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ABSTRACT: 
 
Extracting ground points from 3D point clouds is important for sustainable development goals, infrastructure planning, disaster 
management, and more. However, the irregularity and complexity of the data make it challenging. Deep learning techniques, 
particularly end-to-end and non-end-to-end approaches, have shown promise for 3D point cloud segmentation and classification, but 
both require a comprehensive understanding of the features and their relationship to the problem. This paper presents a study on the 
filtering of 3D LiDAR point clouds into ground and non-ground points using a non-end-to-end deep learning approach. The aim of this 

research is to investigate the effectiveness of utilizing geometric features and a binary classifier-based deep learning model in accurately 
classifying point clouds. The publicly available ACT benchmark datasets were employed for training, validation, and testing purposes. 
The study utilized a k-fold cross-validation method to address the limited availability of training data. The results demonstrated highly 
satisfactory performance, with validation averages reaching 96.83% for the divided Dataset-1 and an accuracy of 97% for the test set. 
Furthermore, an independent dataset, Dataset-2, was used to evaluate the generalizability of the trained model, achieving an accuracy 
of 93%. These findings highlight the potential of the proposed non-end-to-end approach to filtering point cloud data and its applicability 
in various domains such as DEM and DTM production, city modeling, urban planning, and disaster management. Moreover, this study 
emphasizes the need for accurate data to achieve sustainable development goals, positioning the proposed approach as a viable option 

in various studies. 
 
 

1. INTRODUCTION 

Light Detection And Ranging (LiDAR) is a technique that uses 
laser pulses to measure the distance and reflectance of objects in 
the environment, producing a 3D representation of the scene 
(Huang et al., 2019b). The accurate filtering of 3D LiDAR point 
clouds is a fundamental task in numerous geospatial-related 
applications, including terrain analysis, urban planning, and 
disaster management. These practices are essentially 
indispensable to ensuring the sustainability of the Sustainable 

Development Goals (SDGs). Point cloud processing plays a 
crucial role in extracting meaningful information from the 
acquired data, enabling applications such as terrain modeling, 
object detection, and environmental monitoring (Huang et al., 
2019a). Of particular interest is the accurate separation of ground 
and non-ground points, as this classification is fundamental for 
various geospatial tasks, especially for digital terrain model 
(DTM) generation. 
 

In recent years, deep learning techniques have demonstrated 
remarkable success in various domains, including image 
classification, natural language processing, speech recognition, 
and point cloud object detection. The end-to-end deep learning 
approach, which involves training a model to directly map raw 
input data to desired outputs, has gained significant popularity 
due to its ability to automatically learn hierarchical 
representations and extract discriminative features from complex 

data (Qi et al., 2017b; Shi et al., 2019; Liu et al., 2019). However, 
for certain tasks such as point cloud classification, the end-to-end 
approach may suffer from limitations, particularly when dealing 
with limited training data and imbalanced class distributions 
(Winiwarter et al., 2019; Schmohl & Sörgel, 2019). 
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In this study, we present a non-end-to-end deep learning 
approach specifically tailored for ground and non-ground point 
cloud filtering. By leveraging geometric features and a binary 
classifier-based architecture, the proposed model aims to 

accurately classify individual points as either ground or non-
ground. The use of geometric features allows the model to 
capture intrinsic characteristics of the point cloud data, thereby 
improving classification accuracy (Nurunnabi et al., 2021; 
Weinmann et al., 2014). Furthermore, the adoption of a binary 
classifier enables the separation of point clouds into two distinct 
classes, facilitating subsequent analyses and applications. 
 

To evaluate the effectiveness of the proposed approach, we 
utilize the publicly available ACT benchmark datasets, which 
provide diverse and challenging point cloud data for testing and 
validation purposes. Given the limited availability of training 
data, we employ the k-fold cross-validation technique to ensure 
reliable performance assessment (Wong & Yeh, 2019). This 
technique involves dividing the training data into multiple folds, 
training separate models on each fold, and evaluating their 
performance on the validation set. The evaluation measures, 

including accuracy, precision, recall, and F1-score, provide a 
comprehensive assessment of the proposed approach's 
classification capabilities. 
 
The results of this study demonstrate the efficacy of the non-end-
to-end deep learning approach in accurately classifying ground 
and non-ground points in 3D LiDAR point clouds. The obtained 
accuracy values showcase the potential of the proposed 

methodology for various applications, including DTM 
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generation, city modeling, urban planning, disaster management, 

land management, and corridor mapping. 
 
In conclusion, this research paper presents a novel non-end-to-
end deep learning approach for ground and non-ground point 
cloud filtering. The proposed methodology demonstrates 
promising results, highlighting the significance of leveraging 
geometric features in point cloud classification tasks. The 
findings contribute to the existing body of knowledge in the field 

of point cloud analysis and provide valuable insights for 
researchers and practitioners interested in the accurate and 
efficient processing of 3D LiDAR point clouds. 
 
The remainder of this paper is organized as follows: Section 2 
presents the study area and dataset, including information about 
the data utilized. Section 3 describes the methodology, data 
processing, the deep learning model architecture, and the 
evaluation measures employed. Section 4 presents the results and 

discussions, followed by a discussion on the implications and 
limitations of the proposed approach. Finally, Section 5 
concludes the paper and outlines future research directions. 

 

2. STUDY AREA AND DATASET 

In this study, publicly available aerial LiDAR dataset provided 
by the Luxembourg Administration of Cadastre and Topography 
(ACT) was used. The data can be accessed at the following 

address: https://data.public.lu/en/datasets/LiDAR-2019-releve-
3d-du-territoire-luxembourgeois/. These data were collected 
through measurements conducted in 2019 and consist of 3D point 
clouds covering the entire country. The measurements were 
performed with an average point density of 15 points per square 
meter and horizontal and vertical accuracy of ± 3 cm and ± 6 cm, 
respectively. To facilitate easy downloading, these large data 
sets, which cover a large area, were divided into 500-m-wide 

sections. Each download file contains nine sections, resulting in 
a point cloud dataset of 1500 x 1500 m. Two of these sections 
were randomly selected, one for training data and the other for 
testing data (Figure 1). 
 

 
(a) 

 
(b) 

Figure 1. a) Training dataset (Dataset-1) b) Test dataset 
(Dataset-2) 
 

In the ACT dataset, the points are labeled as soil, low vegetation, 
medium vegetation, high vegetation, buildings, low points 
(noise), water, bridges, footbridges, viaducts, high voltage lines, 
and unclassified points. In this study, the points were manually 
assigned into ground and non-ground categories. This process is 
detailed in Section 3.1. The training dataset consists of 3,395,251 
points, with 70% used for training and 30% for testing. This 
training set is further divided into four parts, and validation 

values are calculated using a 4-fold cross-validation method. The 
independent test dataset contains 4,122,627 points, which are 

used as validation data to measure the accuracy of the trained 

deep learning model. 
 

3. METHODOLOGY 

In this section, we detail our strategy in two sub-sections: (i) 

feature extraction, and (ii) deep learning architecture. A number 
of preprocessing operations were applied to the downloaded raw 
data using the open-source software CloudCompare. The labels 
of very low points (noise) and unclassified points were removed 
from the point clouds of the training and test data. This is because 
these points do not belong to any class and would negatively 
affect the accuracy of deep learning training. 
 
3.1 Feature Extraction 

After pruning the point clouds, features needed to be calculated. 
Feature extraction for 3D point cloud data is a process of 
identifying and extracting meaningful geometric shapes or 
structures from the raw 3D point data collected by LiDAR 

sensors. This feature extraction can be useful for various 
applications, such as object recognition, scene understanding, 
mapping, registration, segmentation, classification, and 
reconstruction (Baek et al., 2017). 
 
There are different methods and algorithms for geometric feature 
extraction from 3D point cloud LiDAR data, depending on the 
type of features, the quality of the data, the computational 

complexity and the desired accuracy (Dittrich et al., 2017; 
Weinmann et al., 2017; Grilli et al., 2019; Zeybek & Biçici, 
2021). Principal Component Analysis (PCA) can be used for 
geometric feature extraction, which involves transforming the 
original features of a dataset into a new set of features (Sawyer et 
al., 2021). This transformation is done by projecting the data onto 
the principal components identified through PCA. In the context 
of geometric feature extraction, PCA helps to identify the most 

informative and relevant features in the dataset. It achieves this 
by finding a smaller set of uncorrelated variables, known as 
principal components, that capture the maximum variance in the 
data. These principal components represent a new feature space 
that retains the essential characteristics of the original data while 
reducing its dimensionality. By selecting a subset of the top-
ranked principal components, one can effectively reduce the 
number of features in the dataset. This dimensionality reduction 

can be beneficial for various reasons, including simplifying 
subsequent analysis, alleviating computational complexity, and 
removing noise or redundant information. PCA-based feature 
extraction can be particularly valuable when dealing with high-
dimensional datasets where the number of features exceeds the 
number of samples. It allows for a more concise representation 
of the data while retaining the most important information, 
making subsequent modeling or analysis tasks more efficient and 
effective (Lin et al., 2014; Gilani et al., 2016). 

 
The utilized features and their descriptions are provided in Table 
1. These features were extracted with the help of the 
CloudCompare software, and the calculation of these features 
was based on the studies by Douros and Buxton (2002) and 
Hackel et al. (2016). Note that we calculated 8 out of the 9 3D 
local shape features with a specific radius of 0.5 m spherical 
neihgborhood, while intensity, which is one of the nine features, 

was not calculated as it was already present in the dataset. In total, 
the features utilized for training the deep learning model include 
intensity, mean curvature, volume density, sum of eigenvalues, 
omnivariance, eigenentropy, planarity, linearity, and verticality. 
These processes were both applied to Dataset-1 and Dataset-2. 
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Features Definition 

Intensity Return strength of a laser 
pulse 

Curvature 𝜆3 ÷ (𝜆1+ 𝜆2 + 𝜆3) 

Volume density Number of neighbors 
divided by the 
neighborhood volume 

Sum of eigenvalues 𝜆1 + 𝜆2 + 𝜆3 

Omnivariance 
(𝜆1 ⋅ 𝜆2 ⋅ 𝜆3)

1
3 

Eigenentropy 
−∑

3

𝑖=1

𝜆𝑖 ⋅ 𝑙𝑛(𝜆𝑖) 

Planarity (𝜆2− 𝜆3) ÷ 𝜆1 

Linearity (𝜆1 − 𝜆2) ÷ 𝜆1 

Verticality 1 − (𝜆3 ÷ (𝜆1 + 𝜆2 + 𝜆3)) 

Table 1. Features utilized in the proposed approach. 
 
 
3.2 Deep Learning Architecture 

The architectural structure of the deep learning model has been 
specifically devised to function as a binary classifier (Figure 2). 
The utilization of a binary classifier is motivated by the objective 
of categorizing point clouds into two distinct classes, namely 
ground and non-ground. The neural network was trained using 
feature vectors and targets. The target values comprise binary 
digits, specifically 1s and 0s, where 0 represents non-ground and 

1 represents ground. The network architecture comprises a total 
of five densely connected layers. The Rectified Linear Unit 
(ReLU) activation function is employed for the hidden layers, 
while the sigmoid function is utilized for the output layer. Each 
dense layer is comprised of 50 neurons. The model was trained 
using the binary cross-entropy loss function and the Adam 
optimizer. The learning rate utilized by the Adam optimizer is 
fixed at 0.01. 

 
The k-fold cross-validation technique was utilized during the 
training of the model. This approach is frequently employed in 
situations where there is a limited availability of accessible data 
(Srinivasan et al., 2019). The variability of the validation scores 
is dependent on the specific validation dataset. In such cases, the 
best approach to apply is K-fold cross-validation (Figure 3). The 
data at hand is partitioned into K segments, with K being equal 
to 4 in our study. Subsequently, K models are constructed, 

wherein each model is trained on K-1 parts of the data and 
assessed on the remaining parts. The validation score is computed 
as the arithmetic mean of the K validation scores. 

 
Figure 2. Structure of the deep learning algorithm to train the 
model 
 
 

 
Figure 3. 4-Fold cross validation for Dataset-1 

 
 

In the current study, due to the limited availability of 3D point 
data for training, we utilized the 4-fold cross-validation method. 
We trained the model for 20 epochs and set the mini-batch size 
to 128. At the end of each epoch, the evaluation measures (loss 
and accuracy) were computed on the validation dataset. The 
accuracy measures for the 4-folds were calculated separately, and 
the overall accuracy measure was obtained by computing their 
average. After training the model in this manner, the evaluation 
measures were computed on the 30% test data that we had split. 

 
Furthermore, the point cloud from Dataset-2, which was not used 
in any way during training, was used to independently evaluate 
the accuracy of the model. The purpose was to observe the 
performance of the model on a similar but different dataset. The 
model was developed in Python using Google Colaboratory. 
 
 

4. RESULTS AND DISCUSSION 

This section discusses the findings of the study and highlights the 
advantages and disadvantages of the method presented. As 
mentioned earlier, Dataset-1 was divided into two parts (part 1: 

70% training and part 2: 30% test), and part 1 was further divided 
into 4 folds for 4-fold cross-validation during training. 
Additionally, Dataset-2 was used separately to evaluate the 
accuracy of the trained model. 
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Table 2 presents the average accuracy values for each fold. 

Figure 4 shows the average training and validation accuracy 
values for each fold at the end of each epoch. Since each fold was 
trained for 20 epochs, the average values of all epochs from the 
first to the last epoch in each fold were calculated as the accuracy 
values for each epoch. 

 
# of Fold Accuracy % 
Fold 1 96.85 
Fold 2 96.84 
Fold 3 96.81 
Fold 4 96.81 
Mean 96.83 

Table 2. Value of accuracy for each fold and mean accuracy 
 

 
Figure 4. Training and validation performance of 4-fold cross 

validation 
 
The accuracy values for the test data of part 2, which accounts 
for 30% of Dataset-1, are provided in Table 3. The table also 
includes precision, recall, and F1-score values for the ground and 
non-ground points. In part 2, there are a total of 1,018,576 points, 
with 305,827 points labeled as non-ground and 712,749 points 

labeled as ground. The given evaluation values represent the 
correct prediction rates for these points. Therefore, the overall 
probability of correctly predicting these points is calculated to be 
97%. 
 
The evaluation measures calculated for Dataset-2 are provided in 
Table 4. In this case, there are a total of 4,122,627 points, with 
1,231,622 points labeled as non-ground and 2,891,005 points 

labeled as ground. The overall performance of correctly 
predicting classes of these points is calculated to be 93%. 

 
 Precision Recall F1-score # of Points 

Non-ground 0.94 0.95 0.95 305,827 
Ground 0.98 0.97 0.98 712,749 
Accuracy   0.97 1,018,576 
Macro Average 0.96 0.96 0.96 1,018,576 
Weighted 
Average 

0.97 0.97 0.97 1,018,576 

Table 3. Results of the validation dataset (Dataset 1) 
 
 

 

 Precision Recall F1-score # of Points 
Non-ground 0.82 0.97 0.89 1,231,622 
Ground 0.99 0.91 0.95 2,891,005 
Accuracy   0.93 4,122,627 
Macro 
Average 

0.90 0.94 0.92 4,122,627 

Weighted 
Average 

0.94 0.93 0.93 4,122,627 

Table 4. Results of the testing dataset (Dataset 2) 
 
In Table 4, the precision value for non-ground points appears as 
0.82. The primary factor contributing to the comparatively lower 
value in relation to other values presented in the table can be 
associated to the chosen features that possess the characteristic of 
ground points. This is because the model was not trained using 

any features formed by elevation data. Upon visual examination 
of the misclassified points, it is evident that these particular 
points, which are known to belong to buildings, have been 
erroneously classified as ground points (refer to Figure 5). Roofs 
on these structures are all relatively flat rather than sloping. The 
points associated with flat roofs exhibit similarities to ground 
points, which may account for this finding. The 
misclassifications in flat roofs are represented by the point clouds 

enclosed within a red ellipse in Figures 5 and 6. Furthermore, 
within the point cloud representation of the forested region, it has 
been observed that certain points have been inaccurately 
classified. A possible explanation for this particular problem 
could be attributed to the specific parameterization of the 
spherical neighborhood value utilized during the computation of 
the features. These findings will be further evaluated in future 
studies. 

 
 

 
Figure 5. Points on flat roofs in the red ellipse has ground 

characteristic 

 
One notable benefit of employing this approach is its utilization 
of pre-existing geometric and physical knowledge, leading to 
enhanced performance and relatively less dependence on labeled 
data. Moreover, it exhibits significantly shallow architecture in 
contrast to end-to-end deep learning methodologies, thereby 
resulting in reduced memory consumption and less 
computational load. Nevertheless, one critical issue is that it is 

necessary to calculate the features prior to training the deep 
learning model. The process of feature computation is dependent 
on predetermined parameters, such as the radii of spheres. 
Besides, it is necessary to compute the features for both the 
training and test data prior to training the model. 
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(a) (b) 

Figure 6. (a) ground truth and (b) predictions of the test dataset 
(Dataset-2) (ground: yellow, non-ground: purple) 
 
Figure 6 illustrates the ground truth and prediction results of the 
points provided in the Dataset-2. Yellow color is used for ground 
points, while purple color is used to represent non-ground points. 
Figures 7 and 8 display the ground and non-ground points of the 

same dataset in a 3D graphical format. 
 
 

 
Figure 7. Prediction results of ground points 

 

 
Figure 8. Prediction results of non-ground points 

 
 

5. CONCLUSION 

This study focuses on the filtering of 3D LiDAR point clouds into 
ground and non-ground points. For this purpose, a non-end-to-
end deep learning algorithm is preferred. This algorithm 
constructs a deep learning model based on a binary classifier. A 

total of 9 features and point labels are used as inputs, and the 
output is the predictions of point classes. The datasets used in the 
study are publicly available ACT (Luxembourg Administration 
of Cadastre and Topography) benchmark datasets. Due to the 
limited number of data used in the study, the k-fold cross-
validation method is employed, resulting in highly satisfactory 
results. In the cross-validation method, the training data of 
Dataset-1 is divided into 4 equal folds, and their validation 
averages are calculated as 96.83%. The accuracy result for the 

test data of Dataset-1 is 97%, and for the other data used solely 
for testing the model (Dataset-2), the accuracy result is computed 
to be 93%. Based on these findings, it is possible to conclude that 
the use of geometric features as a non-end-to-end approach for 
filtering a limited number of point cloud data is a feasible 
method. This proposed approach can be utilized in various 
studies such as DTM production, city modeling, urban planning, 
disaster management (e.g., flood and earthquake), land 

management, and corridor mapping. In order to achieve 
sustainable development goals, this approach has the potential to 
be applied in every stage of various studies. Considering the need 
for high-accuracy data to reach these goals, this approach can be 
considered as a suitable option.  
 
Similar to other non-end-to-end methods, the proposed approach 
also requires some improvements. Future research will explore 

different feature combinations and different deep learning 
models. Additionally, point clouds will be classified into multiple 
classes such as vegetation, building, and road to test the 
performance of multi-class classification. 
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