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ABSTRACT: 

 

Aerosol refers to suspensions of small solid and liquid particles in the atmosphere. Although the content of aerosol in the atmosphere 

is small, it plays a crucial role in atmospheric and the climatic processes, making it essential to monitor. In areas with poor aerosol 

characteristics, satellite-based aerosol optical depth (AOD) values often differ from ground-based AOD values measured by 

instruments like AERONET. The use of 3km DT, 10km DT and 10km DTB algorithms in Beijing area has led to significant 

overestimation of AOD values, highlighting the need for improvement. This paper proposes the use of machine learning techniques, 

specifically support vector regression (SVR) and artificial neural network (ANN), to correct the deviation of AOD data. Our 

approach leverages ground-based monitoring data, meteorological reanalysis data and satellite products to train the models. Our 

results show that the ANN model outperforms the SVR model achieving R2, RMSE and Slope values of 0.88, 0.12 and 0.97, 

respectively, when applied to nearly two decades of data from 2001 to 2019. This study significantly improves the accuracy of 

MODIS AOD values, reducing overestimation and bringing them closer to ground-based AOD values measured by AERONET. Our 

findings have important applications in climate research and environmental monitoring. 
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1. INTRODUCTION 

1.1 Introduction 

Aerosols are tiny particles that can be solid, liquid, or a mixture 

of both, with an aerodynamic diameter of fewer than 100 μm. 

When carried by the atmosphere, they are referred to as 

atmospheric aerosols. Despite their small quantity, aerosols 

have a significant impact on the physical and chemical 

processes in the atmosphere, as well as a crucial role in the 

climate system (Luo et al., 2014). Aerosols particles change the 

solar radiation reaching the Earth’s surface by scattering and 

absorbing solar short-wave and Earth long-wave radiation, 

thereby affecting the climate. Additionally, aerosol particles can 

indirectly influence the climate by acting as cloud particles, 

which can that and alter the concentration of various chemical 

components in the atmosphere and contribute to the cloud 

formation. Aerosols have substantial impacts on the Earth’s 

radiation budget balance, cloud and precipitation formation, 

regional air pollution visibility, human health (Colbeck and 

Lazaridis, 2010). The occurrence of winter haze weather 

significantly reduces the visibility of cities, causing 

inconvenience in people’s daily lives. Recent studies have 

indicated that Particulate Matter (PM) in polluted air, 

particularly inhalable fine particles like PM2.5, is linked to 

heart and respiratory diseases (T. Li et al., 2018; Ni et al., 2015; 

Tecer et al., 2008). These particles can pose a threat to human 

health. Research shows that aerosol and PM2.5 have strong 

correlation (Guo et al., 2017; Li et al., 2015). Therefore, 

monitoring and controlling the atmospheric environment are 

critical. 

Aerosol optical depth (AOD) is an important parameter for 

characterizing the optical properties of atmospheric aerosols. It 

represents the integrated extinction coefficient over the entire 

atmosphere in the vertical direction and is the primary optical 

parameter that can be retrieved using ground-based and satellite 

remote sensing methods. Satellite detection technology is 

increasingly being used to monitor and assess environmental 

changes (Li et al., 2020; Shi et al., 2022; Yang et al., 2013; J. 

Zhang et al., 2021). Satellites equipped with various sensors and 

cameras can capture detailed images and data of the Earth's 

surface, atmosphere, and oceans (Bovensmann et al., 2010; Yu 

et al., 2021; X. Zhang et al., 2021a, 2021b; Zhu et al., 2021). 

While ground-based observation provides high temporal 

resolution data on aerosol characteristics at a specific location, it 

has limited spatial coverage and cannot monitor large areas (Z. 

Li et al., 2018). In contrast, satellite-based monitoring of 

aerosols is advantageous due to its  wide range, low cost and 

lack of geographical constraints (Dubovik et al., 2019). As 

satellite detection technology and capabilities continue to 

improve, the role of satellite remote sensing in atmospheric 

aerosol research is also increasing. Thus, maximising the 

potential of satellite remote sensing for AOD-related research 

real-life applications is of paramount importance. 

 

Satellite remote sensing has become increasing valuable for 

filling gaps in AOD data where the characteristics are not 

readily apparent. However, the accuracy of satellite products is 

limited by assumptions regarding aerosol and surface 

properties, and AOD adjustment through topography and 

canopy (Weber et al., 2010). However, ground measurements 

are not subject to these limitations, which is why satellite 
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derived AOD values are often verified by AERONET AOD 

values (Estellés et al., 2012). Currently, Moderate Resolution 

Imaging Spectroradiometer (MODIS) is among the most used 

sensors for aerosol detection. MODIS is one of the primary 

sensors on the Terra and Aqua satellites, which collaborate to 

repeatedly observe the Earth’s surface every 1-2 days. 

 

Studies indicate that C6.1 dark target algorithm (3km, 10km 

DT) and a combination of the dark target and deep blue 

algorithm (10km DTB) AOD products in Beijing are often 

overestimated(Wei and Sun, 2016). Nevertheless, there is still 

room for improvement in the accuracy of MODIS AOD 

(AODM). An effective approach is to use satellite observations 

as input and ground observations as output to build models 

based on both sources. These models can correct AOD values 

obtained from satellite observations, with sufficient training 

data. The models can be adapted to different retrieval scenarios 

and outperform deterministic algorithms. Machine learning 

methods satisfy these requirements and have been widely 

adopted in the aerosol science. For instance, (Lanzaco et al., 

2016a) used machine learning techniques to correct the AOD 

value at 550nm, resulting in a significant improvement in the 

AOD value obtained from satellite data. (Palancar et al., 2016) 

used a similar method to obtain AOD values of 340 nm from 

MODIS and calculated the aerosol radiative forcing in the UV-

B region, and the obtained values were consistent with those 

obtained using AERONET AOD (AODA) as input. These 

studies use AODA to correct AODM biases but are not 

applicable in areas with low AERONET sites density or for 

different underlying surfaces, which limits their reliability on a 

global scale. 

 

In this paper, a method to improve AODM is proposed using 

AODA as reference. AOD products of Three different 

algorithms of AOD products, including 3km DT,10km DT, 

10km DTB from Terra and Aqua satellites in Beijing area, are 

employed in this method. The AERONET site data in Beijing 

area is used as the ground truth for bias correction. The method 

leverages machine learning technology to improve the 

correlation between AODM and AODA and trains the model 

using three types of AOD inversion products from Beijing area 

to correct the overestimation phenomenon. The method 

preserves abnormal data in the dataset to make it applicable to 

original data. Moreover, the method requires only annual 

average trend data of meteorological variables, meteorological 

conditions as possible inputs to keep the requirements minimal. 

 

2. DATASET 

2.1 AERONET data 

AERONET (“AERONET,” n.d.) is a federation of ground-based 

remote sensing aerosol networks jointly established by NASA 

and LOA - PHOTONS (CNRS), provides high-quality 

measurements of aerosol optical properties (Holben et al., 

1998). With around 500 sites worldwide, it represents a key 

resource for aerosol observation. The aerosol products derived 

from AERONET observations are classified into three levels: 

Level 1.0, Level 1.5, and Level 2.0. In this study, the Level 2.0 

data from four aerosol sites in Beijing were used. The detailed 

information of these sites is presented in Table 1. 

 

Table 1. Statistics of AERONET ground stations in China 

Site name 
longitude, 

latitude 

observation 

time 

MODIS Terra/Aqua 

data volume 

Beijing 116.381, 

39.977 

2001.05-

2018.11 

438/361 

Beijing_ 

PKU 

116.31, 

39.992 

2016.07-

2019.5 

134/107 

Beijing_ 

RADI 

116.379, 

40.005 

2010.05-

2019.05 

67/166 

Beijing-

CAMS 

116.317, 

39.933 

2012.08-

2019.05 

261/189 

 

AERONET does not provide the AOD observation value at 550 

nm band. However, the 550 nm Ångström index can be 

obtained by interpolation of the Ångström index at 500  nm and 

675nm bands. The estimation of AOD at 550 nm can be 

obtained by using the equations (1) and (2), as proposed by 

(Eck et al., 1999). 

 

 ,     (1) 

 ,    (2) 

 

In the above equation: and are the AOD values of 

500nm and 657nm respectively,  is the Ångström 

index of 500-657nm, is the AOD value of 550nm obtained 

by interpolation. 

 

2.2 MODIS data 

The United States National Aeronautics and Space 

Administration (NASA) launched a series of comprehensive 

Earth observation satellites in 1991. Terra and Aqua are two 

solar polar orbit synchronous satellites that were launched in 

1999 and 2002 respectively. They were known as “morning 

star” and “afternoon star” because of their transit times of 10:30 

a.m. and 1:30 p.m., respectively. These satellites can acquire 

daily global coverage data using a spectrometer with a 

measurement range from 0.4μm to 14.4μm. Since aerosol 

absorption levels in the mid-infrared region are low, surface 

reflectance can be determined, from which AOD can be derived 

(Lanzaco et al., 2017). However, different inversion algorithms 

may yield different AOD results.  

 

To correct for bias in the AOD products, this work uses the 

AOD products of the Terra (from March 2001 to May 2019) 

and Aqua satellite (from July 2002 to May 2019) MODIS 3km 

DT,10km DT, 10km DTB. The corrected data is verified using 

the AOD data from AERONET stations in Beijing to ensure 

accuracy. 

 

2.3 Meteorological data  

Meteorological conditions play an essential role in predicting 

AOD, and they have a strong influence on the concentration 

distribution, chemical composition, and optical properties of 

AOD. Variations in AOD have been found to be significantly 

linked to meteorological factors. Therefore, in this study, the 

fifth-generation global climate reanalysis dataset ERA5 

(“Climate Data Store,” n.d.), was published by the European 

Centre for Medium-Range Weather Forecasts (ECMWF). 

ERA5 provides hourly atmospheric, terrestrial, and oceanic 

climate variables, terrestrial and oceanic climate variables at a 

spatial resolution of 0.25° × 0.25° (Jiang et al., 2021). In this 

study, meteorological parameters extracted include the U wind 
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component (u10) and V wind component vectors (v10), 2m dew 

point temperature (d2m), 2m air temperature (t2m), surface 

temperature (skt), and atmospheric pressure (sp). Uv10 is 

calculated based on u10 and v10.  

 

To capture the annual trend of meteorological conditions, we 

use the day of the year as a parameter. However, since January 1 

and December 31 have the same average, this parameter is 

modified to create a more representative parameter. Specifically, 

we set the variable to 1 on January 1 and increase it to a 

maximum of 183 on July 1 and 2, then decrease it again to a 

minimum on December 31 to better reflect the seasonality of 

meteorological conditions (Lanzaco et al., 2016b). 

 

2.4 Data pre-processing 

The feature sample set was constructed from data gathered 

between 2001 to 2019, and a range of different features were 

used for model training. These parameters are listed in Table 2. 

Time data features were specified by selecting the year, month, 

and day. The transit times for Terra and Aqua satellites are 

10:30 AM and 1:30 PM, respectively. In order to maintain 

consistency in timing, the EAR5 data was selected are 10:00 

and 13:00 because the time resolution of the EAR5 data is in 

hours. 

 

Table 2. Feature information table 

Type Data 
Temporal 

resolution 

Spatial 

resolution 

Data 

origin 

Ground 

station 

data 

 

AERONET

_AOD 

15 

minutes  
—— 

AER

OSOL 

ROB

OTIC 

NET

WOR

K 

Satellite 

data 

3km DT 

AOD 
1 day 3km 

MODI

S 

10 km DT 

AOD 
1 day 10km 

MODI

S 

10km DTB 

AOD 
1 day 10km 

MODI

S 

Meteor

ological 

data 

uv10 1 hour 
0.25°×0.2

5° 
ERA5 

d2m 1 hour 
0.25°×0.2

5° 
ERA5 

t2m 1hour 
0.25°×0.2

5° 
ERA5 

skt 1 hour 
0.25°×0.2

5° 
ERA5 

sp 1hour 
0.25°×0.2

5° 
ERA5 

days 1day —— —— 

Time 

year —— —— —— 

month —— —— —— 

day —— —— —— 

Geogra

phic 

data 

lons —— —— —— 

lats —— —— —— 

 

3. METHODOLOGY 

Machine learning is a subfield of artificial intelligence that 

focuses on learning from data to improve predictions. In this 

study, two types of machine learning algorithms, Artificial 

Neural Network (ANN) and Support Vector Regression (SVR) 

were used to correct the bias between AODM and AODA. The 

datasets used in this study were MODIS Terra and MODIS 

Aqua, which were divided into training and test sets. For each 

machine learning algorithm, the training set was split into 

“input” and “output” variables, and the algorithm searched for 

the relationships between them.  

 

The goal of the study was to obtain AODM that closely 

matched AODA. The inputs used for the machine learning 

models included the three AODM products, meteorological 

variables, time (year, month, and day), latitude and longitude, 

and the annual average trend of meteorological conditions, 

while AODA was used as the output variable. 

 

3.1 ANN 

ANN is a machine learning method inspired by biological 

systems (Basheer and Hajmeer, 2000). It is a complex network 

comprising interconnected neurons that work in parallel. In a 

typical ANN structure, the input is connected to one or more 

layers of neurons, which are connected to the output. The 

connection weights between the neurons are parameters that are 

adjusted during the training process. The training process is 

iterative, where the Root Mean Square Error (RMSE) is 

calculated in each cycle and the connection weights are adjusted 

based on the results until the network can correctly predict the 

output. This type of process is called supervised learning 

because it provides realistic outputs. 

 

When training an ANN model, the dataset is randomly split into 

a training set and a test set. The training set is used to train the 

weights of the neural network while the test set is used to 

evaluate the performance of the trained model on new, unseen 

data. The convergence of the training process is evaluated using 

the RMSE and the number of training iterations. Once the 

model is trained, a scatter plot is generated from the test set 

data, and the regression line is determined to evaluate the 

accuracy of the predicted outputs. This validation is rigorous 

and independent since the test set is randomly selected from all 

available temporal and spatial datasets. 

 

3.2 SVR 

Support Vector Machine (SVM) was first introduced by Cortes 

and Vapnik and developed into classification and regression 

problems (Sain, 1996) . SVM is widely accepted in the field of 

learning because of its ability to generalize. One of its important 

features is its capability to project linearly inseparable data into 

a high dimensional feature space, making it linearly separable. 

SVMs were later extended to regression problems, named SVR 

(Schölkopf et al., 2000; Smola and Schölkopf, 2004). In this 

study we used the SVR method proposed by LIBSVM (Chen, 

Fan and Lin 2006, Fan et al. 2005).  

 

The goal of the SVR is to find a function that has a minimum 

deviation from the output of the training dataset, while also 

maintaining a flatness to control the complexity of the system 

and the training error. The penalty factor of the model is 

continuously adjusted through the training set, and the 

coefficient of determination (R2) and RMSE of the current 

model are evaluated in each iteration of training. The 

convergence of the training is determined by using the 

coefficient of R2, RMSE, and the penalty factor training 

iterations. 
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3.3 Technical flow chart 

In this study, two machine learning algorithms: ANN and SVR 

were used to correct the bias between AODM and AODA. This 

study aims to approximate the AODM as close as possible to 

the AODA. Two dataset - MODIS Terra and MODIS Aqua 

were used together with meteorological data. The sample set is 

created by spatial temporal matching the features from satellite 

data with ground station (AERONET) data. As shown in Figure 

1, machine learning algorithms were used to map the features 

inputs to correct AOD. 

 

3.4 Correlation analysis 

Feature selection was performed based on the correlation 

analysis, as shown in Figure 2. Pearson correlation coefficients 

were calculated between ground stations and all characteristic 

parameters. The AODA was positively correlated with 3km DT, 

10km DT and 10km DTB, and the correlation exceeded 0.9. 

Temperature affects the Brownian motion of aerosol and the 

vertical distribution of aerosol, so that the change of its mass 

concentration satisfies the negative exponential law. All 

meteorological characteristic parameters were positively 

correlated. Among them, the strongest correlation was d2m with 

a correlation coefficient of 0.4, and the AODA was positively 

correlated with longitude (lons) and latitude (lats). Moreover, 

according to Figure 2, the correlation between year, month, sp 

and AODA was negative, and they were removed from the 

sample. Based on the results from correlation analysis, the final 

selected features train the ANN and SVR models are 3km DT, 

10km DT, 10km DTB, day, lons, lats, uv10, d2m, t2m, skt, and 

days. The data was split into a training set of 70% and a test set 

of 30%. 

 

 
Figure 1. Flowchart of the proposed bias correction method 

 

 
 

Figure 2. Correlation matrix of AOD Features 
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4. RESULTS AND DISCUSSIONS 

4.1 Comparison results of AOD values from MODIS data 

and AERONET 

We first compare the AODM with AODA. Three MODIS AOD 

products that were used in this study, including 3km DT, 10km 

DT, and 10km DTB in Beijing region. The results are shown in 

Figure 3, R2 of the 3km DT Terra dataset is 0.578, and that of 

the Aqua dataset is 0.167. R2 of the 10km DT Terra dataset is 

0.639, and that of Aqua is 0.585. R2 of the 10km DTB Terra 

dataset is 0.722, and that of Aqua is 0.657. Compared with the 

AODA, AODM is overestimated and needs to be improved. 

Therefore, it is necessary to propose a method to improve the 

accuracy of AODM. 

 

 
Figure 3. Comparison between 3km DT, 10km DT, and 10km DTB AOD products with AERONET AOD products 

 

4.2 Determine the optimal parameters 

To evaluate the bias correction effect of ANN and SVR model 

in AOD model, the training set and test set are used, and the 

accuracy is verified by 10-fold cross validation method. In the 

process of model training, the parameters of the model are fine-

tuned to finally determine the optimal parameters. The specific 

parameters are shown in Table 3. 
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Table 3. The model optimizes the relevant parameters 

Algorithm 

name 

Name of parameter Value 

ANN Number of input layer neurons 40 

Number of hidden layer neurons 20 

Number of output layer neurons 1 

Number of iterations 1000 

SVR Penalty factor 5000 

 

4.3 Bias correction results 

After applying our proposed machine learning based bias 

correction method, the overestimation has been significantly 

improved. The results from SVR and ANN models are shown in 

Figures 4 and 5 respectively. After correction, R2 of the Terra 

dataset is 0.843 (SVR) and 0.876 (ANN), MAE is 0.11 and 

0.083, and RMSE is 0.148 and 0.125. R2 of the Aqua dataset is 

0.858 and 0.88, MAE is 0.09 and 0.088, and RMSE is 0.12 and 

0.12. Based on the above analysis, it is noted that the deviation 

correction effect of ANN on AOD is better than that of the SVR 

method. 

 

 
Figure 4. SVR model deviation correction results 

 
Figure 5. ANN model deviation correction results 

 

 

5. CONCLUSIONS 

In this study, we propose a machine learning based method to 

correct MODIS DT AOD at 3km, 10km, and MODIS DTB at 

10km. MODIS AOD data and meteorological data are used as 

input to the proposed machine learning models, including SVR 

and ANN. Four ground stations from AERONET located in 

Beijing are used as ground truth. The results show that our 

proposed methods significantly improve the overestimation 

from the MODIS AOD and ANN performance is better than 

SVR. In future, this machine learning based method can also be 

applied to other parts of the world, especially in areas with poor 

aerosol characteristics, such as Africa and Australia, where the 

reliability of MODIS algorithm is relatively poor. Extending the 

practicability of this method to define a region around each site 

and train the model for each region separately can improve this 

research to a certain extent. Estimation of PM2.5 and PM10 

based on satellite measurements is a topic very relevant to 

atmospheric science, and there is a strong correlation between 

aerosol and PM. By using the measurement data of particulate 

matter in a certain area and combining with the method used in 

this study, it is possible to obtain better PM2.5 and PM10 from 

satellite measurement data. 
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