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ABSTRACT: Snow avalanche refers to rapid snow mass movement under the influence of gravity and is a frequently observed 

natural phenomenon in mountainous regions. An area affected by a snow avalanche consists of starting, track (or transition) and 

runout (or deposition) zones, which have different geomorphologic characteristics that need to be considered in hazard modelling. 

This study attempted to analyze the impact of the different zones in producing snow avalanche susceptibility maps (ASMs) with 

data-driven methods. The random forest (RF) method was applied to the data from Gross Spannort Mountain region (Switzerland) 

for this purpose. Avalanche inventories from two dates were manually delineated to separate the three zones and two RF models 

were trained with learning datasets; i.e. Inventory-A which includes all snow avalanche zones (original inventory), and Inventory-B 

with starting and track zones. The conditioning factors were defined based on the literature, data availability and study area 

characteristics. The trained models (Model-A with Inventory-A and Model-B with Inventory-B) were evaluated with the area under 

the receiver operating characteristic (ROC), precision, recall and F1 score. The results show that Model-A has AUC of 0.97, 

precision of 0.89, recall of 0.95 and F1 score of 0.92 and the Model-B has AUC of 0.98, precision of 0.90, recall of 0.94 and F1 

score of 0.92 that indicate high prediction performances for both cases. Furthermore, feature importance values were calculated by 

the Mean Decrease in Impurity (MDI) method, and elevation, aspect and valley depth were found the most influencing conditioning 

factors.  
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1. INTRODUCTION 

Snow avalanches can be defined as rapid mass movement of 

snow, ice, rock and soil on snow covered steep slopes. Snow 

avalanche occurs depending on terrain, meteorological and 

snowpack properties (Schweizer et al., 2003). A snow 

avalanche may contain soil, rocks, vegetation, or ice particles, 

all of which can have profoundly devastating socioeconomic 

and environmental effects. Snow avalanche susceptibility 

assessment is crucial for disaster management to identify the 

spatial probability distribution of hazard-prone areas.  

 

An area affected by a snow avalanche event consists of three 

sub-regions, such as starting, track and runout zones. An 

avalanche initiates from the starting zone, where unstable snow 

originates and then flows through the track to the runout zone. 

Delineation of avalanche zones, especially starting and runout 

zones, plays a crucial role for avalanche hazard and risk 

assessments (Bianchi et al., 2021; Beato Bergua et al., 2019; 

Chueca Cía et al., 2014; Fazzini et al., 2021; Kim & Park, 2017; 

Meseșan et al., 2019).  The characteristics of starting zone and 

track can influence the size and speed of avalanche, which in 

turn affects runout zone. The distribution of snow mass in the 

runout zone and starting zone can be used for predicting 

potential damage to buildings and infrastructures (Cappabianca 

et al., 2018; Pistocchi & Notarnicola, 2013). The 

geomorphologic characteristics of each zone differ significantly 

from each other, and they should be considered for accurate 

avalanche hazard modeling (Choubin et al., 2019). 

 

In recent decades, Geographic Information Systems (GIS) and 

remote sensing (RS) domains have provided important tools for 

enabling improved disaster management. Data-driven machine 

learning (ML) techniques have contributed to numerous natural 

hazard assessment studies. Recently, several snow avalanche 

susceptibility studies have been conducted with the ML 

algorithms such as Support vector machine (SVM), K-nearest 

neighbours (KNN), Classification and Regression Tree (CART), 

Multilayer perceptron (MLP), Logistics Regression (LR), 

Random Forest (RF), and others (Akay, 2021; Rahmati et al., 

2019; Tiwari et al., 2021; Wen et al., 2022).  

 

Here, we employed a widely used ML algorithm, the RF, to 

generate two snow avalanche susceptibility maps (ASMs) for 

the Gross Spannort Mountain region (Switzerland). A previous 

study was carried out for producing the ASM for Davos, 

Switzerland by employing a set of features (partly different from 

the present study) using the RF and LR methods (Cetinkaya and 

Kocaman, 2022), which illustrated higher prediction quality of 

the RF classifier. The present research aimed to provide a better 

insight into the impact of learning sample selection on snow 

avalanche susceptibility mapping, by investigating in particular 

the use of runout zones for this purpose. After a literature 

survey on the regional characteristics and snow susceptibility 

assessment studies, a total of 18 features were utilized as 

conditioning factors that are elevation, slope, land use and land 

cover (LULC), diurnal anisotropic heating index (DAH), plan 

curvature, profile curvature, aspect, relative slope position index 

(RSP), slope length factor (LS), topographic position index 

(TPI), topographic ruggedness index (TRI), topographic 

wetness index (TWI), convergence index, wind exposition 

index (WEI), mid-slope position index (MSP), valley depth 

(VD), normalized height, and lithology. A snow avalanche 

inventory produced by (Hafner & Bühler, 2019) was provided 

as 2D polygons and employed here for learning. In addition, the 

prediction capabilities of the methods were analyzed using the 
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area under the receiver operating characteristic (ROC) curve 

(AUC), precision, recall, and F1 score. Furthermore, the 

influence of the conditioning factors on the models was 

evaluated with feature importance analysis and presented here.  

 

2. MATERIALS AND METHODS 

2.1 Study Area 

The study region is located between Erstfeld and Engelberg in 

Central Switzerland and covers an area of 259 km2 (Figure 1). 

Gross Spannort Mountain, part of the Uri Alps, is the highest 

point of the investigated area with an altitude of 3,198 meters at 

the peak. Avalanches occur frequently in the region, and the site 

was selected due to the accurate and reliable inventory.  

 

 
Figure 1. Location of the study area. 

 

2.2 Input Datasets and Features  

Here, we aimed to investigate the impact of inventory, in 

particular the use of different avalanche zones, on ASM 

production. Initially, the starting, track and runout zones of the 

avalanche polygons in the inventory data provided by Hafner & 

Bühler (2019) was manually delineated using a desktop GIS 

software. Thus, besides the original inventory with all zones 

(Inventory-A), a second map called Inventory-B involving only 

starting and track zones was produced. The number of pixels 

involved in both inventories is given in Table 1. The overall 

workflow of the study used to produce the ASMs is illustrated 

in Figure 2.  

 

The digital elevation model (DEM), lithology and LULC of the 

study area were obtained from the Swiss Federal Office of 

Topography, Switzerland (Swisstopo, 2021). The conditioning 

factors, which are depicted in Figure 2 as numerical factors, 

were generated from DEM in the SAGA GIS environment 

(Conrad et al., 2015). The statistical summary of numerical 

factors can be found in Table A1 (Appendix). Both inventory 

maps and the feature maps representing the conditioning factors 

(see Figure A1 in Appendix) were converted into raster datasets 

with a dimension of 1518 x 1713 pixels and 10 m resolution.  

 

 

Inventory-A 

(Starting + Track + 

Runout Zones) 

Inventory-B 

(Starting + Track 

Zones) 

Avalanche 274,967 207,314 

Non - Avalanche 2,325,367 2,393,020 

 

Table 1. The pixel counts of snow avalanche inventories. 

 

 
 

Figure 2. Snow avalanche susceptibility mapping workflow. 

 

2.3 Snow Avalanche Susceptibility Mapping 

In the current study, the random undersampling technique of 

SMOTE (Chawla et al., 2002) was used to handle an 

imbalanced dataset by random selection relying on avalanche 

inventories (by using a ratio of 1/1 for avalanche/non-avalanche 

pixels). The learning dataset was split as training (70%) and 

validation (30%) for producing the ASMs with Inventory-A and 

Inventory-B, separately. The parameter optimization strategy 

was conducted with existing libraries for the RF in a Python 

environment. The RF proposed by Breiman (2001) is one of the 

most widely used ML algorithms based on a large number of 

decision trees. It has the ability to reduce overfitting problems 

as well as to perform accurate classifications. 

 

Parameter optimization plays a crucial role in the accuracy of 

ML algorithms. In this study, the HalvingGridSearchCV 

(Pedregosa et al., 2011) implemented in Scikit-learn library was 

applied to identify optimal parameters, which are given in Table 
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2. The area under the receiver operatic characteristic curve 

(AUC) was used to evaluate the model’s predictive abilities. 

The performance assessment of the models was also 

investigated using precision, recall and F1-score values.  

 

Parameters Model-A Model-B 

Number of estimators 500 500 

Max depth 32 32 

Max feature 32 32 

Min sample leaf 1 1 

Min sample split 2 2 

 

Table 2. Optimal parameters of RF models. 

 

2.4 Feature Importance  

Feature importance enables to compute of the relative 

importance of each feature in a predictive model. The Mean 

Decrease in Impurity (MDI) method was selected to measure 

the effects of each feature on the models. The higher the 

calculated value, the higher the contribution of the feature to the 

model is considered and vice versa. 

 

3. RESULTS AND DISCUSSIONS  

In this study, two ASMs were produced by using Inventory-A 

(all zones) and Inventory-B (without runout zone) with 18 

conditioning factors by applying the RF model (hereinafter will 

be referred as Model-A and Model-B, respectively). As 

summarized in Table 3, the models achieved similarly accurate 

results in terms of precision, recall and F1 score, which indicate 

high coherence between the learning datasets and the models. 

The AUC values obtained from both models (Figure 3 and 

Figure 4) show that Model-B (AUC = 0.98) performed slightly 

better than Model-A (AUC = 0.97).  

 

 

 

Class 
Precision Recall F1-Score 

Model-A 
Non - Avalanche  0.95 0.88 0.91 

Avalanche 0.89 0.95 0.92 

Model-B 
Non - Avalanche  0.94 0.90 0.92 

Avalanche 0.90 0.94 0.92 

 

Table 3. Overall precision, recall, and F1-Score of the RF 

models. 

 
Figure 3. The ROC curve obtained from Model-A. 

 
Figure 4. The ROC curve obtained from Model-B. 

 

The feature importance results computed from the models are 

given in Figure 5. In the figure, the features ranked almost 

identically according to the importance values of the models. 

Both models indicated that the elevation is the most important 

variable, followed by aspect, valley depth, and wind exposition 

index. Based on the importance values of the elevation feature, 

Model-B indicated that elevation has even higher importance 

for modeling when runout zones are not considered.  It can also 

be observed that DEM-derived features contribute to avalanche 

susceptibility greater than lithology and LULC in the site. Yet, a 

few lithology types such as serpentinite, talc schist, 

metaperidotite, and granite, granodiorite were found effective in 

learning.  

 

 
 

Figure 5. Feature importance of the RF models. 

 

Figure 6 demonstrates the ASMs of the study area produced by 

the prediction results of the RF models and detailed views from 

different parts. Although the performance metrics calculated 

from Model-A and Model-B were quite similar, the spatial 

distribution of model probabilities differed significantly from 

each other (see Figure 6). Model-A identified larger areas as 

snow avalanche-prone than Model-B as expected. 
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Figure 6. Snow avalanche susceptibility belongs to Model-A, and Model-B. 
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When the feature statistics given in Table A1 in Appendix is 

analyzed, it can be seen that removing runout zones from the 

inventory enabled a differentiation between the avalanche/non-

avalanche zones in terms of elevation and its first derivative, the 

slope. In addition, the slope length factor and mid-slope 

position index varies between both inventories. Thus, removal 

of runout zones helped to better classify avalanche-non-

avalanche zones. On the other hand, there are other features that 

keep the mean values even after the removal of runout zones, 

such as the aspect and wind exposition index, which are highly 

effective variables in both models. The detailed maps shown in 

Figure 6 for the three sub-areas as marked in the maps of the 

whole site indicate that both models can successfully classify 

the data for which they aim for, i.e. Model-A the avalanches 

with all zones, and Model-B the starting and the track zones. On 

the other hand, as mentioned previously, the characteristics of 

starting zone and track can influence the size and speed of 

avalanche, which in turn affects runout zone. Thus, the use 

purposes of both models would be different and an ASM should 

rather be produced by using the starting and track zones. Yet, 

the runout zones predicted by Model-A, which can precisely be 

delineated by differencing ASM-A and ASM-B, would be a 

good approximation for risk assessment under the given 

conditions of the avalanche periods mapped by Hafner and 

Bühler (2019). 

  

4. CONCLUSIONS 

Snow avalanches are among destructive natural hazards in cold 

and snow-covered mountainous regions. Within the scope of 

this study, the RF model was applied for the avalanche 

susceptibility mapping of an area in Gross Spannort Mountain 

region, Switzerland by using two types of avalanche inventory 

maps. Inventory-A includes avalanche polygons with the 

starting, track and runout regions delineated as a single zone for 

each event. Inventory-B includes the starting and runout zones 

(without runout zones) to assess the influence of the learning 

data on the produced ASMs. The results show that both models 

could successfully classify the data for the given inventory types 

with AUC values of 0.98 (Model-B) and 0.97 (Model-A). The 

results illustrate high performance of the RF models for snow 

avalanche hazard and risk assessments. The features employed 

for this purpose were also found suitable for precise modeling. 

 

On the other hand, the use purpose of an ASM must clearly be 

defined and they should be produced based on it. In order to 

assess the avalanche susceptibility, starting and track zones 

need to be used as the runout zones depend on the 

characteristics of starting and track zones, which can influence 

the size and speed of avalanche. Yet, the results of Model-B 

also show that the RF can classify the runout zones when high 

quality data for all zones are available that can provide a good 

approximation for risk assessment under similar conditions. 

 

In previous studies, applying elimination and backward 

selection of features would be another strategy to improve 

ASMs. Further research is necessary to demonstrate the ability 

of transfer learning. Apart from these, the inventory data was 

manually divided into avalanche zones in the study, which 

raises the question of whether we can obtain avalanche zones 

with ML methods. 
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APPENDIX 

FACTORS 
  

MEAN STD MIN 25% 50% 75% MAX 

Elevation 

Inventory -A 
Non-avalanche 2022.718 505.606 453.632 1684.412 2072.872 2410.474 3237.224 

Avalanche 2076.937 381.084 856.656 1808.086 2084.501 2352.096 3209.036 

Inventory -B 
Non-avalanche 2019.035 503.677 453.632 1680.311 2065.898 2406.594 3237.224 

Avalanche 2137.147 349.738 1078.695 1888.180 2136.086 2385.470 3209.036 

Slope 

Inventory -A 
Non-avalanche 33.821 14.979 0.000 23.940 33.590 42.688 86.979 

Avalanche 33.467 12.868 0.000 25.143 33.131 40.300 85.321 

Inventory -B 
Non-avalanche 33.508 14.990 0.000 23.453 33.265 42.369 86.979 

Avalanche 36.968 11.481 0.000 29.896 35.591 42.785 85.321 

Aspect 

Inventory -A 
Non-avalanche 183.858 108.067 -1.000 92.180 184.257 281.686 360.000 

Avalanche 153.513 75.167 -1.000 103.181 150.667 197.542 359.994 

Inventory -B 
Non-avalanche 182.901 107.500 -1.000 92.224 182.586 279.147 360.000 

Avalanche 154.661 73.836 -1.000 106.980 153.135 196.755 359.994 

Profile 

Curvature 

Inventory -A 
Non-avalanche 0.002 7.315 -317.300 -2.067 0.034 2.190 325.558 

Avalanche 0.379 5.811 -193.240 -1.720 0.247 2.186 203.003 

Inventory -B 
Non-avalanche 0.010 7.235 -317.300 -2.026 0.041 2.160 325.558 

Avalanche 0.413 6.392 -193.240 -2.011 0.271 2.485 203.003 

Plan 

Curvature 

Inventory -A 
Non-avalanche 0.093 5.056 -281.991 -1.447 -0.002 1.478 294.960 

Avalanche -0.344 4.267 -173.432 -1.669 -0.199 1.113 188.452 

Inventory -B 
Non-avalanche 0.085 5.004 -281.991 -1.430 -0.007 1.447 294.960 

Avalanche -0.391 4.676 -173.432 -1.967 -0.251 1.301 188.452 

Diurnal 

Anisotropic 

Heating 

Inventory -A 
Non-avalanche -0.018 0.404 -0.974 -0.356 -0.024 0.325 0.973 

Avalanche 0.126 0.367 -0.938 -0.150 0.175 0.426 0.960 

Inventory -B 
Non-avalanche -0.016 0.401 -0.974 -0.350 -0.019 0.321 0.973 

Avalanche 0.151 0.389 -0.938 -0.146 0.239 0.469 0.960 

Slope 

Length 

Factor 

Inventory -A 
Non-avalanche 12.148 6.223 0.000 8.274 12.007 15.441 172.068 

Avalanche 13.989 6.301 0.000 10.267 13.196 16.744 104.631 

Inventory -B 
Non-avalanche 12.113 6.228 0.000 8.220 11.959 15.405 172.068 

Avalanche 14.988 5.981 0.000 11.360 13.906 17.475 83.772 

Relative 

Slope 

Position 

Index 

Inventory -A 
Non-avalanche -4.102 668.904 0.000 0.035 0.246 0.705 16080.000 

Avalanche -4.870 713.527 0.000 0.006 0.070 0.368 51.291 

Inventory -B 
Non-avalanche -4.151 671.935 0.000 0.029 0.229 0.691 16080.000 

Avalanche -4.549 694.501 0.000 0.021 0.142 0.480 51.291 

Topographic 

Position 

Index 

Inventory -A 
Non-avalanche 0.643 14.025 -129.677 -5.978 -0.696 5.462 231.357 

Avalanche -4.964 11.038 -96.581 -9.522 -4.065 0.099 109.060 

Inventory -B 
Non-avalanche 0.503 13.902 -129.677 -6.034 -0.819 5.220 231.357 

Avalanche -5.178 12.030 -96.581 -10.485 -4.355 0.589 109.060 

Topographic 

Ruggedness 

Index 

Inventory -A 
Non-avalanche 5.341 4.548 0.000 2.987 4.397 6.215 191.151 

Avalanche 4.994 3.644 0.000 3.095 4.286 5.684 124.736 

Inventory -B 
Non-avalanche 5.276 4.517 0.000 2.921 4.344 6.141 191.151 

Avalanche 5.633 3.760 0.000 3.765 4.712 6.249 124.736 

Topographic 

Wetness 

Index 

Inventory -A 
Non-avalanche 5.690 2.056 -0.634 4.277 5.495 6.792 24.869 

Avalanche 6.446 1.944 0.467 5.157 6.344 7.576 18.466 

Inventory -B 
Non-avalanche 5.752 2.089 -0.634 4.311 5.549 6.880 24.869 

Avalanche 5.977 1.644 0.467 4.871 5.951 7.010 16.082 

Valley 

Depth 

Inventory -A 
Non-avalanche 130.806 118.260 -222.702 33.650 93.546 205.858 573.546 

Avalanche 178.456 122.971 -48.971 74.487 159.891 267.324 569.177 

Inventory -B 
Non-avalanche 134.620 120.696 -222.702 34.745 96.957 213.554 573.546 

Avalanche 149.982 106.071 -23.466 61.819 134.019 220.390 562.334 

Convergence 

Index 

Inventory -A 
Non-avalanche 0.186 5.633 -95.105 -1.958 0.003 1.996 93.177 

Avalanche -1.382 4.365 -88.141 -3.072 -0.908 0.891 67.722 

Inventory -B 
Non-avalanche 0.129 5.632 -95.105 -1.995 -0.023 1.961 93.177 

Avalanche -1.243 4.035 -70.980 -2.986 -0.896 0.900 54.717 

Wind 

Exposition 

Index 

Inventory -A 
Non-avalanche 1.057 0.106 0.770 0.983 1.056 1.130 1.342 

Avalanche 1.044 0.083 0.800 0.986 1.045 1.100 1.328 

Inventory -B 
Non-avalanche 1.055 0.106 0.770 0.980 1.054 1.128 1.342 

Avalanche 1.062 0.073 0.810 1.011 1.059 1.110 1.328 

Mid-Slope 

Position 

Index 

Inventory -A 
Non-avalanche 0.531 0.293 0.000 0.279 0.545 0.794 1.000 

Avalanche 0.535 0.292 0.000 0.284 0.554 0.797 0.999 

Inventory -B 
Non-avalanche 0.537 0.294 0.000 0.285 0.554 0.802 1.000 

Avalanche 0.469 0.275 0.000 0.233 0.464 0.701 0.997 

Normalized 

Height 

Inventory -A 
Non-avalanche 0.475 0.302 0.000 0.199 0.471 0.745 1.000 

Avalanche 0.332 0.254 0.000 0.112 0.276 0.512 0.997 

Inventory -B 
Non-avalanche 0.466 0.304 0.000 0.185 0.457 0.737 1.000 

Avalanche 0.392 0.249 0.001 0.181 0.356 0.577 0.997 

 

Table A1. Summary statistics of the numerical factors based on Inventory-A and Inventory-B. 
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Figure A1. Conditioning factors: a) elevation, b) slope, c) profile curvature, d) plan curvature, e) diurnal anisotropic heating index, 

f) slope length factor, g) topographic position index, h) topographic ruggedness index, i) topographic wetness index, j) valley depth, 

k) convergence index, l) wind exposition index, m) mid-slope position index, n) normalized height, o) land use and land cover, p) 

relative slope position index, r) aspect, s) lithology. 
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