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ABSTRACT 

 

Compared to traditional field-based (in-situ sampling) measurements, satellite-based remote sensing is an accurate, timely and cost-

effective approach to monitor the dynamics of water bodies using images at different spatial and temporal scales. With satellite-based 

remote sensing techniques, qualitative measurements obtained directly from satellite images are integrated with in-situ measurements, 

enabling the establishment of spectral statistical relationships between satellite data and water quality physical indicators such as 

suspended solids, turbidity and chlorophyll-a. In this study, the spatial distribution of three water quality parameters (Chlorophyll-a 

(Chl-a), Secchi disk and Conductivity (EC)) which are optical active components (OAC) in the Gulf of Izmit were evaluated using in-

situ water quality measurements, together with both field-spectroradiometer measurements and Sentinel-2 satellite imagery. In-situ 

water quality and field-spectroradiometer measurements were collected at the same date with the satellite overpass. Bivariate and 

multivariate regression models were established to analyse the correlation of in-situ water quality measurements with two different 

measurement datasets (i.e. satellite and spectroradiometer), and then the results were evaluated with two accuracy metrics Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE); and compared visually with the spatial distribution maps of the three water 

quality parameters generated by the ordinary Kriging interpolation method. 

 

 

1. INTRODUCTION 

Coastal areas, where approximately 40% of the world's 

population live, are among the most sensitive environments, as 

any change in these ecosystems resulting from anthropogenic 

activities could endanger the entire marine ecology (Gholizadeh 

et.al., 2016). Therefore the quality of water bodies is an important 

issue for the health of coastal ecosystems and is under the 

influence of human activities and climate change. As a result of 

the deterioration of water quality, water pollution events such as 

harmful algal blooms (Karlson et al., 2021), hypoxia (Lai et al., 

2022) and mucilage (Sunar et al., 2022) occur. Field-based (in-

situ sampling) measurements that rely solely on frequent and/or 

long-term samples as a traditional approach cannot fully address 

the spatio-temporal variation of water quality in any watershed. 

Consequently, an integrated water conservation and reclamation 

approach is required for effective water quality monitoring, in 

which long-term field-based measurements can be used in 

conjunction with space technologies such as remote sensing. In 

other words, integrating traditional data collection with remote 

sensing technology today provides an  effective monitoring 

approach for the dynamics of water bodies using images at 

different spatial and temporal scales (Hu et al., 2022; Zhu et al., 

2022).  

 

As known, the optically active constituents (OACs) (such as  

suspended sediments, colored dissolved organic matter (CDOM), 

chlorophyll-a (Chl-a) etc.) present in natural water bodies have 

inherent optical properties (IOPs) that affect the water's ability to 

absorb light. In order to determine underwater light dispersion, 

the photosynthetic process, and remote sensing reflectance, the 

IOPs of the individual OACs in the area are crucial (Shi et al., 

2017). Many studies showed that water quality parameters can be 

retrieved with varying accuracy, as the spectral properties of 

water change depending on the interaction between solar 

radiation and OAC (Pizani et al., 2020). However, other water 

quality constituents, such as nutrient concentrations, dissolved 

oxygen levels, and microorganisms/pathogens, cannot be directly 

estimated by remote sensing data as they are not optically active; 

i.e. they may be estimated indirectly but still remains a big 

challenge (Sagan et al., 2020). In general, statistical regression 

models (bivariate and multivariate) that are often considered  

site-specific, are established to quantify measured reflectance – 

OAC relationships. 

 

For monitoring the pollution and its effects on seas and coastal 

waters in Turkey, the Ministry of Environment, Urbanisation and 

Climate Change has conducted an Integrated Marine Pollution 

Monitoring Program (DEN-IZ) in cooperation with the Scientific 

and Technological Research Council of Turkey - Marmara 

Research Center (TUBITAK-MAM) since 2014. The scope of 

this program is to carry out in-situ measurements and analyses of 

water quality parameters at the designated stations in all seas (i.e. 

Black Sea, Marmara Sea and the Straits, Mediterranean and 

Aegean Sea), and then to report the results and evaluations 

periodically (Url-1). Gulf of Izmit, known as one of the most 

polluted marine ecosystems of Turkey and located in the east of 

the Marmara Sea, is one of the fragile coastal areas evaluated 

within the scope of the mentioned DEN-IZ program. In this 

study, the spatial distribution of the three OACs (Chl-a, Secchi 

disk and Conductivity) was evaluated using in-situ water quality 

measurements, together with handheld field spectroradiometer 

measurements and Sentinel-2 satellite imagery obtained 

simultaneously. For this purpose, the correlation of in-situ water 

quality measurements with two other different measurement 

datasets (satellite and spectroradiometer) was established with 

regression models and the results were evaluated with accuracy 

metrics.  
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2. STUDY AREA 

The Gulf of Izmit, which is a semi-enclosed coastal ecosystem 

located in the east of the Marmara Sea, chosen as the study area, 

has an area of approximately 310 km2, 60 km long and 2-10 km 

wide (Tugrul et al. 1989) (Figure 1). Due to salinity differences, 

stratification in the water column occurs throughout the year 

(Ergul et al., 2018). 

 

 
 

Figure 1. The map of Gulf of Izmit and location of 17 in-situ 

sampling points in Sentinel-2 satellite image (© Copernicus). 

 

Kocaeli province, located in the Gulf of Izmit, is known as a city 

with a giant natural harbor. The fact that the region has different 

natural potentials that are promising and that can attract many 

investors has led to the intense use of these coastal areas under 

many factors such as natural environment characteristics, human 

structure, industrial activities and transportation routes 

(Garipagaoglu and Uzun, 2014; Ergül et al., 2018). Hence, in the 

province, which has a current population of approximately 2 

million people, a significant amount of uncontrolled sewage, 

industrial and agricultural wastes are discharged to the Gulf as a 

result of the increasing population and industrial activities since 

the 1980s (Figure 2).  

 

 
 

Figure 2. Locations of main freshwater input source points and 

wastewater treatment plants in the eastern, central and western 

basins of the Gulf of Izmit (adapted from Ergül, 2016; Tolun et 

al., 2012 ).  

 

3.  MATERIALS AND METHODOLOGY 

3.1 Materials 

Sentinel-2 satellite image acquired on October 21, 2021 was used 

in the study. Sentinel-2 satellite images can be obtained free of 

charge by the European Space Agency in different processing 

levels such as Top-Of-Atmosphere (TOA) and Bottom-Of-

Atmosphere (BOA). Its spatial resolution varies in different 

wavelength ranges (VNIR - SWIR spectral range) as 10 m, 20 m 

and 60 m. The spectral resolution of Sentinel-2 data, which has 

an open data access policy, is given in Figure 3. 

 
 

Figure 3. The spectral resolution of Sentinel-2 data (©ESA). 

 

In the study, BOA satellite image data was used together with 17 

simultaneous spectroradiometer measurements and in-situ water 

quality measurements. The in-situ measurements are 

homogeneously distributed along the Gulf (Figure 1). The spectra 

of the points were measured by the hand-held ASD FieldSpec 4 

with a spectral range of 325-1075 nm (Figure 4). 13 of the 

measurements were used in the regression models and 4 samples 

were reserved for accuracy assessment. The spectral values 

exhibit a similar tendency, with the exception of a few sampling 

locations.  

 

 
 

Figure 4. Spectra of 13 in situ points measured with handheld 

ASD FieldSpec 4 and location of Sentinel 2 spectral bands. 

 

3.2 Methodology 

 

The methodology used consists of three main stages: i) surface 

analysis of three selected water quality parameters using the 

Kriging interpolation method; ii) establishing an empirical 

relationship (e.g. bivariate and multivariate regression) between 

the water-leaving radiance measured by the sensor (i.e. BOA 

reflectance values - individual or combinations of spectral bands) 

and in-situ water quality measurements; iii) the use of statistical 

accuracy metrics to evaluate the accuracy of the models accepted. 

 

3.2.1 Kriging interpolation method: One of the 

geostatistical interpolation techniques used for modeling spatial 

data is the Kriging approach (Prusova et.al., 2012). This method 

is widely used in a water quality analysis to estimate the values 

of unmeasured water quality parameters and to analyze spatial 

distribution patterns of the parameters of interest. In this study, 

the ordinary Kriging interpolation method was applied for the 

surface analysis of the selected three water quality parameters 

and then compared with the results of the regression models 

(produced by satellite data and field spectroradiometer 

measurements) used to estimate these parameters. 

 

3.2.2 Regression analysis: In this study, bivariate and 

multivariate linear regression analyses were performed for the 

aforementioned three OAC components. As a common statistical 

method, regression models are an efficient tool for investigating 

the relationship between variables, even when small sample size 
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variables are used (Razi and Athappilly, 2005). Linear regression 

models, also called simple bivariate regression, evaluate the 

linear relationship between two variables (i.e.  dependent and 

independent variables) based on the least squares, and the best 

model has minimum square error between the observed and 

predicted parameters (Zare Abyaneh, 2014). 

 

Multivariate linear regression (MLR), an extension of bivariate 

linear regression, is a common statistical modeling technique to 

explain a dependent variable with more than one independent 

variable. More clearly, MLR is used  to predict a response 

variable (y) from multiple explanatory variables (x1, x2, ..., xn) to 

represent the linear relationship between many independent 

predictor variables (spectral bands) and a single dependent 

variable (a water quality parameter such as Chl-a) as a single 

functional formula (Shi, 2017).  

 

As noted in the literature, correlations between in-situ water 

quality measurements and spectral reflectance values can be 

complex and nonlinear, especially for Case 2 water bodies (such 

as Gulf of Izmit), as these parameters respond differently to 

various spectral wavelengths (Gholizadeh et al., 2016; Hafeez et 

al., 2019; Topp et al., 2020). Therefore multivariate regression 

was also used in this study, assuming that there is no strong 

correlation between each independent variable, as the estimation 

of each OAC may depend on more than one independent variable 

(i.e. more than different bands or combinations). As a result, 

bivariate and multivariate linear regression analyzes were  

performed by using two different datasets; i) in-situ water quality 

measurements and satellite imagery and ii) in-situ water quality 

measurements and field spectroradiometer measurements. The 

best models in these two scenarios were evaluated using Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE). 

 

3.2.3 Model performance evaluation: After the regression 

models are built, the goodness of fit of the model and the 

statistical significance of the estimated parameters need to be 

confirmed. Most commonly used p-value is the most important 

step to accept or reject a null hypothesis. More specifically, if the 

p-value is less than a common threshold (e.g. 0.05), the null 

hypothesis is rejected, indicating a relationship between the 

variables. 

 

In order to evaluate the performance of the models used in 

regression analysis, R-squared (a measure to determine how well 

the model fits the dependent variables), Root Mean Square Error 

(RMSE - popular metric that shows how close the estimate is on 

average to the actual value,  but also indicates the effect of large 

errors) and Mean Absolute Error (MAE - similar to the RMSE,  

the MAE is an indicator of how close the estimates are, on 

average, to the actual model) given in the Equations below were 

used and the accepted models for the selected parameters were 

tested using with in-situ measurements allocated as test data. 

 

                              (1) 

 

     (2) 

  

                    (3) 

 

where  yi is the measured value, 

 ŷi is the estimated value and 

 n is the number of measurements. 

 

In general, the higher the R-squared, the better the model fits the 

data. On the other hand, the lower values of RMSE and MAE 

indicate higher accuracy of a regression model (i.e. the model 

estimates correctly).  

 

4. RESULTS 

First, the ordinary Kriging interpolation method was applied for 

the surface analysis of the selected three water quality parameters 

and spatial distribution maps produced are given in Figure 5. 

Four unused samples were considered for the accuracy 

assessment of each Kriging model and the results are given in 

Table 1.  

 

 
 

Figure 5. The spatial distribution patterns of three selected water 

quality parameters produced by the ordinary Kriging 

interpolation method. 

 

In Figure 5, it is clearly seen that the eastern basin (i.e. interior) 

and some parts of the central basin close to the eastern basin are 

more polluted (high Chl-a and low Sechi disc values) than other 

parts of the basin. The decrease in Chlorophyll-a values (primary 

production indicator) from the eastern basin to other regions is 

clearly evident and realistic in the Kriging model, because the 

interior basin has high pollutant load and low water circulation 

(Tuğrul and Morkoc, 1990). The eastern basin is influenced by 

industrial and domestic loads, particularly from the Kiraz (Kul-

lar) and Kumla (Sarı) streams, and nutrient and chlorophyll-a  

levels confirm the findings (Figure 6) (Tan and Aslan, 2020). 

 

 
Figure 6. Locations of Kiraz and Kumla streams connected to the 

interior basin.  
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Secchi disc visibility is likewise lowered where chlorophyll-a 

levels are high. In Figure 5, a sharp line in the Kriging interpola-

tion method, especially in chlorophyll-a, is caused by the low 

number of in-situ measurements used in the model, so it does not 

fully reflect the real situation and a distribution as in Figure 7 is 

found to be more appropriate. 

 

Although conductivity is considered an indirect indicator of pol-

lution, it is a good parameter for determining water quality, as it 

presents a close relationship with the dissolved salt content in the 

water column of coastal water bodies, which is often associated 

with sewage discharge (Tolun et al., 2012; de Sousa et al., 2014; 

Eyuboglu and Eyüboğlu, 2020). Therefore, high EC values, 

which can generally be associated with the    presence of domestic 

wastewater, confirm the high conductivity values, especially in 

the  eastern and central basins (Figure 2). 

 

In order to find the best estimator of the 3 selected water quality 

parameters in the Gulf of Izmit, bivariate and multivariate linear 

regression models were used. The best regression models 

selected  for Chl-a, Secchi disk and Conductivity parameters in 

two different measurement datasets (i.e. Sentinel-2 Level 2A and 

field spectroradiometer) are given in Table 1. Again, four unused 

in-situ measurements were considered for the accuracy 

assessment of each model developed.  The best regression models 

selected and the spatial distribution of the 3 parameters produced 

using these selected models are given in Figure 7.  

 

 

 

Parameter Variables Data Model t 
Significance  

(p-value) 
F 

Standard 

Error 
R R² RMSE MAE 

Chl-a 

Kriging   
       4.237 2.328 

B4/B2 Spectroradiometer Bivariate 5.40 0.0002 29.20 5.83 0.85 0.73 8.605 7.822 

B3 

B4 
Spectroradiometer Multivariate 

-0.03 

0.79 
0.125 2.57 9.49 0.58 0.34 3.863 3.313 

B3/B2 Sentinel-2 Bivariate 4.15 0.002 17.19 6.96 0.78 0.61 4.671 3.394 

B2 

B3 

B4 

Sentinel-2 Multivariate 

-3.03 

1.14 

0.14 
0.028 4.90 7.59 0.79 0.62 3.068 2.353 

Secci disk 

Kriging   
       0.436 0.126 

B4 Spectroradiometer Bivariate -1.38 0.20 1.89 2.13 0.38 0.15 1.102 0.967 

B3 

B4 
Spectroradiometer Multivariate 

0.18 

-0.61 
0.44 0.88 2.23 0.39 0.15 0.744 0.545 

B4/B2 Sentinel-2 Bivariate -5.79 0.0001 33.49 1.14 0.87 0.75 4.118 3.356 

B2 

B3 
Sentinel-2 Multivariate 

6.34 

-7.51 
0.0001 30.65 0.90 0.93 0.86 1.373 1.262 

Conductivity 

Kriging   
       0.265 0.188 

B2+ B8A Spectroradiometer Bivariate -3.25 0.008 10.58 0.36 0.70 0.49 0.285 0.227 

B2 

B8A 
Spectroradiometer Multivariate 

-1.06 

-0.58 
0.034 4.82 0.38 0.70 0.49 0.260 0.198 

(B3-

B4)/B2 Sentinel-2 
Bivariate 3.31 0.007 10.97 0.36 0.71 0.50 0.340 0.308 

B2 

B3 

B4 

Sentinel-2 Multivariate 

-2.26 

1.64 

-1.15 

0.067 3.40 0.38 0.73 0.53 1.771 1.765 

Table 1. The bivariate and multivariate regression models used for three water quality parameters on two different measurement 

datasets (the best predictive models selected are marked in bold). 

 

As seen in Table 1, the multivariate regression model 

constructed using Sentinel-2 image (with bands B2, B3, and 

B4) estimated Chl-a concentrations with an R2 value of over 

60%. Also, this model has the lowest RMSE and MAE errors, 

i.e. 3.07 and 2.35, respectively. On the other hand, the spatial 

distribution of this model was found to be highly compatible 

with the Chl-a model produced by the Kriging interpolation 

method. Although the estimation of the spectroradiometer 

dataset for this parameter was higher with the bivariate model 

(i.e. R2  73%), however, both accuracy measures were found 

to be high and their spatial distribution did not appear to be 

compatible with the surface model produced by the Kriging 

interpolation method (Figure 6).  

For Secchi disk parameter retrieval, the multivariate model 

using the two spectral bands of the Sentinel-2 image (i.e. B2 

and B3 bands) outperformed (i.e. high R2 value; 86%) all 

models built with  the spectroradiometer dataset. Although the 

multivariate model created with the spectroradiometer data set 

had the lowest RMSE and MAE accuracies, the R2 values were 

found to be quite low (i.e. 15%).  

 

Spectroradiometer dataset with bivariate model provided 

greater RMSE and MAE accuracies for the last parameter, 

Conductivity parameter retrieval, compared to Sentinel-2 

image data, despite R2 values being in almost the same range 

(i.e. 49%   50/53%). 
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Figure 7. The spatial distribution patterns of three selected 

water quality parameters produced by the best regression 

models selected. 

 

When two figures (Figure 5 and Figure 6) showing the spatial 

distribution patterns of three selected water quality parameters 

were compared, it was observed that the results for Chl-a and 

Secchi disk characteristics were quite comparable. On the 

other hand, it was determined that the models' compatibility 

and comparability for the conductivity parameter were quite 

low, therefore further analysis is still required.  

 

The results of this study demonstrate that improvements are 

still required for the generalization and transferability of the 

established models for other basins in the Marmara Sea with 

regard to the accuracy of the estimation of these three OACs. 

Additionally, it is thought that the variations seen for all 

parameters may also result from stratified formations that alter 

the distributions of water quality parameter along the water 

column of the Gulf of Izmit and from meteorological 

conditions that affect oceanographic features (Ergul, 2016). 

 

5. CONCLUSIONS 

In this study, bivariate and multivariate linear model 

accuracies of three OACs in the Gulf of Izmit were evaluated 

using satellite data. The findings show that pollutants in 

wastewater from residential and industrial regions, particularly 

in the inner and middle parts of the Gulf, have a negative 

impact on the water quality. The results of the established 

models were found to be relatively consistent with in-situ 

measurements of water quality parameters, but it is thought 

that more extensive field measurements and different satellite 

datasets across the Gulf should be used to improve the results. 

 

Despite its potential, there are several issues in water quality 

monitoring using space-borne remote sensing that need to be 

addressed before the developed prediction models can be 

adapted for operational use in the Marmara Sea; i) since the 

Gulf of Izmit is a coastal inland body of water, it contains 

optically active components at various concentrations, making  

it difficult to utilize, compare, and apply the prediction models 

created in other basins in the Marmara Sea; ii) since the optical 

properties of these waters are complex and change over time, 

the seasonal and annual fluctuations of these parameters need 

to be evaluated using a wider range of in-situ data collection.  

 

As a continuation of this study, the models created in October 

2021 will be tested with additional in-situ measurements and 

spectroradiometer data performed in October 2022, and their 

utility and compatibility of the models will be evaluated in 

order to reduce the aforementioned problems. 
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