positioning. Fig. 6 shows two examples for range data acquired 
from mobile platforms: the GPSVan and UAS4. The horizontal 
lines show periods when the platforms were not moving. Note 
that the number of outliers, ranges that are likely incorrect is 
larger when the platforms are moving. Knowing the dynamics of 
the motion those outliers can be filtered, and then the data can be 
used for collaborative network formation. Also note that the time 

duration is different for the measurements, as the drone has a 
limited flight time, while the GPSVan continued running for a 
while. 
 

(a) Typical UWB range measurements from UAS4 

(b) Typical UWB range measurements from the GPSVan 
 
Figure 6. Typical UWB range data acquired by two platforms 

 
First, the self-localization of the ground UWB network was 
analyzed, using 13 transceivers. The data was acquired in a static 
mode, and then ranges were used to estimate the relative position 
of UWB units; i.e., a 2D geodetic network in a local coordinate 

system. Note that not all possible measurements, 
𝑛
2  were 

acquired due to environmental limitations. Only about 85% of the 
ranges were available, which still represented a highly 
overdetermined system. Using standard least squares adjustment, 
a 2D solution was computed, as the area is reasonably flat. The 
internally estimated precision was about 5 cm (1). The relative 
positions of the local network were then compared to the 
surveyed ground control points. The RMSE obtained was about 
10 cm (2D), which is larger than expected but can be explained 
by two things. First, the network formed by UWB ranges 
assumed a planar distribution of the locations, while the ground 
control points were surveyed in 3D with a few-cm accuracy. 
Second, the tripod setup over the surveyed points and the 
mounting of the UWB transceivers introduced some mounting 
bias too.  
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In the next step, a vehicle platform trajectory was computed 
based on using the static UWB network. The data rate of 
acquiring UWB ranges varies due to the environmental 
conditions. On an average for a single vehicle data collection, we 
typically obtained an about 20 Hz, which represents about 0.25-
0.5 m spatial sampling at the typical moving platform speed of 5-
10 m/s. Fig. 7 shows the estimated positioning precision of an 
about 1-minute run; the horizontal axis is in epochs and the 
vertical is in m. This decimeter-level positioning performance is 
clearly adequate for transportation applications; even for lane-
following it is suitable. 

Figure 7. Internally estimated positioning precision in 2D 
 
 

6. COLLABORATIVE NAVIGATION RESULTS 

In earlier research efforts, we tested our collaborative network-
based approach only on 2D data, such as four vehicles moving on 
road or in an intersection area. Now for the first time, we have 
real 3D data, as the drones were simultaneously flying over the 
ground vehicles. The approximate size of the envelop, the 
bounding box that includes all the various platform trajectories 
was about 100 m x 100 m x 80 m. Initial trajectory solutions are 
shown in Figure 8. The top image (a) presents the 4-drone only 
solution while the one below (b) provides the joint 4-drone and 
4-vehcile solution. Note that the 12-unit ground UWB network 
was also used in obtaining collaborative navigation solutions. 
 
The quantitative evaluation is still in the works, as obtaining the 
optimal solution and comparing it to the reference solution is a 
formidable task; say, in contrast to the static network-based 
positioning of a single mobile platform. A major challenge is the 
timing, time synchronization, i.e., using the correct time tags for 
all sensor data streams, which is, obviously, essential to achieve 
the highest feasible accuracy for the given specification of the 
sensors.  
 
All sensors were GPS time-synchronized locally, either built-in 
GPS or via an Android interface, at an about 5-10 msec or better 
accuracy. Therefore, given the platform dynamic, the error 
introduced by timing is negligible. Having eight mobile UWB 
transceivers constantly polling each others as well as the 12-unit 
ground network, however, increases the chances for interference; 
despite the fact that UWB works with very short pulses and high 
repetition rate. Our data shows a varying rate of range data 
acquisition of about 2 – 5 Hz. Considering the vehicle motion of 
5-10 m/s, a platform may move a few meters at that rate. 
Therefore, motion compensation should be considered, such as 
for straight line trajectories, projecting the ranges to a virtual 

location (epoch) to compute a consistent network solution. 
Turning and 3D motion, such as the case for UAS, may need 
better modeling. The local motion modeling of platforms is 
generally available from an EKF-based navigation filter; though, 
the quality may fluctuate over a large range. The UWB range-
based network solutions can be considered as GNSS fixes in the 
standard GNSS/INS integration scheme, i.e., they provided fixes 
when new measurements become available. 

 
(a) Solutions for four drones 

 
(b) Solutions for four drones and four vehicles 

 
Figure 8. Collaborative network-based positioning 

 
Another aspect of having platform solution is that UWB 
measurements are not always reliable, as there could be outliers 
and no measurements at all. An outlier detection algorithm for 
collaborative navigation introduced in (Xiong et al., 2021) 
models the GNSS measurements and inter-platform range 
measurements into common and specific parts and tries to 
exclude the faulty measurements with a greedy search strategy. 
Test results show the algorithm has a better detection of GNSS 
faults than tradition Receiver Autonomous Integrity Monitoring 
(RAIM) and good sensitivity to the faulty UWB range 
measurements.    
 

7. CONCLUSION 

With the proliferation of sensors, inter-platform range 
measurements are becoming available, which, combined with 
increasing communication capabilities, provide a good bases for 
implementing collaborative navigation. The key idea is to exploit 
the strength of the geometry, defined by a geodetic network, 
formed by the platforms, to provide independent constraints for 
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a group of platforms, and thus, achieving better overall 
navigation solution for all the platforms. 
 
In this study, an UWB sensor network, installed on both static 
and mobile platforms provided the range measurements, but, of 
course, any other sensor measurement can be used. The initial 
evaluations show that fairly good ranging accuracy could be 
obtained in an intersection size area, resulting in performance that 
meets the requirements of most transportation activities in Smart 
City environment. 
 
In summary, the results obtained so far in a 3D scenario clearly 
demonstrate the potential of collaborative navigation. It is 
important to emphasize that using this approach requires not 
more than utilizing already available sensor measurements on 
smart devices. Then, while inter-platform communication is 
available, such as DSRC (Dedicated Short-Range 
Communications), which is being phased out, cloud-based peer-
to-peer communication is becoming widely available. 
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