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ABSTRACT: Forest monitoring and tree species categorization has a vital importance in terms of biodiversity conservation, ecosystem 

health assessment, climate change mitigation, and sustainable resource management. Due to large-scale coverage of forest areas, 

remote sensing technology plays a crucial role in the monitoring of forest areas by timely and regular data acquisition, multi-spectral 

and multi-temporal analysis, non-invasive data collection, accessibility and cost-effectiveness. High-resolution satellite and airborne 

remote sensing technologies have supplied image data with rich spatial, color, and texture information. Nowadays, deep learning 

models are commonly utilized in image classification, object recognition, and semantic segmentation applications in remote sensing 

and forest monitoring as well. We, in this study, selected a popular CNN and object detection algorithm YOLOv8 variants for tree 

species classification from aerial images of TreeSatAI benchmark.  Our results showed that YOLOv8-l outperformed benchmark’s 

initial release results, and other YOLOv8 variants with 71,55% and 72,70% for weighted and micro averaging scores, respectively. 

 

 

1. INTRODUCTION 

Tree species categorization and increasing stock volume 

calculation are not only critical forest management procedures, 

but they may also be viewed as central responsibilities of forest 

research in general. The categorization of tree species and the 

assessment of expanding stock volume are critical components in 

the development of forest resource surveys. They can also be 

utilized as crucial markers for assessing the potential of forests to 

sequester carbon. The acquisition of rising stock volume and the 

timely and correct identification of tree species can represent the 

total scale and level of forest resources in a country or area. They 

are also useful for estimating the amount of forest resources and 

assessing the regional ecological environment. 

 

Remote sensing technology has long been seen to be a viable 

answer to the challenge of tree species categorization. Remote 

sensing data from various platforms and sensors are widely 

employed in this field of study (Wang et al., 2021). This 

technology have placed a significant role for the monitoring of 

forests (Holzwarth et al., 2020) and minimize fieldwork, which 

is time-consuming and expensive. The advent of high-resolution 

satellite and airborne remote sensing technologies have supplied 

image data with rich spatial, color, and texture information, 

resulting in enhanced fine categorization of tree species (Dian et 

al., 2015). Because of their different structures and morphologies, 

different tree species have varied spectral information (Deepak et 

al., 2019). Even under the same environmental conditions, trees 

at different development stages or health states might have 

differing spectral information (Brilli et al., 2013). 

 

Deep learning refers to deep neural networks that were created 

by combining many layers with certain configurations in a 

specific order (LeCun et al., 2015). Convolutional Neural 

Networks (CNN), which automatically extract features using 

convolutional filters, are one of the most extensively used deep 

learning models. CNNs use convolutional filters of varying sizes 

to automatically extract differentiating properties. CNNs and 

other deep learning models are commonly employed in image  

 

 

 

classification, object recognition, and semantic segmentation 

applications in remote sensing (Zhu et al., 2017; Ma et al., 2019). 

 

Deep neural networks-based algorithms are commonly used for 

classifying tree species from multispectral images Martins et al., 

2021; Zhang et al., 2021).  CNNs have been widely used for tree  

detection and classification tasks such as tree species 

discrimination (Fricker et al., 2019; Carpentier et al., 2018; Liu 

et al., 2019; Pelletier et al., 2019), forest damage detection 

(Hamdi et al., 2019; Safonova et al., 2019), and tree mortality 

mapping (Sylvain et al., 2019). In addition to CNN, deep 

Boltzmann machines (Guan et al., 2015) and deep belief 

networks (Zou et al., 2017) were used to recognize tree species. 

The tedious procedure of producing training sample labels is a 

key restriction on training a CNN architecture for image 

classification (Hamedianfar, et al., 2022). 

 

Recently, TreeSatAI benchmark dataset (Ahlswede et al., 2023) 

was published with aerial, Sentinel-1 and Sentinel-2 imagery for 

identification of dominant tree species in a specific region.  By 

taking into account the constraints in satellite imagery such as 

temporal and geometric resolution issues, we considered only 

aerial image patches of TreeSatAI for fast response time in real-

world applications. We, in this study, selected a popular CNN 

and object detection algorithm YOLOv8 variants for improving 

tree species classification performance. Our research questions 

examine which of (i) three different band combination is most 

suitable for the classification, and (ii) YOLOv8 architecture 

differs from others in terms of model size and accuracy.  

 

2. MATERIAL AND METHODOLOGY 

Prior to training YOLOv8 variants, different band combinations 

of TreeSatAI benchmark's aerial images were stacked to specify 

the most accurate combinations. The images were resized to 288 

x 288 pixels, and the model performances were quantitatively 

evaluated using Precision, Recall, F1-Score, and mAP metrics 

(Figure 1). 
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Figure 1. Flowchart of the study 

 

2.1 TreeSatAI Dataset 

TreeSatAI benchmark includes 12 age, 15 genus, and 20 tree 

species classes, with 50.381 (45337 train ,5044 test) 

synchronized image triplets of aerial, Sentinel-1, and Sentinel-2. 

Near-Infrared (NIR), Red (R), Green (G), and Blue (B) bands are 

available for aerial imagery with 0.2 m spatial resolution and 

these image patches were 304 x 304 pixels (Ahlswede et al. 

2023). Figure A1 illustrates sample aerial images from the 

dataset.  

 

Only aerial image patches were used and these patches resized to 

288 x 288 pixels for training and testing. Three band 

combinations, R + G + B, NIR + R + G, and NIR + R + G + B 

(All) were included for train/test stage, to specify the 

outperforming band combinations. Similar to Ahlswede et al. 

(2023), we predicted genus classes for the following 15 types of 

trees: Abies, Acer, Alnus, Betula, Cleared, Fagus, Fraxinus, 

Larix, Picea, Pinus, Populus, Prunus, Pseudotsuga, Quercus and 

Tilia, respectively (Figure 3).  

 

2.2 Image Classification with YOLOv8 

YOLOv8 (Jocher et al., 2023), is an enhanced version of YOLO 

architectures. It builds upon the concepts of YOLOv5 (Jocher, 

2020), such as the CSP idea from Wang et al. (2020), the feature 

fusion method (PAN-FPN) from Lin et al. (2017) and Liu et al. 

(2018), and the SPPF module. YOLOv8 also introduces models 

of different scales based on scaling coefficients, similar to 

YOLOv5, to address the requirements of various tasks. While 

retaining the core principles of YOLOv5, YOLOv8 incorporates 

the C2f module inspired by the ELAN structure in YOLOv7 

(Wang et al., 2022). The majority of other components remain 

based on the original ideas of YOLOv5. 

 

For classification in YOLOv8, the BCE loss is employed. The 

regression loss takes the form of CIOU loss + DFL, and VFL 

introduces an asymmetric weighting operation (Cao et al., 2020). 

YOLOv8 demonstrates greater extensibility compared to 

previous YOLO algorithms. It serves as a framework that 

supports previous YOLO versions and allows easy switching 

between them, facilitating performance comparisons. 

 

The standout feature of YOLOv8 lies in its extensibility, enabling 

seamless compatibility with all YOLO versions and effortless 

comparison of their performance. This advantage greatly benefits 

researchers engaged in YOLO projects, making YOLOv8 the 

chosen baseline version. The backbone of YOLOv8 closely 

resembles that of YOLOv5, with the C3 module replaced by the 

C2f module based on the CSP concept (Figure 2). The C2f 

module draws inspiration from the ELAN idea in YOLOv7, 

combining C3 and ELAN to form an information-rich yet 

lightweight C2f module (Wang et al., 2022). At the end of the 

backbone, the popular SPPF module is retained, employing three 

sequential max-pooling of size 5 × 5 and concatenating the 

resulting layers. This approach ensures accurate object detection 

across various scales while maintaining a lightweight design. In 

the neck module, YOLOv8 continues to utilize the PAN-FPN 

feature fusion method, which enhances the fusion and utilization 

of feature layer information at different scales. The neck module 

of YOLOv8 comprises two upsampling operations, multiple C2f 

modules, and a final decoupled head structure as proposed by the 

authors. 

 

 
 

Figure 2. Backbone architecture of YOLOv8 

 

YOLOv8-n, YOLOv8-s, YOLOv8-m, YOLOv8-l, and 

YOLOv8-x architectures were trained for a total of 20 epochs 

with Stochastic Gradient Descent (SGD) optimizer, 0.01 learning 

rate, batch size of 32, 0.937 momentum and 0.0005 weight decay 

on a RTX 2080 graphics card (Table 1). 

 

Hyperparameter Setting 

Epochs 20 

Batch Size 32 

Optimizer SGD 

Learning Rate 0.01 

Momentum 0.937 

Weight Decay 0.0005 

Input Size 288 x 288 

Table 1. Hyperparameter settings for training 
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Figure 3. Sample aerial images of tree species from TreeSatAI benchmark 
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2.3 Accuracy Assesment 

Model evaluation stage was performed with Precision, Recall, 

F1-Score (Goutte and Gaussier, 2005) and mAP (Mean Average 

Precision) (Everingham et al., 2010) metrics, respectively. 

Similar to Ahlswede et al. (2023), weighted and micro averaging 

were calculated due to model performance evaluation with class 

frequencies and global average, respectively. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (2) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                     (3) 

 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑘

𝑘=𝑁
𝑘=1                             (4) 

 

where TP, FP, TN, FN, N an AP represent the total numbers of 

true positives, false positives, true negatives, false negatives, 

number of classes, and average precision, respectively. 

 

3. RESULTS AND DISCUSSIONS 

This section covers the findings and interpretation of results. In 

this study, six different versions of YOLOv8 architecture were 

created for tree species classification from aerial imagery. As 

seen in Table 2 and 3, highest scores are highlighted bold. 

YOLOv8-l with the incorporation of NIR, R and G bands have 

the highest F1-Score (71,55% and 72,70% for weighted and 

micro averaging). Similarly, when all bands were included, the 

second highest F1-Score (71,11%) was obtained by YOLOv8-l.  

It should be noted that the results of this study are more accurate 

(71,54% F1-Score weighted averaging and 71,66% F1-Score 

weighted micro) than Ahlswede et al. (2023) where aerial 

imagery, S1 and S2 data were included.  

 

Model 
Average Inputs 

Weighted R+G+B NIR+R+G All 

YOLOv8-x 

Precision 70,48 71,44 71,55 

Recall 71,98 72,26 72,30 

F1-Score 70,64 71,23 71,02 

mAP 78,16 78,49 78,29 

YOLOv8-l 

 

Precision 70,66 71,49 71,77 

Recall 71,71 72,70 72,20 

F1-Score 70,47 71,55 71,11 

mAP 77,79 78,33 78,26 

YOLOv8-m 

Precision 71,65 68,38 70,18 

Recall 72,44 69,34 71,27 

F1-Score 71,37 67,76 70,07 

mAP 78,51 75,33 77,53 

YOLOv8-s 

 

Precision 68,88 69,56 70,03 

Recall 70,18 70,71 70,97 

F1-Score 68,68 69,57 69,79 

mAP 76,55 76,8 77,27 

YOLOv8-n 

 

Precision 70,13 68,38 69,08 

Recall 71,19 69,34 69,98 

F1-Score 69,9 67,76 68,64 

mAP 77,43 75,33 75,7 

Table 2. Different YOLOV8 models with weighted averaging 

results on different band combinations 

 

 

 

Model 
Average Inputs 

Micro R+G+B NIR+R+G All 

YOLOv8-x 

Precision 71,98 72,26 72,30 

Recall 71,98 72,26 72,30 

F1-Score 71,98 72,26 72,30 

mAP 80,74 81,06 80,95 

YOLOv8-l 

 

Precision 71,70 72,70 72,20 

Recall 71,70 72,70 72,20 

F1-Score 71,70 72,70 72,20 

mAP 80,24 81,13 81,05 

YOLOv8-m 

Precision 72,44 69,34 71,27 

Recall 72,44 69,34 71,27 

F1-Score 72,44 69,34 71,27 

mAP 81,03 77,92 80,28 

YOLOv8-s 

 

Precision 70,18 70,71 70,97 

Recall 70,18 70,71 70,97 

F1-Score 70,18 70,71 70,97 

mAP 79,08 79,46 79,82 

YOLOv8-n 

 

Precision 71,19 69,34 69,98 

Recall 71,19 69,34 69,98 

F1-Score 71,19 69,34 69,98 

mAP 80,00 77,92 78,61 

Table 3. Different YOLOV8 models with micro averaging 

results on different band combinations  

 

In class-base performances (Table 4), Abies (84,52% F1-Score 

and 86,06 % mAP), Cleared (80,55% F1-Score and 88,97% 

mAP), Fagus (70,77% F1-Score and 79,62% mAP), Larix 

(81,13% F1-Score and 89,66% mAP), Picea (82,73% F1-Score 

and 88,61% mAP), Pinus (88,5%  F1-Score and 95,79% mAP), 

Pseudotsuga (82,99%  F1-Score and 89,71% mAP), and Quercus 

(74,34%  F1-Score and 83,62% mAP) are higher than Ahlswede 

et al. (2023).   

 

Species Precision Recall 
F1-

Score 
mAP 

Abies 84,52 76,34 80,23 86,06 

Acer 53,74 28,01 36,83 42,8 

Alnus 61,67 56,68 59,07 61,37 

Betula 56,79 49,11 52,67 56,83 

Cleared 77,46 83,89 80,55 88,97 

Fagus 67,28 74,65 70,77 79,62 

Fraxinus 43,65 43,14 43,39 43,04 

Larix 85,07 77,53 81,13 89,66 

Picea 77,98 88,09 82,73 88,61 

Pinus 86,34 90,78 88,5 95,79 

Populus 53,13 20,99 30,09 36,28 

Prunus 38,46 17,24 23,81 20,99 

Pseudotsuga 86,38 79,86 82,99 89,71 

Quercus 69,25 80,23 74,34 83,62 

Tilia 0 0 0 0,0 

Table 4. Class-wise YOLOv8-l results with NIR + R + G band 

combination. 

 

However, prediction results for imbalanced classes such as 

Prunus, Populus and Tillia were poor. As stated in Ahlswede et 

al. (2023) the incorporation of both deep neural networks and 

multi-layer perceptron produced more accurate results than using 

only deep neural networks. Implementing such approaches into 

YOLOv8 architectures could improve the results.  Another major 

finding was absence of correlation between model depth and 

model accuracy, since for R+G+B bands, YOLOv8-m obtained 

the best performance whereas YOLOv8-l was the most succesful 

for NIR + R + G and All except micro averaging scores in Table 

3.  
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As illustrated in Figure 4, number of true positives for Abies, 

Alnus, Betula, Cleare, Fagus, Fraxinus, Larix, Picea, Pinus, 

Pseudotsuga and Quercus classes are relatively higher than 

underrepresented classes Populus, Prunus, and Tilia. It is thought 

that the small number of training and test data causes this 

situation. Especially for Tilia class, no correct predictions could 

be performed. In order to solve this problem, it is foreseen to use 

machine learning classifiers as previous study carried out by 

Ahlswede et al. (2023). 

 

 
 

Figure 4. Confusion matrix of YOLOv8-l prediction results 

(Green: True Positives, Red: False Positives and False 

Negatives) 

 

4. CONCLUSION 

In this study, we utilized a popular object detection algorithm 

YOLOv8, for tree species classification from aerial imagery. Our 

results reveal the advantages of object detection algorithms 

against commonly used networks for image classification tasks. 

Although prediction results were improved in general with 

YOLOv8, predictions on imbalanced classes were performed 

poorly. According to our results, no correlation was found 

between model depth and accuracy. YOLOv8-l, which is the 

second deepest model, achieved a higher classification score than 

other variants. This work can be extended using state-of-art and 

advanced networks such as Transformer, etc. In addition, it is 

thought that the results can be improved by including different 

machine learning classifiers into the classification part of utilized 

networks. It should be addressed that by including satellite 

images as well as aerial imagery, texture information can be 

enriched and more accurate results can be obtained. 
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