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ABSTRACT: 

Land use and land cover (LULC) classification has long been an essential topic in Earth Observation research and plays a key role in 
the sustainable development of agriculture. This study evaluated the accuracy of LULC classification based on an initial clustering step 
in a heterogeneous agricultural landscape using PlanetScope imagery while checking for variability among their Normalized Difference 
Vegetation Index (NDVI) temporal signatures. We adopt an object-based image analysis to generate image-objects and then extract 
statistical information of PlanetScope spectral bands and vegetation indices as input information for classification. The exploratory 
analysis focused on the double crop class and calculated the distance between NDVI temporal signatures of paired land parcels. We 
applied an unsupervised clustering technique along with Random Forest algorithm based on multiple tests to classify and analyse gains 
and losses in accuracies produced by these approaches. Our results showed that the initial clustering method outperformed the non-
clustered classification of LULC in overall accuracy measures. The exploratory analysis demonstrated that double crops might present 
high intra-class variability and diverse crop calendars for neighbour land parcels. The accuracies achieved represent promising 
opportunities for the sufficiently accurate classification of such areas, and the knowledge of the intra-class variability allows the analyst 
to infer the temporal dynamics of crop fields. We reinforce that further work could assess other types of classifiers, especially in areas 
with a large number of crop types and distinct management practices.

1. INTRODUCTION

Land use and land cover (LULC) classification is an essential 

planning tool once it illustrates the spatial distribution of the 

Earth's surface attributes and plays a pivotal role in the 

sustainable development of agronomics, environment, and 

economics (Vali et al., 2020). Over the past few decades, accurate 

information on crop types and their spatial distribution have 

become a central issue for food security, policy making, and 

water and soil resource management (FAO, 2021). 

Besides the accurate information, LULC maps for agricultural 

purposes must present a suitable spatial resolution and be updated 

frequently to deliver practical benefits. From this perspective, 

remote sensing data and classification techniques have the unique 

capability to automate the generation of such maps in a large-

scale observation (Bellón et al., 2018) and the potential to 

discriminate a wide range of crop types (Brinkhoff et al., 2019). 

A considerable amount of literature has been published on LULC 

classification of agricultural areas using remote sensing data 

(Orynbaikyzy et al., 2019). The increasing availability of public 

Earth Observation data and the advanced methods in digital 

image processing leveraged these studies from single imagery 

(Mathur and Foody, 2008) to time-series analysis (Cai et al., 

2018), allowing it to capture the temporal dynamics of crops. In 

addition, the availability of very high-resolution images has 

provided fine-grained classifications and more effective target 

recognition under complex landscapes (Qin and Liu, 2022). For 

instance, the commercial constellation of Planet CubeSats 

provides a powerful combination of high spatial (3m pixel size) 

and temporal (daily) resolution imagery for fine-scale LULC 

classification and monitoring (Planet Team, 2022). 

However, LULC classification of agricultural areas is not a trivial 

task since it depends on the size of the area and its complexity, 

for instance, the number of crop classes, parcel sizes, and 

environmental conditions. In addition, a single crop class can 

exhibit considerable variability in its within-parcel spatial 

distribution and spectro-temporal signatures due to different 

management practices and cropping intensity or even the 

presence of trees within the parcels. For instance, the growing 

demand for agricultural commodities has increased the incentive 

for intensification practices, and multiple-cropping has drawn 

interest in boosting production without expanding the planting 

area (Garrett et al., 2018). This system can demonstrate diverse 

crop calendars for neighbour land parcels, which may lead to 

similar spectro-temporal signatures to other LULC classes (Azar 

et al., 2016; Villa et al., 2015). 

In order to deal with the high intra-class variability, crop mapping 

methods would largely benefit from spectral-temporal variability 

reduction steps prior to classification. Object-based approaches 

(so-called Object-Based Image Analysis – OBIA) are widely 

used to reduce spatial variability by dividing an image into 

groups of pixels that are spatially continuous and spectrally 

homogeneous (Blaschke, 2010). Moreover, unsupervised 

classification methods can reduce the spectral variability of 

crops. In this case, they rely on algorithms for grouping spectro-

temporal signatures according to their intrinsic characteristics or 

similarity and not using a priori labelling. These methods appear 

as good alternatives for mapping agricultural patterns (Pascucci 

et al., 2018). 
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In this context, the objective of our study was to evaluate the 

accuracy of LULC classification based on an initial clustering 

step in a heterogeneous agricultural landscape while checking for 

variability among their Normalized Difference Vegetation Index 

(NDVI) temporal signatures. This paper first examines the 

temporal signatures of the double crop class and the intra-class 

variability, investigating the potential patterns of plant structure, 

growing behaviour, and management practices. Second, we 

evaluated the performance of an initial clustering-based 

classification, investigating the benefit of partitioning the 

spectro-temporal signatures dataset into initial sub-clusters. We 

hypothesized that grouping observations with similar spectro-

temporal signatures will improve the performance of LULC 

classification over a non-clustered method because these clusters 

will reduce the intra-class variability, returning gains in accuracy.  

 

This study addresses the following research questions: (1) How 

similar are NDVI temporal signatures derived from a dynamic 

agricultural land use class? (2) How does a LULC classification 

method based on an initial clustering scheme affect map 

accuracies in a heterogeneous agricultural landscape? 

 

To answer these research questions, we extracted and classified 

PS spectro-temporal signatures in the southern region of Mato 

Grosso (MT) State, Brazil. We applied an unsupervised 

clustering technique along with RF algorithm based on multiple 

tests to classify and analyse gains and losses in accuracies 

produced by these approaches. 

 

2. MATERIAL AND METHODS 

2.1 Study area 

The study area is the Gravataí farm located in the southern region 

of MT State, Brazil (Figure 1). Totalling 10,352 hectares, the area 

is occupied by LULC classes comprising agriculture parcels, 

pasture, native forest, roads, buildings, and bare lands. 

 

The area presents sixteen land parcels that have been intensively 

managed as a double crop system based on the rotation of 

soybean in the summer season and corn during the winter season. 

Usually, the soybean-sowing period lasts from late October to 

mid-November according to the onset of the rainy season, which 

lasts from October to March; and, immediately after the soybean 

harvest, there is the corn-sowing period for harvest in May and 

June (called safrinha or second season in Brazil). 

 

The crop expansion from the last five decades led MT to be 

Brazil's major source of agricultural production. Last year, MT 

produced 26.2% and 36.2% of the national production of 

soybeans and corn, respectively, making it the most productive 

state for each of these crops (IBGE, 2021). 

 

The use of intensive practices, such as double cropping, has been 

widely adopted in MT, which is an additional challenge for 

accurate crop area mapping. Thus, the need for accurate crop 

maps and the agricultural attention upon MT reinforce the choice 

of our study area. 

 

 

Figure 1. The Gravataí farm and its representation in PS false 

colour composition (Red = near-infrared, Green = red, Blue = 

green) from 16/01/2019. 

 

2.2 PlanetScope data processing 

We acquired PS images from 1st September 2018, to 31st August 

2020, covering the study region. This time interval corresponds 

to the period of two agricultural years in the region: 2018-2019, 

and 2019-2020. We selected all surface reflectance images with 

less than 30% of cloud cover and masked them with the Unusable 

Data Mask product to generate cloud-free time series for each 

agricultural year. A total of 717 PS image files were downloaded. 

 

A set of five PS-based spectral indices and four spectral bands 

was generated to classify the LULC in the study area (Table 1). 

These spectral variables can indicate vegetation condition, 

phenological dynamics, plant water, and chlorophyll content by 

providing information about crops' reflective characteristics at 

different wavelengths. In addition, these indices have been used 

in agricultural studies using PS data and have shown the potential 

to detect important vegetation features for classification and 

estimation purposes (Reis et al., 2020). 

 

To overcome long image gaps in the time series due to cloud 

cover, we calculated a 15-day image composition by selecting the 

median value of each band/index in a 15-day interval. These 

image composites also provided a consistent time series with 

equal time intervals. In addition, we linearly interpolated 

potential remaining gaps in the time series using the nearest valid 

value before and after the time step. 
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Band/ 

Index 
Formula Ref 

B NA 

(Planet Team, 

2022) 

G NA 
R NA 

NIR NA 

EVI 2.5((𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 6𝑅 − 7.5𝐵 + 1)) 
(A. Huete et al., 

2002) 

GNDVI (𝑁𝐼𝑅 − 𝐺)/(𝑁𝐼𝑅 + 𝐺) 
(A. Huete et al., 

2002) 

MSAVI 
(2𝑁𝐼𝑅 + 1) − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅)

2
 (Qi et al., 1994) 

NDVI (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅) 
(Rouse et al., 

1974) 

SAVI 1.5((𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅 + 0.5)) 
(A. R. Huete, 

1988) 

Table 1. Summary of the spectral indices and bands used in this 

study for LULC classification. 

 

2.3 Image segmentation 

Image segmentation is a crucial step in OBIA and divides an 

image into groups of pixels that are spatially continuous and 

spectrally homogeneous, also known as image-objects. The 

segmentation of a remote sensing image minimises the within-

object variability compared to the between-object variability 

(Desclée et al., 2006). 

 

We implemented image segmentation within the Google Earth 

Engine environment based on the Simple Non-Iterative 

Clustering (SNIC) algorithm (Achanta and Süsstrunk, 2017) 

performed on the NDVI images of each agricultural year, so-

called multitemporal segmentation. This method created 

multitemporal image objects by segmenting multiple NDVI 

images of sequential periods. It incorporated spectral, spatial, and 

temporal information from NDVI images, which created objects 

based on the LULC dynamics in time (Bueno et al., 2019). 

 

The multitemporal segmentation was based on setting a grid of 

seeds to establish a superpixel seed location spacing, influencing 

the image-objects size. Then, SNIC required setting some main 

parameters: the "compactness factor" was set to 0.5 and affects 

the object shape; the "connectivity" was set to 4 and defined the 

type of contiguity to merge adjacent objects, and a 

"neighborhoodSize" was set to 256 to avoid tile boundary 

artifacts. We set these parameters using an essay on trial-and-

error to find the appropriate segmentation for the study area, then 

select the most suitable output based on a visual assessment 

(Duro et al., 2012). 

 

We generated two sets of multitemporal segmentation, one for 

each agricultural year. 

 

2.4 Ground Reference data 

Field campaigns were conducted in June 2021 to collect 

terrestrial reference data points. The LULC information was 

collected based on the current land cover during the field 

campaigns and by interviewing local farmers to obtain the area's 

historical LULC. From the reference data, we set six LULC 

classes: cultivated pasture, double crop (soybean and corn), 

forest, integrated crop-livestock system (soybean and pasture), 

and others (roads, buildings, and bare lands). 

 

2.5 Exploratory analysis 

We conducted an exploratory analysis of the NDVI temporal 

signatures of the double crop class to obtain further in-depth 

information on their time dynamics and intra-class variability. 

From image-objects of this class, we extracted the mean NDVI 

and then generated their temporal signatures. 

We calculated the mean NDVI temporal signature for each 

double crop land parcel by filtering their corresponding image-

objects. In this case, we calculated the Euclidean distance of 

NDVI values (q1 and p1) for each date (q2 and p2), then obtained 

the Mean Euclidean Distance (MED) between NDVI temporal 

signatures of land parcels (Equation 1). Euclidean distance was 

chosen primarily due to its straightforward interpretation. 

 

𝑀𝐸𝐷 =
∑ √(𝑝1𝑖 − 𝑞1𝑖)

2
+ (𝑝2𝑖 − 𝑞2𝑖)

2𝑛
𝑖=1

𝑛
 

(1) 

MED values between all pairs of land parcels generated a matrix 

of distances, which allowed us to infer their intra-class variability 

graphically. MED values were also scaled from 0 to 1 based on 

the absolute minimum and maximum values to relatively monitor 

their variability. 

2.6 LULC classification 

From image-objects, we extracted four descriptive attributes: 

mean, 95th and 5th percentile, and standard deviation based on 

each band/index value inside the objects, then generated their 

respective spectro-temporal signatures. The initial pool of 

variables was screened to limit the potential effects of 

multicollinearity by calculating correlations between pairs of 

variables using Pearson’s R correlation coefficient. We removed 

those with R values greater than 0.90. 

A clustering step partitioned the double crop image-objects into 

initial clusters based on their spectro-temporal signatures. We 

evaluated nine initial clusterings according to their number of 

clusters (NC), NC = {2, 3, 4, 5, 6, 7, 8, 9, 10}, and a non-clustered 

test (NC = 0). They were based on the k-means algorithm, a 

widely used clustering method that partitions the data into k 

groups such that the within-cluster sum of squares is minimized. 

For this study, k-means clustering was undertaken using the 

Hartigan-Wong algorithm in the ‘stats’ package (R Core Team, 

2014). 

We used the Random Forest algorithm (RF; Breiman (2001)) to 

classify the LULC in the study area. In this study, we tuned three 

RF parameters that control the structure of the algorithm: the 

number of trees to grow, or Ntree; the number of predictors 

sampled at each tree node, or Mtry; and the minimum size of 

terminal nodes. The control of the node size parameter defines 

the minimum number of observations in a terminal node. We 

used the following parameter values in the RF tuning: Ntree = 

{200, 600, 1000}; Mtry = {√(𝑝/4)), √(𝑝/2), √𝑝} with p the total 

number of variables; and node size = {2, 6, 10}.  

 

Ten RF classifications representing each initial clustering step 

were performed. We balanced the number of observations by 

sampling 100 image-objects per LULC class when available, 

then split the data into 70% for training, while 30% was used for 

the test set to assess the generalization error of the RF model. 

Observations of training and test sets were sampled from the first 

agricultural year (2018-2019), while all observations from the 
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last year (2019-2020) were set for prediction analysis and LULC 

maps illustration.  

 

We created individual confusion matrices using the test dataset 

and computed overall accuracy, producer’s accuracy of the 

double crop class (observations characterised as double crop at 

the reference dataset, but not assigned as such by the model), and 

user’s accuracy (observations detected as a double crop by the 

model but not identified as such in the reference dataset). Since 

double crop clusters represent a unique LULC class, we expand 

the major diagonal of the confusion matrix of this class for 

clustered tests. This technique merged false negative and false 

positive observations into the true positive group allowing us to 

infer accuracies more properly (Congalton and Green, 2009). 

 

Finally, we checked for linear associations between the overall 

accuracy and the number of clusters by fitting a linear regression 

model. The model performance was evaluated by the coefficient 

of determination (R2). 

 

RF analysis and tunning were undertaken using the mlr package 

(Bischl et al., 2016), while confusion matrices were derived using 

the caret package (Kuhn, 2008). 

 

3. RESULTS 

The first set of analyses examined the NDVI temporal signatures 

of the double crop class and the intra-class variability. This 

method was particularly useful since it allowed us to create a 

matrix of distance-based variability among all land parcels and 

infer the heterogeneity of the agricultural landscape (Figure 2b). 

 

It is apparent from this matrix that some land parcels (e.g., 06, 

08, 21, and 22) presented different NDVI temporal signatures 

compared to others (red tones). The most striking result to 

emerge from the matrix is the highest MED between parcels 08 

and 11, consequently, the most heterogenous land parcel pair 

(Figure 2a). There was a visible time shift in soybean harvest 

along with different patterns in NDVI values. We also observed 

a time shift in corn-sowing and harvest between these land 

parcels, where parcel 08 started late than parcel 11. 

 

The white tones indicate an intermediary variability between land 

parcels. Despite showing lower values of MED, those 

comparisons have a rather interesting outcome since they can 

present variability from a particular time period. For instance, 

parcels 14 and 22 returned a MED of 0.53 (Figure 2c). However, 

they might have adopted a different corn harvest practice or land 

cover before the soybean sowing while still presenting very 

similar summer season NDVI temporal signatures. 

 

 

Figure 2. Exploratory analysis of the double crop land parcels' 

and their paired comparison of NDVI temporal signatures. b) 

Matrix of distance-based variability among land parcels, 

illustrating a) the lowest NDVI temporal signature variability 

between parcels 08 e 11, and (c) a moderate variability between 

parcels 14 and 22. 

 

Accuracy measures of the test sets are displayed in Table 2. The 

initial clustering method outperformed the non-clustered 

classification of LULC in overall accuracy measures. 

 

The most striking observation from this analysis was the 

classification output with eight initial double crop clusters that 

returned an overall accuracy of 98.8%, an increase of 3.2% 

compared to the non-clustered method. This test also returned the 

highest producer’s accuracy of 99.7%, where, considering the 

240 double crop observations sampled in the reference dataset, 

only one was omitted (0.3% of omission error of the double crop 

class). However, the non-clustered classification returned the 

highest user’s accuracy with an inclusion error of 0.0%. 

 

Although the clustered test with seven and ten clusters completed 

the top three highest accuracies, we found a weak linear 

association with R2 of 0.47 between the overall accuracy and the 

number of clusters. 
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NC OA Double crop Rank 

  PA OE UA CE  

0 95.6 86.7 13.3 100.0 0.0 10º 

2 97.0 98.3 1.7 96.7 3.3 7º 

3 96.4 96.7 3.3 96.7 3.3 9º 

4 97.4 97.5 2.5 97.5 2.5 4º 

5 97.3 98.0 2.0 98.0 2.0 5º 

6 96.5 96.7 3.3 98.3 1.7 8º 

7 97.8 98.6 1.4 99.0 1.0 2º 

8 98.8 99.7 0.3 98.8 1.2 1º 

9 97.1 98.9 1.1 97.8 2.2 6º 

10 97.8 98.7 1.3 98.3 1.7 3º 

Table 2. Accuracy results (in percentage) from cluster-based 

classification tests. (NC = number of clusters, OA = overall 

accuracy, PA = producer’s accuracy, OE = omission error, UA 

= user’s accuracy, and CE = commission error). 

 

Figure 3 displays the map predictions for each test. Visual 

interpretation indicates that map predictions were similar and 

corroborated with the high overall accuracies of the test sets. 

However, we can observe a few cultivated pasture image-objects 

included in the double crop class, especially in the tests with 3, 

5, and 9 clusters. These commission errors are a rather 

unexpected result and can not be compared with the user’s 

accuracies of the test sets.  

 

 

Figure 3. Map predictions of classification tests, where NC: 

number of clusters. 

 

4. DISCUSSION 

In this research, we evaluated the accuracy of LULC 

classification based on an initial clustering step in a 

heterogeneous agricultural landscape while checking for 

variability among their NDVI temporal signatures. 

 

4.1 Effect of an initial clustering step on LULC 

classifications 

Our results showed that an initial clustering method in a 

heterogenous agricultural class using PS data and RF algorithm 

produced more accurate results than a non-clustered LULC 

classification. These results also showed patterns related to plant 

structure, growing behaviour, and management practice, which 

allow for highly accurate classifications. 

 

This finding broadly supports the work of other studies in this 

area, reducing the intra-class spectral-temporal variability of 

agricultural areas. Bellón et al. (2018) used multiple clustering 

approaches combining field-level segmentation and landscape 

stratification to reduce the spectral variability of crops. In that 

study, the authors demonstrated an improvement in classification 

accuracies for underrepresented and sparsely distributed 

cropping systems. 

 

Although we achieved higher overall accuracies based on a 

higher number of clusters, we found a weak linear association 

between them. Nevertheless, the present results are significant in 

one major respect: the very satisfactory accuracy regardless of 

the clustering step, which indicates the potential of our method. 

 

One unanticipated finding was that accuracy measures of 

predicted maps, such as the user’s accuracy, did not fully mirror 

those we achieved from the test set. This result may be explained 

by the fact that we set a different agricultural year for prediction 

analysis and LULC maps illustration, which was entirely 

independent of the observations used to train and test the RF 

model in both time and space. Using yearly independent data sets 

leads to natural meteorological variations between agricultural 

years and different phenological responses of vegetation, which 

may directly affect the map predictions. These results reflect 

those of Han et al. (2022), who also observed this weather 

volatility, demonstrating its considerable impact on double crop 

systems yield variability. 

 

4.2 Intra-class variability of NDVI temporal signatures 

Soybeans are recognized as a typical summer crop in double-

cropped rotations, particularly in combination with winter corn 

in the MT state. The exploratory analysis demonstrated that these 

agricultural land uses may present high intra-class variability and 

diverse crop calendars for neighbour land parcels. These results 

reflect those of Arias et al. (2020), who also found considerable 

variability in crop parcels related to management techniques and 

cultivars compositions using a crop classification approach based 

on temporal signatures from Sentinel-1 time series. 

 

In our study, soybean-related NDVI temporal signatures varied 

little, although we observed a slight time shift between some land 

parcels during the harvest period. On the other hand, corn-related 

NDVI temporal signatures varied the most. Paired land parcels 

presented up to one month of time shift considering the sowing 

period. Harvest periods also varied depending on the 

management practice and season length of cultivars, e.g., plant 

residuals might be left to dry after the harvest or removed 

mechanically. 

 

Another source of variability was the land cover prior to soybean 

sowing, where we observed land parcels with both low and high 

NDVI values. The first indicates the fallow period between 

rotations, and the latter may indicate a crop emergence of residual 

seeds left during harvest. 
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The variability among land parcels may partly be explained by 

the size of the crop area (approximately 2900 hectares) and the 

15-day time interval of PS composites, which makes the time 

regularity of management practices impracticable. 

 

We reinforce that such high variability should be better addressed 

by designing parcel-specific strategies and not based only on 

broad class-related spectro-temporal signatures. 

 

Given the promising results, however, further investigation is 

needed to provide greater insight into the effects of this 

methodology on other crop dynamics. Moreover, more robust 

classifiers, such as deep learning architectures, should be 

considered to improve model accuracies and to better generalise 

the predictions to other areas.  

 

5. CONCLUSION 

The high intra-class variability of agricultural parcels has 

demanded reliable approaches for producing accurate LULC 

classification maps. The present study investigated the accuracy 

of LULC classification based on an initial clustering step in a 

heterogeneous agricultural landscape while checking for 

variability among their NDVI temporal signatures. In a 

heterogeneous agricultural area located in the state of MT, we 

examined the hypothesis that grouping observations with similar 

spectro-temporal signatures would improve the performance of 

LULC classification over a conventional method. 

 

Results showed that some land parcels presented distinct NDVI 

temporal signatures. 

 

The initial clustering scheme outperformed the non-clustered 

classification of LULC in overall accuracy measures regardless 

of the number of clusters, which addressed the complexity and 

variability of spectro-temporal signatures. These clusters 

identified parcel-specific dynamics of management practices and 

cropping intensity, reducing the uncertainty in classifying the 

area. 

 

In order for countries to implement more effective and 

sustainable development of agriculture, there is a need to improve 

the accuracy of thematic maps produced through the process of 

LULC classification, especially in heterogeneous agricultural 

areas. The accuracies achieved with this approach represent 

promising opportunities toward the sufficiently accurate 

classification of such areas. In addition, the knowledge of the 

intra-class variability allows the analyst to classify agricultural 

areas and infer the temporal dynamics, whether caused by 

management practices or cropping intensity. 

 

Further work could assess other types of classifiers, such as deep 

learning architectures, especially in areas with a large number of 

crop types and distinct management practices.  
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