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ABSTRACT: 

 

Water quality monitoring has a key role in maintaining a sustainable ecosystem and environmental health. To ensure consistent 

monitoring, remote sensing provides regular data acquisition with varying spatial resolutions. However, more accurate, and effective 

solutions can be achieved by integrating remote sensing data with in-situ measurements. This study investigates the integration of in-

situ measurements with satellite data, which have different spectral and spatial resolutions, using linear and exponential regression 

models for four optically active components in the Gulf of Izmit. In this context, Sentinel-2 (S2) and PlanetScope SuperDove (PS) 

multispectral images, which were acquired on the same date, were used for the comparative analysis of the accurate mapping of 

chlorophyll-a (Chl-a), turbidity, Secchi disk depth (SDD) and total suspended matter (TSM) water quality parameters combined with 

simultaneously collected in-situ measurements. The models were evaluated using validation data, along with visual comparison, to 

assess their accuracy. The results indicate that, overall, exponential models provide more accurate results than linear models, except 

for the SDD parameter. Furthermore, models created with S2 data demonstrate better performance in retrieving water quality 

parameters for Chl-a, turbidity, and TSM, with R2 values of 0.71, 0.84, and 0.91, respectively. The linear model created with PS data 

stands out in the accurately mapping of SDD parameter. Nevertheless, the spatial distribution of these parameters using both satellite 

dataset exhibits a similar pattern throughout the gulf, which is under threat from significant terrestrial pollution sources, particularly 

in the eastern part. 

 

1. INTRODUCTION 

Water quality, encompassing the physical, chemical, and 

biological characteristics of water such as temperature, 

dissolved oxygen levels, nutrient content, and the presence of 

pollutants, is a critical aspect of environmental health and can 

affect the well-being of both humans and aquatic life (EPA, 

2021; UNEP, 2020). There exist numerous concerns regarding 

water resources, including urbanization and industrialization, 

which pose significant threats to water quality (Ano and 

Okwunodulu, 2008; Adeniyi and Ighalo, 2019). Thus, the 

retrieval of water quality parameters becomes imperative as it 

enables us to monitor and evaluate the health of water bodies, 

identify potential sources of contamination, and make 

management decisions about the use and protection of water 

resources.  

 

Water quality parameters can be retrieved through a variety of 

methods, including in-situ monitoring, remote sensing, and 

laboratory analysis. In-situ measurements and laboratory 

analysis of water samples are point based monitoring methods 

and it is difficult to consistently collect in-situ data due to the 

need of time, labour, and financial support. However, remote 

sensing provides a cost-effective and non-invasive method for 

measuring water quality parameters such as chlorophyll-a, 

turbidity, and dissolved organic matter (Sunar et al., 2022; 

Sunar et al., 2023). Additionally, they offer a synoptic view of 

water bodies, enabling the detection of variations in water 

quality across wide areas, and frequent measurements over time 

help to monitor temporal changes in water quality. This is 

particularly useful for monitoring dynamic water systems that 

experience rapid changes due to natural or human-induced 

factors (Gomez et al., 2001; Laubach et al., 2016). Along with 

the numerous advantages it offers, remote sensing data makes it 

possible to effectively monitor water body dynamics at various 

spatial and temporal scales (Hu et al., 2022; Zhu et al., 2022; 

Muller‐Karger et.al., 2018). In this context, the integration of in-

situ measurements and remote sensing techniques is essential to 

effectively map water quality parameters, improve our 

understanding of their distribution, and assess the state of water 

bodies. With this integration, models can be developed to 

enhance our scientific knowledge and provide accurate insights 

into water quality (Gholizadeh et al., 2016). 

 

There are various studies that used multiple satellite images 

having low (Hu, 2022), medium (Niroumand-Jadidi et al., 2022; 

Caballero et al., 2022), and high (Mortula et al., 2020; Duan et 

al., 2023) spatial resolution in the monitoring of water quality 

parameters and organic matters like mucilage. For the water 

quality monitoring of large water bodies, low spatial resolution 

satellite images (i.e., MODIS, MERIS, Sentinel-3 OLCI) 

provide effective solutions with high coverage and daily 

temporal resolution; however, their spatial resolutions are not 

sufficient for the mapping gulfs, coastal regions, and small 

water bodies. With that purpose, medium and high spatial 

resolution satellite images (i.e., Landsat, Sentinel-2, Worldview, 

PlanetScope, etc.) are preferred in the water quality analysis of 

these regions. Landsat and Sentinel-2 satellite images have been 

widely preferred due to the freely availability. However, high 

resolution satellite images are needed to map the distribution of 

water quality parameters of small water bodies, gulfs, lagoons, 

and coasts due to providing more detail with smaller coverage 

area (Niroumand-Jadidi et al., 2020; Wirabumi et al., 2021). 

 

Retrieving active water quality parameters using optical satellite 

images involves a multi-step process. Initially, the satellite 

images must undergo pre-processing to eliminate atmospheric 

influences and convert raw reflectance data into meaningful 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023 
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-595-2023 | © Author(s) 2023. CC BY 4.0 License.

 
595



 

information related to water quality. Subsequently, it becomes 

necessary to identify and extract the specific bands within the 

satellite images that are sensitive to optically active water 

components (OACs) such as Chlorophyll-a (Chl-a) or Secchi 

disk depth (SDD). After identifying the relevant bands, 

empirical or semi-empirical algorithms are applied to derive the 

distribution of the considered water quality parameters. These 

algorithms are typically based on statistical models that have 

been developed using in-situ measurements of the water quality 

parameters. Finally, the accuracy of the retrieved water quality 

parameters needs to be validated by comparing them with in situ 

water measurements. Despite its limitations, retrieving optically 

active water quality components from optical satellite images is 

a valuable method for monitoring water quality on a broad scale 

and has several uses in environmental management and 

decision-making (Lu and Weng, 2007; Son et al., 2013; Muller-

Karger et al., 2018). 

 

This study builds upon the work done in 2022 and aims to 

evaluate the spatial distribution of water quality parameters, 

including Chl-a, turbidity, SDD, total suspended matters (TSM) 

and, which are OACs in the inner reservoir of the Gulf of Izmit. 

To achieve this, two different satellite datasets (Sentinel-2 (S2) 

and PlanetScope (PS) satellite images) and in-situ water 

samples were used. To establish the relationship between the in-

situ measurements and satellite images, in-situ data was 

collected at the same date as the satellite image. Bivariate linear 

and exponential regression models were established and results 

were evaluated with accuracy metrics and visual interpretation.  

 

Since there is a paucity of literature on the utilization of 

Planetscope SuperDove image data in the analysis of inland 

water quality, this study focuses on examining its effectiveness 

by conducting a comparative analysis with Sentinel-2 data. 

 

2. STUDY AREA 

The Gulf of Izmit, situated in the eastern part of the Sea of 

Marmara within the north-western region of Turkey, is 

characterized by three distinct regions: the western, central, and 

eastern (inner) parts. With a total length of 49 kilometres and a 

variable width ranging from 2 to 10 kilometres, the gulf exhibits 

different depth profiles in each region. The western part features 

depths of approximately 200 meters, the central region has an 

average depth of around 180 meters, and the eastern (inner) 

region is characterized by shallower depths, approximately 35 

meters (Güven and Ünlü, 2000). 

 

With an area of around 310 km2, the Gulf of Izmit has been an 

important centre of commerce and trade for centuries with its 

many major ports.  However, the Gulf of Izmit has experienced 

environmental degradation due to industrial and urban 

development, as well as pollution from agriculture and shipping 

activities, particularly in the eastern part. Therefore, the inner 

reservoir of Izmit Bay has received particular attention in this 

research since it has recently been the focus of environmental 

concerns (Aral and Gürel, 2004; Ozhan, 2004; Tarkan, 2012; 

Tarkan et al., 2013).  

 

The location of the study area is given in Figure 1. White points 

show the samples that were used for the model establishment 

and red points are the validation samples. 

 

 
Figure 1. Map of the study area and locations of collected in-

situ samples. 

 

3. MATERIALS AND METHODOLOGY 

For this study, S2 and PS satellite images acquired on October 

26, 2022, were utilized. The S2 satellite images are freely 

provided by the European Space Agency and the Bottom-of-

Atmosphere (BOA) image was chosen for the image analysis. 

The spatial resolution of S2 varies between 10 to 60 m; 

however, the used satellite data was resampled to the 10 m.  

 

The PS images utilized in this study were acquired by PS2. The 

PS SuperDove satellite imagery, which is openly accessible, 

was utilized for educational purposes in this research. These 

images were subjected to atmospheric correction to convert 

them to surface reflectance data obtained using the 6SV2.1 

radiation transfer code 8 (Planet, 2023). Table 1 presents a 

comparison of the main features between the PS and S2 

satellites. The S2 satellite image comprises 13 bands, but for the 

regression analysis to assess the performance of both satellites 

in the same wavelength coverage, only 8 bands from the S2 

satellite were used. Moreover, in this study, two PS image 

frames were employed due to their comparable coverage to a 

single S2 image frame over the Gulf of Izmit. 

 

Along with two satellite data, 16 in-situ water samples were 

collected simultaneously. Out of these 16 measurements, 11 

were utilized in the regression analysis, while the remaining five 

were reserved for accuracy assessment purposes. The in-situ 

water samples were collected on the same date as the satellite 

data, which was October 26, 2022.  
 

Bivariate linear and exponential regression analyses were 

conducted separately in this study using in-situ water quality 

samples and two satellite images. Linear regression involves 

modelling the relationship between two variables by fitting a 

linear equation to the observed data. One variable is considered 

the independent variable, while the other variable serves as the 

dependent variable. Conversely, exponential regression is a 

statistical technique employed to determine an equation that 

represents an exponential relationship between a dependent 

variable and one or more independent variables. It is a curve 

fitting method that aims to identify the exponential function that 

best fits a given set of data points. Like linear regression, 

exponential regression is extensively utilized in biology, 

physics, and other scientific domains to model and predict 

exponential relationships, making it a valuable technique for 

analysing available data. 
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Main 

features 
PS S2 

Spatial  

resolution 
3-m 10-m / 20-m / 60-m 

Spectral  

resolution 

8 bands 
 

Coastal Blue: 431-452 

Blue: 465-515 

Green: 513-549 

Green II: 547-583 

Yellow: 600-620 

Red: 650-680 

Red-Edge: 697-713 

NIR: 845-885 

 

13 bands 

 

Coastal Blue:433- 453 

Blue: 458-523 

Green: 543-578 

Red: 650-680 

Red-Edge (RE1): 698-713 

Red-Edge (RE2): 733-748 

Red-Edge (RE3): 773-793 

NIR: 785-899 

NIR Narrow: 855-875 

Water Vapour: 935-955  

SWIR Cirrus: 1360-1390 

SWIR1: 1565-1655 

SWIR2: 2100-2280 
Radiometric  

resolution 
11-bit 12-bit 

Temporal  

resolution 
Daily 

10 days with each satellite   

five days with (S2A & 2B) 

Orbit height 475 km 786 km 

Orbit  

inclination 
 980 98.620 

 
Table 1. Key characteristics of PS and S2 satellites (Planet, 

2023).  

 

Both regression methods aim to determine the optimal values of 

the equation's constants that minimize the disparity between 

predicted values and actual data points. This is commonly 

achieved through the method of least squares, which minimizes 

the sum of squared differences between predicted and observed 

values. However, it is important to note that linear regression is 

sensitive to data outliers, which can significantly impact its 

performance and lead to models with reduced accuracy 

(Kiernan, 2014).    

 

Several models were developed to establish relationships 

between water quality samples and selected relevant band 

combinations using both linear and exponential regression 

analysis. These models were initially evaluated based on criteria 

such as the coefficient of determination (R2), standard error, and 

F value. Models with high R2 values were then applied to the 

satellite images, in conjunction with a visual inspection process. 

Finally, the visually best-performing models were assessed 

using test samples, utilizing accuracy metrics such as Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE). 

 

4. APPLICATION AND RESULTS 

Linear and exponential regression were employed using 11 

training in-situ samples, and the spectral response of these 

samples was collected from satellite data for the Chl-a, 

turbidity, SDD, and TSM water quality parameters. The best-

performing models, determined both visually and statistically, 

were identified for each parameter. These models, along with 

their corresponding statistical measures, are presented in Table 

2. 

 

Parameter Data 
Band 

Comb. 

Model  

Equation 
R2 

Std. 

Error 
F 

Chl-a 
S2 B5–B4 y=1.7144e410.73x 0.71 0.84 21.98 

PS B8×B2 y=1.3312e1453.5x 0.46 1.14 7.77 

Turbidity 
S2 B5–B4 y=0.2341e259.84x 0.84 0.37 46.20 

PS B8×B2 y=0.2074e855.88x 0.42 0.69 6.38 

SDD 
S2 B2/B3 y=83.305x-76.604 0.54 1.76 10.74 

PS B8×B2 y=-3471.4x+8.6154 0.83 1.08 43.54 

TSM 
S2 B5-B4 y=1.7076e324.99x 0.91 0.33 89.75 

PS B8×B2 y=1.4591e1080.4x 0.46 0.80 7.63 

Table 2. Best-performing models for water quality parameters 

(Chl-a, Turbidity, SDD, and TSM) using datasets from two 

satellites.  

 

As seen in Table 2, the examination of the results reveals that, 

in general, the utilization of exponential models for retrieving 

water quality parameters yielded relatively better outcomes 

when evaluating the goodness-of-fit through measures such as 

R2, standard error, and F-test statistics. For the S2 satellite, in 

the regression analysis, the (B5-B4) band combination 

performed well in reflecting the distribution of water quality 

parameters, except for the SDD parameter. However, it is 

noteworthy that when considering the PS satellite images, the 

(B8×B2) band combination significantly outperformed the other 

models used, particularly for the SDD parameter. Although the 

(B2/B3) band combination of the S2 image yielded the best 

model results for the SDD parameter, the obtained R2 value was 

relatively low (0.54), as observed.  

 

In this study, similar findings were observed as in the study 

conducted by Wirabumi et al. (2021), which highlights that for 

mapping TSM and turbidity using PS data, the red (B5) and 

NIR (B8) bands play a prominent role in shallow water, while 

as the water deepens, the blue (B2) band can significantly 

complement the red band, NIR band, or both. Despite the 

(B8×B2) combination demonstrating the best performance for 

TSM and turbidity estimation using PS data, the obtained R2 

values were lower than expected at 0.46 and 0.42, respectively. 

 

The models presented in Table 2 were assessed using accuracy 

metrics (RMSE and MAE) on five validation samples for each 

parameter. The results are detailed in Table 3. The analysis 

demonstrates that, overall, the exponential models yielded better 

results, and the performance of S2 satellite data surpassed that 

of PS data in retrieving water quality parameters, except for the 

SDD parameter. Interestingly, in contrast to the other three 

parameters, linear modelling demonstrated higher accuracy for 

both data sources in the thematic mapping of the SDD 

parameter. Additionally, when estimating the SDD parameter, 

the PS data showed higher R2 values (0.83 compared to 0.54) 

and lower RMSE and MAE errors (1.15 compared to 1.39 and 

1.08 compared to 0.96, respectively) compared to the S2 data. 

 

Following the accuracy assessment, the models were 

individually applied to the satellite images for each parameter to 

visually compare the results. The thematic maps representing 

each parameter are presented in Figure 2. It is evident that the 
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spatial distribution depicted in the maps derived from the PS 

satellite image appears smoother compared to those derived 

from the S2 satellite image. Nevertheless, overall, the thematic 

maps for the parameters exhibit a similar distribution pattern 

throughout the gulf.  

 

Based on visual analysis of the maps and photographs taken 

during the in-situ measurements (Figure 3), higher 

concentrations of Chl-a were observed in the inner part of the 

Gulf and the coastal regions. As observed, the S2 model 

exhibits better performance than the PS model, as indicated by a 

higher R2 coefficient of 0.71. The distribution patterns and R2 

coefficient differences for the TSM parameter exhibit similarity 

to those observed for the Chl-a distribution in both datasets, 

indicating the influence of common factors such as water 

currents, sedimentation, pollution sources, and biological 

activities within the gulf. Furthermore, in the TSM models, the 

S2 model displayed higher accuracy than the PS model, as 

evidenced by its higher R2 value of 0.91 compared to 0.46. In 

the maps depicting turbidity, the S2 model demonstrates 

superior accuracy compared to the PS model, achieving R2 

values of 0.84 and 0.42, respectively.  

 

In general, the eastern coastal part of the Gulf of Izmir 

displayed higher concentrations of Chl-a, turbidity, and TSM, 

while exhibiting lower SDD values, as illustrated in Figure 2. 

These observations are consistent with previous research studies 

indicating a high level of eutrophication in the eastern region 

(Okay et al., 2001; Ediger et al., 2013). Furthermore, the 

fluctuations in the visual characteristics of the water during 

sampling measurements, as depicted in Figure 3, support the 

degradation of water quality along the eastern coast. These 

observations reinforce the understanding that the eastern part of 

the region is subject to significant terrestrial pollution, primarily 

originating from domestic and industrial waste, as well as the 

influx of pollutants through streams into the gulf (Eyuboglu and 

Eyuboglu, 2020). 

 
 

 

 

 

 

 

 

 

 

 

 

Table 3. Best-performing models for each parameter using datasets from two satellites.

 
Figure 2. Thematic maps depicting the distribution of four water quality parameters (Chl-a, Turbidity, SDD, and TSM) derived from 

the best models. 

Parameter Variables Regression Type Data R R² RMSE MAE 

Chl-a 

(mg/m3) 

B5-B4 Exponential S2 0.84 0.71 2.21 1.90 

B8×B2 Exponential PS 0.68 0.46 3.19 2.22 

Turbidity 

(NTU) 

B5-B4 Exponential S2 0.92 0.84 0.17 0.14 

B8×B2 Exponential PS 0.64 0.42 0.20 0.13 

SDD 

(m) 

B2/B3 Linear S2 0.74 0.54 1.39 1.08 

B8×B2 Linear PS 0.91 0.83 1.15 0.96 

TSM 

(mg/l) 

B5-B4 Exponential S2 0.95 0.91 1.15 0.98 

B8×B2 Exponential PS 0.68 0.46 1.70 1.28 
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Figure 3. Variations in the visual characteristics of water bodies observed in the Gulf of Izmir during the sampling measurements.  

 

5. CONCLUSION 

In this study, two different satellite datasets were utilized to 

retrieve and map the concentrations of key OACs, namely 

Chl-a, turbidity, SDD, and TSM. As demonstrated, the 

regression model based on the B5-B4 bands has exhibited 

efficiency in spatially mapping OACs using S2 data, yielding 

higher R2 values (0.71, 0.84, and 0.91) for Chl-a, turbidity, 

and TSM parameters, respectively. Conversely, the best 

performing models using PS data were observed to be created 

with the B8×B2 band combination, specifically for SDD 

mapping, resulting in an R2 value of 0.83. 

 

In general, the performance of PS data for the retrieval of the 

four parameters was found to be less accurate than that of S2. 

The lower performance of PS could be attributed to the 

difference in spectral resolution between the two sensors. 

Despite its primary design for land applications, the S2 

satellite data demonstrated effectiveness in detecting and 

mapping water quality parameters such as Chl-a, SDD, and 

turbidity, benefiting from its higher spectral resolution. In 

contrast, PS does not have as many dedicated bands for water 

quality measurements, even though it has a higher spatial 

resolution than S2. Therefore, it can be concluded that freely 

provided S2 data has shown efficiency in the thematic 

mapping of OACs in the Gulf of Izmir. However, considering 

its limited coverage area and higher cost, PS data may be 

more suitable for detailed mapping of OACs in highly fragile 

areas within the inner part of the gulf. 

 

Future work will focus on investigating seasonal and annual 

trends and changes of not only the four parameters used in 

this study but also other optically active and inactive 

parameters. This will contribute to a more comprehensive 

understanding of water quality variations over time.  
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