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ABSTRACT:

Stellar is a large, satellite stereo dataset. It contains rectified stereo pairs of the terrain captured by the satellite image sensors and
corresponding true disparity maps and semantic segmentation. Unlike stereo vision in autonomous driving and mobile imaging, a
satellite stereo pair is not captured simultaneously. Thus, the same object in a satellite stereo pair is more likely to have a varied
visual appearance. Stellar provides flexible access to such stereo pairs to train methods to be robust to such appearance variation.
We use publicly available data sources, and invented several techniques to perform data registration, rectification, and semantic
segmentation on the data to build Stellar. In our preliminary experiment, we fine-tuned two deep-learning stereo methods on Stellar.
The result demonstrates that most of the time, these methods generate denser and more accurate disparity maps for satellite stereo
by fine-tuning on Stellar, compared to without fine-tuning on satellite stereo datasets, or fine-tuning on previous, smaller satellite
stereo datasets. Stellar is available to download at https://github.com/guo-research-group/Stellar.

1. INTRODUCTION

Digital Surface Models (DSMs) contain 3D representations of
the earth’s surface. It records the shape information of terrains
and human constructions of an area at specific time stamps.
DSMs have broad applications in environmental studies, for ex-
ample, monitoring and analyzing glaciers melting, water level
changes of rivers and lakes, and human activities. Additionally,
they are widely used in non-environmental applications such as
urban visualization, infrastructure planning, and mixed reality.

There are two major approaches to generating DSMs nowadays.
The first approach uses Lidars on UAVs to scan the landscape
to produce point clouds, which are then processed to become
DSMs. The DSMs from this approach have an average height
error as low as 0.3 centimeters (San Diego LiDAR Report, n.d.)
thanks to the high accuracy of Lidar sensors. But because the
cruising altitude of UAVs is relatively low, the Lidar scanning
can only cover a limited area each time. A typical full swath
spacing of a UAV Lidar scan is below 1km. Thus, it is slow and
expensive to build large-area DSMs via this approach. Further-
more, Lidar scanning relies on GPS for accurate geolocation,
but the reliability of GPS signals can be easily affected by land-
scapes, atmospheric conditions, etc., in practice.

Thanks to the recent maturation of very high resolution (VHR)
satellite image sensors, an alternative approach that reconstructs
DSMs via stereo matching emerges. In this approach, peo-
ple first perform two-view or multi-view stereo matching using
VHR images of the same area captured from different satellite
perspectives to generate local disparity maps. Then they fuse
disparity maps of areas together to produce a DSM of a larger
area. A VHR image can cover areas of hundreds of sq. km with
a ground sampling resolution between 30cm-60cm depending
on the viewing angle. Therefore, despite its lower accuracy
compared to Lidar scanning, it is cheaper and more efficient
for people to create a global DSM via satellite stereo.

*Corresponding author. This work was done at Purdue University.

The accuracy of stereo matching algorithms has improved
these years significantly in street view and indoor settings
thanks to the appearance of large, supervised datasets such as
KITTI (Menze and Geiger, 2015) and Middlebury (Scharstein
et al., 2014). These datasets provide sufficient stereo image
pairs and corresponding ground truth disparity maps to train
data-hungry deep-learning (DL) methods. However, in the do-
main of satellite stereo, developing a large-scale supervised
dataset with diverse VHR images that supports quantitative
evaluation is still at an initial stage in our perspective.

We present Stellar. It is a large satellite stereo dataset that con-
tains stereo VHR image pairs and corresponding ground truth
disparity maps generated from Lidar measurements. Stellar is
so far the largest in areas of data to the best of our knowledge
(Table 1). It is flexible to use. People can select stereo VHR
image pairs that have specific time differences or sun angle dif-
ferences. This allows users to control the appearance difference
between the stereo image pairs caused by seasonal vegetation,
weather, human activities, and shadows and specular reflections
caused by sunlight (Figure 1). Stellar also provides semantic
segmentation of the areas (e.g., Figure 1), which enables quan-
titative analysis of stereo-matching accuracy based on types of
areas, e.g., buildings, rivers, and vegetation.

Although the source data of Stellar comes from several public
repositories (Bosch et al., 2016, Brown et al., 2018, Van Etten
et al., 2018), there are image processing challenges that need to
be overcome to build Stellar. First, the Lidar measurements and
VHR images use different coordinate reference systems. This
means the elevation measured from Lidar has to be calibrated
to the same coordinate system as VHR images. We used a
novel co-registration method to perform the alignment (Section
3.) Second, it is non-trivial to rectify stereo pairs for VHR im-
ages, as VHR sensors on satellites have nonlinear homography
and non-conjugate epipolar curves. In Stellar, we developed
a patch-based rectification method to overcome this challenge
(Section 3.2.3.) Finally, Lidar measurements and VHR images
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Figure 1. From left to right, (a) Stellar sample DSM as compared to a SatStereo region, (b-d) stereo pairs with varied appearances due
to sun angle, season, and human activities. (e) Typical semantic segmentation. Orange for buildings, red for bridges, blue for water,
green for vegetation and gray for ground.

Best Varying Stereo
Area . Unipolar | Pair Semantic | Stereo Lidar | True Multi .
Dataset 9 #City | Res. L . . Baseline
(km=) Disparity | Selection | Labels Image DSM | Disparity | Date ..
(m) Size Variation
MVS3DM 1.5 1 0.3 X X X X 4 X v X
(Bosch et al.,
2016)
DFC 7.15 2 0.3 X X v X 4 v 4 v
(Bosch et
al., 2019)
SatStereo 4.5 3 0.3 X X v v X v v v
(Patil et al.,
2019a)
WHU-Stereo | =~ 778 6 0.65 X X X X X v X X
(Li et al,
2022b)
Stellar 1,682' | 5 0.3 v v v v v v v v
(ours)

Table 1. Stellar vs. existing satellite stereo datasets. Apart from covering much larger areas than previous ones, Stellar allows users to
select stereo image pairs with specific time differences and sun angle differences, etc. Stellar also supports generating stereo images
with variable sizes and provides dense ground truth disparity.

of the same area may be acquired with a time difference longer
than a year. The landscape may vary between the Lidar and the
VHR image, and among VHR images (Figure 1). This creates
noise in the ground truth disparity map, as the disparity from
Lidar may not reflect the true disparity of a stereo VHR image
pair. To mitigate this issue, Stellar provides semantic segmenta-
tion along with the ground truth disparity maps, which enables
users to analyze methods on areas less prone to change over
time (Section refsubsubsec:semantic.)

To validate the effectiveness of Stellar, we fine-tune two DL
stereo matching algorithms on it and on previous satellite stereo
datasets, and analyze their performance. Our experiments
demonstrate that, in most cases, the DL stereo methods improve
their accuracy on satellite stereo by fine-tuning on Stellar, com-
pared to without fine-tuning or fine-tuning on previous, smaller
satellite stereo datasets. The detailed description of our experi-
ments is in Section 4.

Stellar is available to download at https://github.com/
guo-research-group/Stellar.

ILidar DSM coverage

2. RELATED WORK
2.1 Deep Learning (DL) Satellite Stereo

The classic two-stage stereo matching pipeline first computes a
cost volume from a pair of rectified images, then estimates the
disparity map based on the cost volume. Traditionally, semi-
global matching (SGM) (Hirschmuller, 2005) is one of the most
popular methods for stereo matching. In the era of deep learn-
ing, people leveraged deep neural networks to generate the cost
volume (Zbontar et al., 2016), perform stereo matching (Zhang
et al., 2019), or both. These DL methods clearly outperform
traditional, non-DL methods on standard stereo benchmarks,
such as Middlebury, KITTI, and ETH3D. Recently, more end-
to-end DL methods emerged. These methods replace the clas-
sic two-stage pipeline with a single neural network architecture
that takes in a rectified image pair and directly outputs the dis-
parity map. These end-to-end DL methods have outperformed
two-stage DL methods and demonstrated the top performances
in computer vision benchmarks (Lipson et al., 2021, Zhao et al.,
2022, Li et al., 2022a).

There have been several studies that quantitatively analyze the
performance of DL stereo methods on satellite stereo (Alban-
wan and Qin, 2022, Gémez et al., 2022). Albanwan et al. (Al-
banwan and Qin, 2022) present an extensive comparative study
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Figure 2. Stellar data generation pipeline.

of various stereo-matching approaches by fine-tuning them us-
ing a relatively small satellite stereo dataset (DFC in Table 1).
They analyze two-stage approaches including SGM using a
non-DL census cost volume (Zabih and Woodfill, 1994) and
using a DL-based cost volume (Zbontar et al., 2016), as well
as end-to-end DL methods (Kendall et al., 2017, Chang and
Chen, 2018, Cheng et al., 2020). They report that the two-stage
approaches, whether using DL cost volume or not, are more
robust and generalizable. Meanwhile, end-to-end DL methods
have the highest geometric accuracy while not generalizing well
for unseen data. To increase the robustness of these end-to-end
DL methods, a large satellite stereo dataset that covers more
diversity in its stereo pairs seems necessary.

2.2 Satellite Stereo Datasets

Table 1 provides a comparison among previous satellite stereo
datasets and Stellar. A critical challenge in creating a satellite
stereo dataset is the generation of ground truth disparity. Typ-
ically, people leverage Lidar measurements to synthesize the
ground truths, but the Lidar point clouds are sparse and are in
different coordinate systems than satellite imagery. The Multi-
View Stereo 3D Mapping dataset (MVS3DM) (Bosch et al.,
2016) only contains Lidar point clouds as ground truths and
the authors do not calibrate the Lidar data and the Satellite im-
agery into the same coordinate system, which could cause dif-
ficulty in performing supervised training using the dataset. The
2019 Data Fusion Contest dataset (DFC) (Bosch et al., 2019)
includes sparse true disparity maps generated from the Lidar
point clouds. Its Lidar measurements and satellite imagery are
aligned by maximizing mutual information between the two
sources of data. SatStereo (Patil et al., 2019a) contains dense
ground truths. The authors first create true DSMs from the Li-
dar measurements, then transform the Lidar DSMs into dense
disparity maps in the same coordinate as the satellite imagery
via bundle adjustments.

A key difference between the satellite stereo datasets and stereo
datasets in the computer vision community, such as Middle-
bury, KITTI, and ETH3D, is that the disparity maps are nat-
urally bipolar in satellite stereo, meaning the disparity maps
contain both positive and negative values. This is caused by
the fundamental difference in camera model between the satel-
lite cameras and pinhole cameras. See Sec 3.2.2 for detailed
discussions. As in Table 1, all listed previous datasets contain
both positive and negative disparity values. Adapting a stereo-
matching algorithm to work for the both positive and nega-
tive disparity, especially those based on semi-global matching
(SGM), is non-trivial. Stellar overcomes this issue. It enables

all positive disparity via an innovative tile-based polarity cor-
rection (Sec 3.2.3.)

Compared to previous satellite stereo datasets, Stellar enables
much higher flexibility. Compared to the recently released
WHU-Stereo dataset (Li et al., 2022b), which contains a similar
covered area as Stellar (Table 1), Stellar contains more than one
stereo pair per region with different baseline distances and ac-
quisition times that users can flexibly choose. This could help
an algorithm learn to handle varying baseline distances and dif-
ferent visual appearances within stereo pairs.

3. DATA GENERATION PIPELINE

Figure 2 shows the overview of Stellar data generation pipeline.
Key steps include (a) Lidar preprocessing, (b) Stereo DSM, and
(c) True disparity maps generation. We explain each step in an
individual subsection.
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Figure 3. As UAVs that carry Lidars and satellites use different
vertical datum, the two data sources must be calibrated to the
same coordinate system.

3.1 Lidar Data Processing

Lidars measure a sparse point cloud {x;,7 = 1,--- , N} of the
terrain. Each point x; is a four-vector x; = (s, ys, 2, Ci),
where (z;,y;) indicates the Lambert conformal conic projec-
tion (LCC) coordinate of the point, z; is the altitude of the point
with respect to some zero altitude datum, and ¢; is a seman-
tic label of the point, e.g. building, bridge, water, etc., that is
sometimes present in the data.

The first step of Lidar data processing is coordinate transforma-
tion. The Lidar point clouds follow NAVD88 geoid vertical da-
tum, which uses the approximate mean sea level as the zero al-
titudes (Figure 3.) Meanwhile, the satellite imagery is collected
under a different vertical datum, WGS84 ellipsoid. Therefore,
the first step is to convert the altitude of each point z; into the
same vertical datum as the satellite imagery:

Z; = Vertical Datum Conversion(z; ).
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We achieve the conversion using a predefined transformation
grid. We also transform the 2D location of each point from LCC
coordinate (z;,y;) to Universal Transverse Mercator (UTM)
coordinate (Z;, §;). We denote the point cloud after coordinate
transformation as {X; = (%, ¥s, Zi, ¢;) }. For simplicity of no-

tation, we omit the index range ¢ = 1,2, - - - hereafter.
Lidar point
z
I Ground
[ Building

Figure 4. The process of generating dense 2D maps of altitude,
i.e., DSM, and semantic classes from a point cloud. First,
triangulate the point clouds and prune the redundant triangles to
form a mesh. Then, project each pixel in the 2D map to the mesh
and determine the value of the pixel, i.e., altitude or semantic
class, by interpolating the vertices of the intersecting triangle.
See detailed description in Section 3.1.1.

3.1.1 Lidar DSM Generation After the transformation, we
rasterize the transformed point cloud {X;} to a dense 2D alti-
tude map, i.e., the DSM, and a semantic segmentation map. As
in Figure 4, we first use Delaunay triangulation to obtain a mesh
from the point cloud, 7 = Delaunay({(Z:, ¥:, 2;) }). The mesh
T contains a list of triangles t; whose vertices are neighboring
points in the point cloud, 7 = {t;}. Next, we prune the redun-
dant triangles in the mesh 7 to form a new mesh S based on
the following rule:

S ={t; € T | All edges of t; are shorter than o
AND
The angle between ¢;’s normal vector
and all its neighboring triangles’ normal vector
are below 3
AND
The maximum altitude difference among ¢;’s vertices

is smaller than ~}.

We use @ = 10m, 8 = 20°, and v = 1m. Then, as in Figure 4,
we define a grid with a step size d and project each point in the
grid along the z-axis to intersect with the mesh to find out its
altitude. If the ray intersects a triangle ¢; in the mesh, the height
is estimated as the interpolated value of the three vertices of ¢;.
If a ray doesn’t intersect any triangles, that point is marked as
invalid. In our experiment, we define d = 0.3m or 0.5m.

Figure 5 shows a qualitative comparison between the Lidar
DSMs in DFC (Bosch et al., 2019) and in Stellar for two re-
gions included in both datasets. The average height difference
between the two Lidar DSMs is less than 0.5 m. As highlighted
using arrows in Figure 5, Stellar DSMs are more accurate along
boundaries such as edges of buildings and include more fine
details compared to DFC.

Google Earth Stellar
|

Nebraska

Figure 5. Qualitative comparison of the Lidar DSMs from
DFC (Bosch et al., 2019) and Stellar. As highlighted using
arrows, Stellar DSMs contain more fine details and are more
accurate along building boundaries. (First column image source:
©Google Earth)

3.1.2 Semantic Segmentation As mentioned before, the
semantic label may not be present in some point cloud data.
In this case, we leverage the connected component analysis on
the mesh S to cluster all triangles. Then we label the largest
connected component as ground and the moderate size con-
nected components, i.e., components with at least 500 trian-
gles, as buildings (Figure 4.) The semantic segmentation map
is then generated using the same projection method described
in Section 3.1.1. A sample semantic segmentation map is in
Figure 1(e).
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Figure 6. Satellite positions per image for each region. Outer
ring in each plot represents azimuth angle, the inner rings
represent off-nadir angles and GSD (meters) for each image.

3.2 Satellite Stereo DSM

Each image I from the satellite comes with an approximate
camera model P in rational polynomial coefficient (RPC) for-
mat, and metadata such as satellite (Figure 6), sun positions,
timestamp, and ground sampling distance (GSD). The image
we use is the panchromatic image that has a spatial resolution
of 0.3-0.7m.

3.2.1 Data Alignment and Stereo Pair Selection The pro-
vided RPC camera model associated with each satellite image
has a relative pointing error up to a few meters w.r.t. other im-
ages in the same region. Similar to the practice by Patil et al.
(Patil et al., 2019a), we correct the relative point errors using
bundle adjustment. This correction improves the stereo rectifi-
cation accuracy. Bundle adjustment is the process that, given a
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set of images {I1, - - - ,I,}, determines the corresponding cam-
era projection function of each image P1,- - - , Pp.

First, we use the SIFT/SURF to detect a set of corresponding
key points in each image. We denote the ith key point in the jth
image as xf . We also perform RANSAC to remove outliers to
ensure correspondences among key points. Then, we unproject
the ith key point for all images {x/,j = 1,---,p} using the
estimated projection functions {P;,j = 1,--- ,p} to locate the
corresponding 3D world point X; via triangulation, and project
X; back to each view to calculate the reprojection error. We use
this reprojection error as an objective function to search for the
optimal camera projection functions:

Prop= arg min » "> " |x! = PP O)IP (D)

1,---,p j#k i

In multi-date satellite stereo reconstruction, multiple factors
such as view difference (Figure 6), sun angle difference, ac-
quisition time difference, etc., influence the quality of DSM re-
construction. Given a set of n satellite images, there are ,Cs
possible stereo pairs. We ignore stereo pairs with view angle
differences less than 5° to avoid those with narrow baselines.
All the rest possible stereo pairs are accessible to users in Stel-
lar.
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Figure 7. Satellite image sensors are pushbroom cameras, which
have non-linear homography and non-conjugate epipolar curves.
See detailed discussion in Section 3.2.2.

3.2.2 Epipolar Geometry of Satellite Imagers The linear
pushbroom (LP) camera used in earth observation satellites has
only one line of pixels in its photosensor. As the satellite moves
along its orbit, the LP camera scans the earth (Figure 7.) Dur-
ing the scanning, the camera center moves at a constant speed.
This has a significant impact on the epipolar geometry of two
LP cameras. Meanwhile, cameras in our daily life are usually
perspective, which has a unique camera center and a constant
projection matrix for each captured image.

For a pair of images captured by LP cameras, there is a different
fundamental matrix F;; for every ith column of the left image
and every jth column of the right image. As in Figure 7, for a
point x on the ith column of the left image, it will correspond
to an epipolar curve cr on the right image (Gupta and Hartley,
1997). The epipolar curve cr intersects the jth column at xf:

X' = (4,v), 6)
where (u', v, w') = (F”xf) x (1,0,0), and v = v’ /w’.
Meanwhile, each point xf corresponds to different epipolar

curves on the left image, which means the epipolar curves are
non-conjugate. Denote CF and Cf of the camera center when

capturing the ith column of the left image and the jth column

of the right image. The baseline vector CF C; will vary its di-
rection for different ¢, j in most situations (Habib et al., 2005).
Thus, the disparity between the left and right images could be-
come both positive and negative.

100000
80000
50000
40000
20000

100 200
(b) Stellar

(a) DFC

Figure 9. Polarity comparison of true disparity maps. The
bottom plots are histograms of disparity. The disparity values of
Stellar is always positive.

3.2.3 Stereo Rectification and Polarity Correction Recti-
fying a pair of satellite images is non-trivial because of the hy-
perbolic, non-conjugate epipolar geometry between the images.
To deal with this, we divide the satellite images into tiles and
assume each tile to follow the affine camera projective geome-
try. Thus, we can assume linear, conjugate epipolar geometry
between each pair of tiles. De Franchis et al. also used simi-
lar tilewise affine assumptions (De Franchis et al., 2014), but we
have several innovations compared to their practice. First, to ef-
ficiently identify corresponding tiles between the left and right
images, we use the DEM sculpting approach (Patil et al., 2019b)
to obtain a rough estimate of correspondences among tiles by
using the low-resolution digital elevation model (DEM) of the
earth. Second, we modify the rectification homography for the
right image to apply additional translation to obtain unipolar
disparities.

Given a set of images {Ii,---,I,} with significant scene
overlap and their corresponding bundle adjusted camera
projection functions {P,---,P,}, we pick a stereo pair
(I*,1%) € {I1,--- ,1,} and their camera projection functions
(PL,PR) € {P1,---,P,}. We divide each image in the se-
lected stereo pair into n 500 pixel x 500 pixel tiles with 100-
pixel overlap between neighboring tiles. This gives us a list of
tiled stereo pairs {(I*,I%),i=1,--- ,n}.

We obtain a set of virtual correspondences in each tiled stereo
pair using DEM-Sculpting (Patil et al., 2019b) as follows. The
digital elevation model (DEM) is a two-dimensional altitude
map of the terrain, similar to DSM but with a much lower spa-
tial resolution. People already have access to the DEM of the
entire earth. We uniformly sample points {x,j = 1,--- , K1}
on each left tile I” and unproject these points onto the 30m-
resolution DEM to obtain the corresponding 3D world point
X; = (P")7'(x}). We then project each 3D point X; onto
the right tile to calculate the corresponding pixel location xf =
PE(X,). We compute another set of correspondences by creat-
ing another set of 3D world points X; = X, 4 (0,0, 100m) and
project them onto I and I®. We ignore any point that falls out-
side the boundary of the tiles (I”,I7). We denote the new set
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Figure 8. Training and testing sites.(Image source ©Google Earth)

of correspondences as {()EJL, if),j =1,---,K>}. This new
set of points creates an elevation envelope to account for the
altitude of buildings, as they do not exist in the low-resolution
DEM. In total, the process generates K1 + K> virtual corre-
spondences between the left and right tile (IX, I7).

Then, we find the rectification homography HY and HF for the
tile pair. Mathematically, the fundamental matrix F'; of the two
tiles has the following form (Hartley and Zisserman, 2003).

0
F,= 1|0
c

Q O O
[SI S

as we assume affine camera model. Using the previously iden-
tified K = K; + K, virtual correspondences, denoted as
(xE xP),k =1,2,---, K for simplicity, we can estimate the
five parameters of the fundamental matrix using the Gold Stan-
dard algorithm (Hartley and Zisserman, 2003). The epipoles
for left and right images can be given as e” = (—d, ¢,0)” and
e = (=b,a,0)7, respectively. We compute the stereo rectifi-
cation homography as follows:

L sRYtF R TR
Hi = |:01><2 1 ’ Hl :THZ (3)
where
~ R 1/sRE tf L 1 [-d ¢
i — 1%x2 7R — n-n _ _ ]
0 1 le|] |—c —d
L b 0 0 —t,
— a
R = il - ,T=10 0 01,
lle'll |[—a —b
0 O 1
= elh % = (0,—t)",¢% = (0,t)" and t = 5. The

matrix T shifts the right image horizontally by ¢, so that the
disparity is unipolar. The shift ¢, is the maximum disparity of
all the K rectified correspondences:

t, = max{Hx —H/ xp, k=1,2,--- ,K}. (4

With the homography, we can obtain rectified tile pairs
{(IF,IF)}. Then, we stitch all the rectified pairs together to
form two rectified images (iL, iR). In case of overlapping pixel
value for multiple tiles, we pick the value from the tile with a
smaller index ¢. For simplicity, we denote the entire rectifica-
tion process as I*/7 = ¢/ (IL/7) where I/ is the rectified
left/right image and g%/ * is the left/right rectification function.

Figure 9 shows a comparison of the disparity maps and their
histograms for DFC and Stellar datasets. It is clear that Stellar
contains all positive disparities.

3.2.4 DSM Generation from Disparity Maps In this sec-
tion, we discuss an intermediate DSM generated from satellite
images. This DSM is for aligning the Lidar data with the satel-
lite data. Given a rectified stereo pair (I*, I%), we use the modi-
fied tSGM algorithm (Patil et al., 2019b) to output two disparity
maps (DY, D®), where D’ is the left disparity and D* is the
right disparity. For a point x” in the left image I*, we can use
the following transformation to find the corresponding point on
the right image I*:

x" = (g") " (D"(g"(x")).

By unprojecting points x” and x* using their corresponding
camera projection functions and using triangulation, we can lo-
cate their corresponding 3D world point X. We repeat this pro-
cess for all points in the left and right images and can generate
a 3D point cloud of the scene. Then we can use the same trian-
gulation and interpolation process in Section 3.1.1 to produce a
DSM.

3.3 Ground Truth Disparity Map Generation

The calibration of the Lidar DSM and the alignment DSM de-
scribed in Section 3.2.4 follows the procedure in Nuth et al.
(Nuth and Kiib, 2011). It minimizes the overall elevation dif-
ferences between the two DSMs by performing a global trans-
lation and bias of the Lidar DSM.

After alignment, we project all points X from the Lidar DSM to
the left and right rectified image via x%/% = ¢L/F(PL/E(X))
and calculate the true left disparity as the horizontal difference
between the projected points: DY (%%) = %L — x%. We then
treat D as a point cloud and use the triangulation and inter-
polation approach in Section 3.1.1 to obtain the ground truth of
left disparity map D*. We repeat the same process to obtain
D%, Then, we perform a left-right-right-left (LRRL) consis-
tency check to remove pixels where both disparity values dis-
agree, which could happen at occlusion. Mathematically, the
LRRL check is:

DL(x):{DL(X) if D*(x)-D"(s) <1

®)

invalid otherwise

where s = (x, — D*(x), x,) and x is the position of a pixel in
the left image.

4. PRELIMINARY EXPERIMENTAL RESULTS

This section describes our preliminary effort to analyze the ef-
fectiveness of Stellar. We select two pre-trained DL stereo ar-
chitectures, fine-tune them on Stellar and DFC (Bosch et al.,
2019) datasets, and analyze their performance. The informa-
tion about the two DL architectures is as follows:

GANet (Zhang et al., 2019) follows the classic two-stage stereo
matching pipeline. It first extracts dense features from the in-
put image pair using a convolutional architecture to compute a
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Method California Argentina
Good3 (%) 1 | Avg (pz) | | RMSE (pz) | | Good3 (%) 1 | Avg (pz) ] | RMSE (pz) |
GANet (Sceneflow) 66.86 39.90 64.17 37.34 72.60 111.54
GANet (DFC) 70.36 71.32 103.61 28.27 141.18 174.24
GANet (Stellar) 71.96 25.41 36.05 48.74 379 46.32
RAFT-Stereo (Sceneflow) | 84.48 16.76 26.32 48.61 47.27 62.83
RAFT-Stereo (DFC) 0.20 347.02 349.42 3.17 256.24 261.17
RAFT-Stereo (Stellar) 59.00 43.68 50.53 49.7 30.86 34.89
Ground truth Sceneflow DFC Stellar Ground truth Sceneflow DFC Stellar
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Figure 10. Preliminary quantitative (table) and qualitative (figure) analysis of two DL methods for satellite stereo. Table. Best and
second best values are highlighted for each metric. Methods fine-tuned on Stellar generally perform the best on both testing regions,
while RAFT-Stereo pretrained on Sceneflow performs the best on the California region. Figures. Visually, RAFT-Stereo pre-trained

on Sceneflow preserves the best quality of fine details.

cost volume. Then, the network uses semi-global aggregation
(SGA) layers and local guided aggregation (LGA) layers to per-
form an approximated semi-global matching procedure that is
differentiable and computationally efficient. The whole archi-
tecture is differentiable for end-to-end training.

RAFT-Stereo (Lipson et al., 2021) is an end-to-end approach
that directly estimates the disparity map from an image pair
without generating the cost volume. The model first extracts
feature maps from the image pair to build a multi-resolution
correlation pyramid. Then it uses a recurrent architecture, the
gated recurrent units (GRUs), to create and iteratively refine the
output disparity map.

In our experiment, we use models pre-trained by the original
authors on the Sceneflow dataset (Mayer et al., 2016) for both
architectures. We fine-tune these pre-trained models on DFC
and on a portion of Stellar separately, and test all models on
a different portion of Stellar. Figure 8 shows the division of
Stellar dataset for this experiment. We use image pairs of two
cities as the training set and those of another two as the test-
ing set. The testing images may contain different terrains than
the training set. For example, the testing images of California
in Figure 8c contain hills that are not present in the training
images. Therefore, this experiment also analyzes the generaliz-
ability of the models.

The loss function for fine-tuning is:

> LDy, FAF,TY), 6)

where Dy; is the ground truth disparity map, [ =
{GA-Net, RAFT-Stereo}, {IF, I} are the ith rectified image
pair in the training set. GANet use Huber loss and RAFT-Stereo
use L1 loss as the loss function £. The learning rate is 5 x 10~°
for RAFT-Stereo and 10~ for GANet.

We adopt the following metrics for the quantitative evaluation
of estimated disparity maps.

e Good 3: given as percentage of the valid pixels in Dy,
such that |Dr(x) — Dg(x)| < 6 for § = 3 where x =
(u,v)T is pixel position in a disparity map and Dy, is an
estimated left disparity map. For this metric, we consider
all valid pixels in the ground truth disparity map, and it
measures the density of estimated disparity maps.

o Average Error: Average error between estimated and
ground truth disparity map considering valid pixels in both
maps.

e RMSE: Root Mean Square Error (RMSE) between esti-
mated and ground truth disparity map considering valid
pixels in both maps.

Figure 10 shows the quantitative and qualitative evaluation of
the two DL models. For GANet, the model fine-tuned with
Stellar achieves the best performance in both testing areas. For
RAFT-Stereo, the Stellar model performs the best on one testing
region, while the pre-trained model achieves the highest accu-
racy on another. It is worth noticing that both models trained
on DFC perform the worst for both regions, which is probably
because the ground truth disparity of DFC is sparse and bipolar,
and there is limited training data.

It is not crystal clear to us why the pre-trained RAFT-Stereo
sometimes performs better than the same architecture fine-
tuned on Stellar. A possible explanation is the training data
for Stellar is still not sufficient for such sophisticated DL ar-
chitectures. We envision more comprehensive analyses of DL
satellite stereo methods using datasets such as Stellar in future
studies.
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