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ABSTRACT: 

Drought directly threatens food security and livelihoods, thereby increasing socioeconomic risks and remains a challenge for natural 

resource management, particularly in frequently affected regions. Earth observation (EO) satellites provide extensive spectral and 

temporal data for long-term drought monitoring. This study monitored droughts in Northeast Thailand from 2001 to 2019 using the 

MODIS normalised difference vegetation index (NDVI) image time series. The Savitzky-Golay (S-G) method was used to remove 

noise and fill gaps in the image datasets. Optimal indicators as the vegetation condition index (VCI) and the standard vegetation 

index (SVI) were used to monitor drought distribution patterns over the previous 19 years. S-G filtering effectively reduced the 

impact of undetected clouds and water vapour, while VCI had the highest accuracy coefficient of determination (R2) for rainfall data 

at 0.85. Long-term droughts occurred frequently in 2005, 2004, 2007, and 2001 with the northern and central regions most severely 

affected. Severe drought primarily impacted agricultural land, forest and miscellaneous areas. Inter-annual drought variability for one 

and three time steps was clearly demonstrated in May and April to June from 2001 to 2019. Overall, the VCI provided a high level of 

satisfaction for drought monitoring in this region and clearly displayed the spatial distribution of long-term drought regions. Our 

findings provide a valuable resource for drought mitigation planning and warning systems. 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Drought is an ubiquitous and recurring natural phenomenon 

worldwide, resulting in a lack of water supplies, decreased 

agricultural productivity, and increased socioeconomic risks 

(Ding et al., 2011). Drought occurrences have become more 

severe, prolonged, and frequent in recent decades as a result of 

climate change and population development, particularly in 

tropical and subtropical regions (AghaKouchak et al., 2015; 

Ullah et al., 2022). With this, drought management and 

monitoring offer valuable historical information.  

 

Northeast Thailand is in the tropics, and the soil is primarily 

sandy with low water-holding capacity. Droughts have become 

more severe and frequent, wreaking havoc on agricultural and 

economic sectors, with farmers suffering from low crop 

production (Som-ard, 2020; Thavorntam et al., 2015).  

 

Earth Observation (EO) data can be used to monitor the spatial 

distribution of drought occurrences and provide crucial 

information for response operations aimed at mitigating the 

most severely affected areas.   

 

EO data has evolved into a vital tool for drought mapping,  

providing near-real-time global coverage as well as long-term 

service (Klisch & Atzberger, 2016). EO data have been 

collected by numerous sensors such as Landsat-5, the Thematic 

Mapper (L5 TM); Landsat-7, the Enhanced Thematic Mapper 

(L7 ETM+); Landsat-8, the Operational Land Imager (L8 OLI); 

and Moderate Resolution Imaging Spectroradiometer (MODIS). 

The EO data is increasingly being used for drought monitoring 

(Ghaleb et al., 2015; Klisch & Atzberger, 2016; Ullah et al., 

2022). These mapping results have proven to be highly 

satisfactory for monitoring drought events, particularly when 

detailed temporal EO data is used. 

 

The Terra and Aqua platforms' comprehensive archives of long-

term MODIS satellite data provide highly efficient observation 

frequencies with large area coverage to capture rapidly 

changing land dynamics. All sensor data is open source and has 

been widely used in natural resource management (Justice et al., 

2002; Wang et al., 2018). Numerous studies have demonstrated 

the high potential of MODIS dense temporal observations and 

large land coverage time series to track drought events under 

frequently cloudy conditions (Cammalleri et al., 2019; Klisch & 

Atzberger, 2016; Kumar et al., 2021; Thavorntam et al., 2015). 

MODIS time series data can be used to track drought episodes 

in harsh climate zones. 

 

The advantages of using MODIS time series data together with 

several vegetation indices such as the normalized difference 

vegetation index (NDVI), vegetation condition index (VCI), 

temperature condition index (TCI), temperature-vegetation 

drought index (TVDI), vegetation health index (VHI), 

standardized vegetation index (SVI) for drought mapping have 

been shown in several studies. For example, Zhao et al. (2021) 

detected drought areas in the Yellow River Basin in China from 

2003 to 2019 using MODIS data, while Kumar et al. (2021) 

developed a tool to monitor agricultural drought in the Tamil 

Nadu State of India. Klisch and Atzberger (2016) evaluated the 

optimal monitoring systems for drought events in Kenya using 

MODIS NDVI time series, while Rotjanakusol and Laosuwan 

(2019) tracked drought using Terra-MODIS from 2014 to 2016 

in the lower northeast of Thailand. Their results showed highly 
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temporal and spatio-temporal drought patterns from various 

vegetation indices. Long-term drought monitoring across wide 

regions has been neglected in developing countries including 

Thailand. Monthly drought monitoring in Thailand remains a 

challenge due to highly cloudy conditions and inclement 

weather regions. 

 

Therefore, the main objectives of this study were to: 

• analyze the optimal vegetation index in Northeast 

Thailand from 2001 to 2019 using MODIS NDVI time series.  

• identify the most severe drought distribution patterns 

between 2001 and 2019 in Northeast Thailand.   

 

2. MATERIAL AND METHODS 

The implemented methods included filtering image time series, 

analyzing the optimal drought index and mapping drought 

distribution patterns (Figure 1). 

 

 
 

Figure 1. Illustration of the implemented workflow diagram for 

drought monitoring from 2001 to 2019 in Northeast Thailand. 

 

2.1 Study Area  

Northeast Thailand was selected as the study covers 14°00´ to 

18°27´ and 101°00´ to 105°35´ with an area of 168,854 km2 

(Figure 2). The 30-year average temperature is 26.9 °C and the 

average annual rainfall is 1,446 mm. This region is categorized 

as having a tropical semi-humid dry-savannah climate (Köppen 

climate, classification: Aw) with three seasons of summer, rainy 

season and winter. 

 

 
Figure 2. Study region (Northeast Thailand): background 

shows elevation with a height of 90-1,790 mm. The red triangle 

points are the rainfall stations of the Thai Meteorological 

Department. 

 

2.2 MODIS Data Sets 

2.2.1 Data Acquisition: MOD13Q1 and MYD13Q1 NDVI 

with five MODIS Terra and Aqua satellite products, were 

obtained through the University of Natural Resources and Life 

Sciences (BOKU) online platforms. These products were 

mosaicked, multi-tiled, and re-projected to geographic 

coordinates (datum WGS84) by the BOKU Geomatics server 

(http://ivfl-info.boku.ac.at/) (Vuolo et al., 2012). NDVI 

products were selected from both sensor data acquired every 8 

days (temporal resolution) at 250 m spatial resolution. A total of 

874 images were collected, taken between 2001 and 2019 

across the study region. 
 

2.2.2 Filtered Image Time Series: MODIS NDVI time 

series data are affected by environmental conditions such as 

clouds, water vapor and smoke, resulting in poor image data 

quality. This study adapted the Savitzky-Golay (S-G) filtering 

approach to eliminate noise and fill gaps for the time series 

data. S-G filtering can be employed to smooth, reconstruct and 

fit spectral values using the least square algorithm (Savitzky & 

Golay, 1964). The S-G filtering was conducted in TIMESAT 

software with two setting parameters: the half-width of the 

smoothing window (m) and the number of degrees of the 

smoothing polynomial (n). The S-G filtering was utilized to 

derive the smoothed image time series data using equation 1. 

This analysis fitted the optimal filter parameters of 8 (m) and 3 

(n), and used 10 iterations to determine the best fitting effect for 

processing. High-quality time series datasets were then applied 

to the study region as the image output.          

 

 

                                       ,                            (1) 

 

where Y*
j is the filtered image time series data, Yj is the input 

data, Ci is the coefficient of filter fitting, i.e., the weight of input 

data, n is the filtered processing data and the smoothing window 

size (2m+1), and m is the half-size of the smoothing window.  
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2.3 Calculated Drought Indices 

2.3.1 The VCI is ideal for assessing the impact of weather 

on vegetation by enhancing inter-annual vegetation index 

variations based on EO satellite data (Kogan et al., 2003). The 

maximum VCI value is 100% with minimum of zero. For this 

study the VCI was used to map drought anomalies following 

equation 2, by utilizing the raster package in R software 

(version 3.6.2) (Hijmans et al., 2015)  for this study.  

 
VCIi = 100 x (NDVIi – NDVImin,i)/(NDVImax,i – NDVImin,i),      (2) 

 
where VCIi is the updated vegetation condition index (VCI) at 

time step i, NDVIi is the filtered NDVI image at time i and 

NDVImin,i or NDVImax,i are the lowest/highest values of 

filtered NDVI pixels from 2001 to 2019 during eight days.   

  

The VCI categorized the thresholds for drought anomalies 

compared to rainfall data, with drought ranks shown in Table 1.    

 

VCI (%) Drought category 

≤ 15 Extreme drought 

16 to 35 Severe drought 

36 to 50 Moderate drought 

51 to 65 Normal/ No drought 

> 65 Wet 

Table 1. Thresholds used to update the vegetation condition 

index (VCI) and related drought categories based on rainfall 

data.  

 

2.3.2 The SVI measures: the probability of vegetation 

condition deviation from normal preferred to NDVI value in a 

year. The performed SVI was summarized by Peters et al. 

(2002). SVI values between 0 and 1 were applied for assessing 

drought, as calculated in equation 3.  

 
                 SVIi = (Zijk – ZijMIN)/(ZijMAX – ZijMIN),                       (3) 

 

where SVIi is the updated standardized vegetation index (SVI) at 

time step j, Zijk is z-value of the filtered NDVI pixel i at time j 

for year k and ZijMIN or ZijMAX are the lowest/highest filtered 

NDVI pixels i from 2001 to 2019 at time j during eight days.  

 

The SVI was defined as the threshold of drought anomalies in 

comparison to rainfall data. The vegetation anomalies were 

classified and shown in Table 2. 

 

SVI Drought category 

≤ 0.05 Extreme drought 

0.06 to 0.25 Severe drought 

0.26 to 0.75 Moderate drought 

0.76 to 0.95 Normal/ No drought 

≥ 0.96 Wet 

Table 2. Thresholds related to vegetation anomalies using the 

standardized vegetation index (SVI) based on rainfall data.  

 

2.4 Drought Indicator Assessment  

The VCI and SVI were compared to rainfall data using the 

coefficient of determination (R2) to determine the best drought 

index for this research region. R2 was calculated by collecting 

VCI and SVI pixel values at a Sisaket rainfall station and 

utilizing monthly rainfall data from 2007 to 2017. The optimal 

indicator was then used to monitor the spatial distribution of 

drought patterns from 2001 to 2019.     

2.5 Mapping Drought Distribution Patterns   

To monitor drought affected regions, the monthly indicator was 

temporally and spatially aggregated to map drought 

occurrences. One month demonstrated short-term drought from 

2001 to 2019, with three months of VCI (VCI3M) aggregated 

to map drought distribution patterns. Annual maps showed 

long-term trends for the most severe drought years between 

2001 and 2019. 

   

3. RESULTS 

3.1 MODIS NDVI Image Time Series Dataset    

The NDVI profile of a randomly selected pixel in the center of 

an arid region (row 1228, column 946) is shown in  Figure 3. 

The filtered result was consolidated (smoothed) as the brown 

line compared to the original observation data.     

 

 
Figure 3. MODIS NDVI pixels of raw data (blue line) and 

filtered information (brown line) of filtered NDVI image time 

series data from 2001 to 2019 using the Savitzky-Golay (S-G) 

method.   

 

A comparison between the original and filtered MODIS NDVI 

image time series data (exemplary output in August 2019) is 

demonstrated in Figure 4. Filtered map values were smoothed, 

with noise pixel time series values masked to improve the image 

datasets. The map results presented a high-quality dataset by 

fitting the best parameters of the S-G method.                       

 

 
Figure 4. Comparison of MODIS NDVI image time series data 

with exemplary of the observed images in August 2019: (a) 

original and (b) filtered image dataset. 

 

3.3 Drought Indicator   

Figure 5 illustrates the R2 values of the VCI and SVI monthly 

vegetation indices, as well as rainfall data, from 2007 to 2017. 

In 2017, the R2 values were 0.85 (VCI) and 0.74 SVI. The VCI 
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value was slightly greater than the SVI. The VCI indicator 

demonstrated remarkable sensitivity for extremely variable 

monthly rainfall levels, such as those found in Thailand. 

 

 
Figure 5. R2 values of SVI and VCI monthly vegetation indices 

and rainfall data from 2007 to 2017 in Northeast Thailand.    

 

3.4 Spatial Drought Distribution Pattern 

Figure 6 shows a boxplot of annual VCI (%) from 2001 to 

2019. The presence of mean VCI (%) values below 50% (red 

line) indicated a drought anomaly. Drought events were 

detected in the seven years ranked in regard to their severity as 

2005, 2004, 2007, 2001, 2010, 2002, and 2006. 

 

 
Figure 6. Boxplot of mean annual vegetation condition index 

(VCI) (%) from 2001 to 2019 in Northeast Thailand. Years 

under the red line indicate drought anomalies.     

 

Long-term drought monitoring from 2001 to 2019 is shown in 

Figure 7. Drought distribution patterns are based on VCI (%), 

with the worst drought areas located in north and central areas.  

 

 
Figure 7. Long-term drought monitoring in Northeast Thailand 

from 2001 to 2019 derived from the mean annual vegetation 

condition index (VCI) (%). 

 

Temporal and spatial VCI (%) for the three months April to 

June were aggregated to show spatial distribution patterns of the 

worst drought years (Figure 8), with mean VCI3M (%) values 

of 27.24 (2005), 45.30 (2004), 45.50 (2007), and 46.16 (2001). 

The VCI3M of 2005 shows the greatest drought anomaly over 

the four years. Droughts were most severe in the north, center, 

and south, where they predominantly affected agricultural areas. 

 

 
Figure 8. Inter-annual variability of three time steps (April to 

June) for drought in Northeast Thailand in 2001, 2004, 2005, 

and 2007 based on the vegetation condition index (VCI) (%). 

 

The inter-annual variability for a single time-step in May for the 

years of the most severe drought occurrences (2001, 2004, 

2005, and 2007) is illustrated in Figure 9. This month is 

generally the beginning of the rainy season in Thailand and is 

highly effective in presenting different vegetation growth due to 

rainfall. The map result showed the high frequency and extreme 

intensity of drought event patterns, which mostly appeared in 

the central, south, and southeast. The drought mostly impacted 

agricultural land and miscellaneous areas. Results suggested 

repeated drought events across Northeast Thailand. 
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Figure 9. Inter-annual variability for single-time step (May) 

with drought in Northeast Thailand in 2001, 2004, 2005 and 

2007 based on the vegetation condition index (VCI) (%). 

 

4. DISCUSSION 

The S-G method showed high potential to remove noise and fill 

gaps in the MODIS NDVI image time series data. Our findings 

agreed with those of Cai et al., (2017), emphasizing the ability 

to predict average phenology across the entire region. This 

study also achieved highly smoothed NDVI image time series 

data for estimating drought events in high cloud coverage areas 

like Northeastern Thailand, highlighting the performance for 

predicting average phenology over the entire region. This study 

also achieved highly smoothed NDVI image time series data for 

estimating drought events in high cloud coverage areas like 

Northeastern Thailand.          

 

The VCI was the optimal indicator for monitoring drought 

events in this region. The VCI value is highly related to the R2 

value when compared to monthly rainfall data, concurring with 

Klisch and Atzberger (2016). Their findings demonstrated that 

it is more efficient to monitor drought dynamics. AghaKouchak 

et al. (2015), Thavorntam et al. (2015), Kumar et al. (2021) and 

Zhao et al. (2021) demonstrated VCI as a powerful tool for 

monitoring long-term vegetation conditions and drought events. 

The SVI showed promising results, but accuracy decreased with 

high differences in monthly rainfall (Luetkemeier et al., 2017). 

Our findings confirmed that VCI derived from the smoothed 

NDVI image time series datasets provided high efficiency for 

monitoring drought events in this region from 2001 to 2019.   

 

Over the period of 19 years, long-term spatial drought 

monitoring revealed anomalous distribution patterns. Our data 

revealed drought anomalies in seven years, with the greatest 

variation occurring in 2005, 2004, 2007, 2001, 2010, 2002, and 

2006. These drought occurrences were caused by variability in 

rainfall data, which resulted in insufficient chlorophyll for 

vegetation phenology (Thavorntam et al., 2015). According to 

Limsakul and Singhruck (2016), the mean VCI3M (April to 

June) map in 2005 exhibited Thailand's greatest drought due to 

the El Niño event (2016). The monthly drought maps produced 

excellent outcomes for this region's drought distribution 

patterns, with drought occurrences primarily occurring in 

agricultural and forest areas. Over a 9-year period, Thavorntam 

et al. (2015) observed widespread and intense drought 

occurrences, mainly in the north, central, and southern areas.  

 

Droughts are common in the Northeast Thailand, and their 

effects on agriculture are significant, as plant growth is heavily 

reliant on rainwater, irrigation, and groundwater during seasons 

of low rainfall. However, the region has continued to experience 

drought occurrences, which cause rice harvests to perish, cows 

to go without grazing, and natural water levels to plummet. The 

main cause of drought is a lack of rainfall, as well as the 

absence of seasonal rain, which usually happens from late June 

to the end of July. An extended period of no rainfall is 

frequently encountered in the region's middle and lower 

reaches. Because these two areas are not impacted by the 

Southeast Asian Monsoon, there is less water in natural sources 

and groundwater bodies. As a result, moisture in the soil is 

drained, impacting plant growth (Sumpong et al., 2021), 

particularly in the paddy fields of Thung Kula Rong Hai 

district, which is a key area for jasmine rice cultivation and 

received first prize in the 2020 World's Best Rice Award 

(Jirapornvaree et al., 2021; Chouichom, 2021).  

 

As a result, the government has assessed which regions are ideal 

for rice farming and which should be used instead for the 

growth of other crops that require minimal water during the dry 

season. Because water is limited, certain places may be 

converted into something, such as rice fields to crop farms 

cultivating sugarcane, cassava, maize, or rubber-all of which 

have now become the country's principal economic crops, as 

well as important exported items. Finally, drought is clearly a 

crucial problem that causes economic, social, and 

environmental damage, particularly in agricultural sectors; 

hence, solid planning as well as rapid effective technologies, 

including quick accurate forecast, are essential to prevent and 

mitigate the effects of drought. We utilized high temporal 

MODIS time series datasets to track the spatial spread of 

drought from 2001 to 2019. Drought maps with one and three 

time increments can also be used to properly evaluate and 

monitor the spatiotemporal changes of agricultural drought 

occurrences. The results demonstrated great efficiency as a tool 

for providing critical information to relevant stakeholders for 

well-organized drought management and planning. 
 

Our study highlighted anomalies in drought distribution 

patterns from 2001 to 2019 across Northeast Thailand. Future 

studies should apply climatic and dynamic factors for large-

scale drought monitoring, following the recent study of Ullah et 

al. (2022), to further improve the accuracy of drought 

monitoring. 

 

5. CONCLUSIONS AND OUTLOOK 

High temporal data from the MODIS time series datasets can be 

used to monitor drought. This study tracked long-term drought 

events over cloudy and rainy days in Thailand. Results showed 

high efficiency as an essential tool for drought management.  

 

Key findings and further recommendations are presented below:  

 

• Map results showed drought distribution patterns 

from 2001 to 2019 that can be used as essential land 

management and planting tools.   

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023 
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-367-2023 | © Author(s) 2023. CC BY 4.0 License.

 
371



 

• To provide high-quality NDVI time series datasets for 

inclement weather regions, the Savitzky-Golay (S-G) method 

effectively reduced pixel error in time series by smoothing and 

removing. Future studies can use our proposed method. 

 

• The VCI had high efficiency. However, other drought 

indices (i.e., temperature condition index (TCI), temperature-

vegetation drought index (TVDI), and vegetation health index 

(VHI)) together with other climatic data and powerful machine 

learning methods such as random forest (RF), support vector 

machines (SVM), and artificial neural networks (ANN) should 

also be used to improve drought monitoring in this highly 

adverse region.    

 

• Our results are useful for drought mitigation planning 

and warning systems. Long-term Earth Observation (EO) and 

dense temporal data provide highly accurate drought mapping 

in areas where drought events repeatedly occur to improve land 

management and agricultural cultivation.  
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