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ABSTRACT: 

 

The exponential growth of geospatial data resulting from the development of earth observation technology has created significant 

challenges for traditional relational databases. While NoSQL databases based on distributed file systems can handle massive data 

storage, they often struggle to cope with real-time query. Column-storage databases, on other hand, are highly effective at both 

storage and query processing for large-scale datasets. In this paper, we propose a spatial version of ClickHouse that leverages R-Tree 

indexing to enable efficient storage and real-time analysis of massive remote sensing data. ClickHouse is a column-oriented, open-

source database management system designed for handling large-scale datasets. By integrating R-Tree indexing, we have created a 

highly efficient system for storing and querying geospatial data. To evaluate the performance of our system, we compare it with 

HBase, a popular distributed, NoSQL database system. Our experimental results show that ClickHouse outperforms HBase in 

handling spatial data queries, with a response time approximately three times faster than HBase. We attribute this performance gain 

to the highly efficient R-Tree indexing used in ClickHouse, which allows for fast spatial data query. 
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1. INTRODUCTION 

In recent years, the advancement of Earth observation 

technology has led to an increasing importance of remote 

sensing data in various fields such as urban construction, land 

resource survey, crop disease analysis, smart city, land use and 

environmental protection (Chi et al., 2016; Kucherov et al., 

2017; Li et al., 2020; Shi et al., 2022; Song et al., 2020; Wang 

et al., 2022; Zhang et al., 2021; Zhu et al., 2021). The 

exponential increase in remote sensing data volume presents a 

considerable obstacle to the efficient organization and 

management of data. Furthermore, it hinders the capacity to 

analyse and respond promptly to spatial data queries and 

analyses. Moreover, as a result of the development of global 

positioning system and mobile intelligent terminals, high 

accuracy and low latency requirements have emerged for 

location services including precise positioning, regional query, 

route planning. In this era of massive spatial data, the key 

challenges in GIS development is to effectively organize, 

manage and store large-scale spatial data. 

 

The use of relational databases for spatial data storage dates 

back to 1970 (Codd, 1970). Today they are widely used for 

spatial data storage, with popular databases such as Oracle 

Spatial and PostGIS for PostgreSQL featuring spatial data 

analysis capabilities. PostGIS, based on PostgreSQL for spatial 

expansion, has surpassed Oracle Spatial with query speeds that 

are 300% and 450% faster for spatial data querying and 

analysis, respectively (Shukla et al., 2016). PostgreSQL 

provides a simple development path to incorporate new space 

types, offering numerous features such as reliability, transaction 

integrity, support for SQL standards, pluggable type extension, 

and community-oriented development model, along with 

support for large GIS objects and R-Tree index as a general 

index structure. PostgreSQL mainly extends the geometry data 

type for the storage of spatial data, capable of effectively storing 

point, line, polygon, multipoint, multiline, and multipolygon. 

Despite its powerful spatial analysis function, traditional 

relational databases face significant performance bottlenecks. 

The efficient storage and access of massive data, high 

scalability, and availability of the database are the major gaps 

that a relational database cannot resolve. PostgreSQL struggles 

with decreasing query and processing efficiency as data volume 

increases. Additionally, deployment and installation of a single 

node result in limited data storage capacity and low security, 

and node failures can lead to data loss. 

 

With the continuous growth of data volume and the arrival of 

the era of big data, data storage has begun to shift from 

centralized storage to distributed storage on multiple machines. 

There are three main types of data modes: (1) Tree-structured 

storage where data is organized in a folder containing file 

organization. (2) Block storage where data is grouped into 

blocks of the same size with each block having its own 

identifier, and (3) Object storage where data is stored in an 

object unit, and the metadata describing the data is stored in an 

independent database. In 2003, Google released its own 

distributed file storage system, Google File System (GFS), 

which uses a single master and multiple chunkservers to 

organize data. GFS divides files into chunks, each with a unique 

64-bit identifier, and replicates each data block to multiple 

chunkservers to improve reliability (Ghemawat et al., 2003). 

Distributed data storage and replication mechanisms are capable 

of overcoming the limitations of traditional database security 

and storage scalability. NoSQL databases can be used on 

distributed clusters, providing strong scalability and storage 

capabilities, as well as low-latency query services (Wang et al., 
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2017). In recent years, there has been extensive exploration of 

NoSQL database storage for spatial data. 

 

This paper proposes a spatial data storage strategy based on 

ClickHouse database that utilizes the superior performance of 

the R-Tree index for spatial data retrieval in traditional 

relational databases. The R-Tree index is still used as the index 

of spatial data in ClickHouse. R-Tree is a balanced tree similar 

to B-Tree but it solves the problem of fast search high-

dimensional space, unlike B-Tree, which solves the problem of 

fast search in one-dimensional space. R-Tree uses the minimum 

circumscribed rectangle as the boundary of the space geometry, 

and during the spatial retrieval, it filters out most of the areas 

that do not overlap with the search rectangle by gradually 

expanding the boundary (Guttman, 1984). Before storing vector 

data in ClickHouse, the proposed strategy build the data into an 

R-Tree, traverses the R-Tree in a hierarchical way during 

storage, and stores non-leaf nodes in the index table and leaf 

nodes in the detailed wide table. The data is partitioned based 

on the root node before storage, so that the non-search areas can 

be effectively isolated during the query, thereby speeding up the 

query process. 

 

2. RELATED WORK 

In recent years, there has been a surge of interest in using 

NoSQL databases for managing and storing large-scale datasets. 

Redis, Elasticsearch, MongoDB and HBase. Compared with 

these mainstream NoSQL databases, ClickHouse’s architecture 

is highly scalable, fault-tolerant, and distributed, making it an 

ideal choice for use cases that require high throughput, low 

latency, and real-time analytics. In this related work section, we 

provide an overview of the relevant literature that discusses the 

use of Redis, Elasticsearch, MongoDB, HBase, and 

ClickHouse, highlighting their advantages and disadvantages in 

handling Geospatial data. 

 

2.1 Redis 

Redis is an open source, memory-based data structure storage 

system that supports a variety of use cases, including serving as 

a database, cache, message broker, and streaming engine. It 

offers support for various data structures such as strings, hashes, 

lists, sets, sorted sets, bitmaps, hyperloglogs, and geospatial 

indexs and streams. Redis has built-in replication, Lua scripting, 

LRU eviction and different levels of persistence. Additionally, 

it provides high availability through Redis Sentinel and Cluster. 

When storing geographical locations, Redis uses corresponding 

key to store the longitude and latitude and the name of the data 

using Geo Set data structure, which is similar to the Sorted Set 

data structure. Its implementation leverages Geohash 

technology to encode the longitude and latitude bits in a 

staggered manner, and divides the geographical space into grid-

shaped buckets with each grid having its own corresponding 

code (Makris et al., 2019). When querying a spatial range using 

the georadius method, it transforms the query of two-

dimensional space into the comparison of strings of one-

dimensional space, which makes it highly efficient for spatial 

range queries (Liu et al., 2014). (Hao Yu et al., 2012) proposed 

to use Redis to cache terabytes of geospatial data to cope with 

highly concurrent queries. However, Redis does not provide 

data security guarantees and improper design can lead to cache 

breakdown, cache penetration and cache avalanche. 

 

2.2 Elasticsearch 

Elasticsearch is a distributed, real-time search and data analysis 

engine that is highly scalable. It can perform full-text search, 

structured search, and analysis, making it a versatile tool for 

many use cases. Geographical location is represented in 

Elasticsearch using two different data types: geo_point and 

geo_shape. The former is used to represent geographical 

coordinate points with latitude and longitude, while the latter is 

used for complex geographical shapes using GeoJSON. 

Geo_points is useful for finding points within a certain range, 

calculating distances, and aggregating data display on the maps. 

On the other hand, geo_shape is used to filter the data and 

analyse whether two shapes intersect, contain or overlap in the 

geographical space. Elasticsearch uses GeoHash indexing for 

geographical location queries, ensuring high accuracy. One 

example of using Elasticsearch is for retrieving geographical 

location in digital corpus (Bartlett, 2019). 

 

2.3 MongoDB 

MongoDB database is a document-based database that 

organizes data in the form of BJSON. It offers high-

performance data persistence, and an API query interface that 

allows for easy integration with external programs for CRUD 

operations. MongoDB is highly reliable and offers failover and 

redundancy mechanisms to prevent data loss as well as 

horizontal scalability through data partitioning across multiple 

machines. It supports multiple storage engines, including 

memory storage engine and WiredTiger storage engine. To 

efficiently retrieve geospatial coordinates, MongoDB employs 

two indexing methods: the 2D index for planar geometry and 

2dsphere index for spherical geometry. GeoJSON format must 

be used for organizing geospatial data in MongoDB due to these 

indexing methods. MongoDB also provides the calculation of 

geospatial relationships such as geoWithin for inclusion, 

geoIntersects for intersection, and nearSphere for adjacency. 

Recent studies have explored different methods of storing 

remote sensing data in MongoDB. For instance, a remote 

sensing data management method was proposed based on 

MongoDB that stores metadata as documents, and image data in 

GridFS format (Wang et al., 2019) . 

 

2.4 HBase 

HBase is a highly scalable NoSQL database that enables the 

storage of massive amounts of data in a distributed environment. 

Leveraging the Hadoop Distributed File System (HDFS), 

HBase uses Namespaces for data space division and Regions for 

data organization, storing data in a columnar format. Rather 

than defining specific columns when creating a table, HBase 

only requires a declaration of the Column Family, providing 

dynamic field specifications when writing data. This makes 

Hbase more suitable for scenarios with varying fields, when 

compared to traditional relational databases. Though HBase 

does not support geospatial data storage natively, its flexible 

architecture has led many researchers to explore the use of 

HBase for this purpose. For example, (Wang et al., 2017) 

proposed a method of storing vector data in HBase by dividing 

it into grids using space Z curve filling with the number of 

space filling curves used as RowKey for storage, and the 

geometric objects within each grid used as columns (Wang et 

al.,2017). Similarly, (Wang et al., 2019) proposed an efficient 

spatial big data storage and query method in HBase, which 

leverages Hilbert spatial curve filling to convert high-

dimensional data into one-dimensional data, allowing for faster 

query processing. 
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2.5 ClickHouse 

Clickhouse is an open-source column-oriented storage database 

(DBMS) that specializes in online analytical processing (OLAP) 

queries, allowing real-time generation of data analysis reports 

through SQL queries. ClickHouse has the following features: (1) 

ClickHouse supports various table-level storage engine, with 

over 20 engines in four categories, namely merge tree, log, 

interface and others enabling users to choose different storage 

engines according to specific requirements. (2) ClickHouse has 

a high throughput capacity and uses a structure similar to LSM 

tree to achieve sequential write performance, allowing it to 

write data in a sequential append manner during data import, 

and merge-sort multiple segments to optimize disk usage. 

ClickHouse’s write performance is superior, with an official 

open benchmark test showing it can achieve a write throughput 

of 50MB-200MB/s, equivalent to a write speed of 50W-200W 

pieces/s (based on an estimated 100 bytes per line). (3) 

ClickHouse divides the data into multiple partitions and further 

divides each partition into multiple index granularities, which 

can then be processed by multiple CPU cores for parallel data 

processing. This design allows a single query to utilize all the 

CPU of the entire machine, greatly reduces the query delay. 

Compared with other databases, ClickHouse has superior 

performance in various SQL queries, making it an excellent 

choice for low performance machines and outperforming 

MySQL which is the most popular open-source database at 

presently available (Wickramasekara et al., 2020). 

 

3. METHODS 

3.1 Storage method of spatial data in ClickHouse 

ClickHouse lacks the inherent capability to store geospatial 

data, but this study builds a logic layer on top of ClickHouse to 

enable it to do so. This section will focus on the design of this 

extended logic layer with Figure 1 displaying the 

comprehensive structure of ClickHouse’s storage and retrieval 

of geospatial data.  

 

Figure 1. The overall architecture of ClickHouse for storing and retrieving geospatial data. 

 

3.1.1 Storage service: The storage service in the ClickHouse 

shared cluster for spatial data performs the following operations: 

S1: Read the corresponding shapefile file from the 

corresponding file system based on the path carried in the 

application request. 

S2: Construct an R-Tree using the data from the shapefile file. 

R-Tree is preferred over the improved R*-Tree due to its proven 

ability of R-Tree to retrieve geospatial data has been fully 

proved in traditional relational databases. The construction time 

of R*-Tree is relatively long, and its query efficiency is not 

optimal when handling small data amounts. 

S3: Generate a separate table for each shapefile since they 

contain unique geographic information. To accelerate geospatial 

query performance, two tables are created: an index table and a 

detailed wide table. The index table stores non-leaf node 

information, while the detailed wide table stores leaf node 

information in the R-Tree. Table 1 shows the structure of the 

index table, while Table 2 shows the structure of the detailed 

wide table. 

 

id partition_id level parent_id min_x max_x min_y max_y is_leaf 

971074336

477675520 

0 0 0 563069.67100

08697 

586413.16049

43711 

4483095.74101

6292 

4494680.8556

37121 

false 
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971074336

477675536 

0 1 97107433

64776755

20 

563189.80724

39035 

564977.91167

48271 

4483095.74101

6292 

4484222.7475

09402 

true 

971074336

477675537 

0 1 97107433

64776755

20 

563069.67100

08697 

566930.17859

16027 

4483656.95563

5705 

4484856.8395

5023 

true 

971074336

477675538 

0 1 97107433

64776755

20 

563073.67784

94965 

568354.48896

19449 

4484207.59796

222 

4485157.4148

93977 

true 

971074336

481869824 

0 1 97107433

64776755

20 

563147.74145

93172 

568336.82245

99154 

4484451.31449

2935 

4485683.8545

11977 

true 

971074336

481869825 

0 1 97107433

64776755

20 

563875.08722

99344 

568345.09513

854 

4484857.71861

2959 

4485934.1159

92783 

true 

... ... ... ... ... ...  ... ... ... 

Table 1. Structure and partial data of index table 

id parent_id min_x max_x min_y max_y ... the_geom 

9710743709

96797440 

9710743364

77675536 

607240.627

0169418 

607393.343

7808634 

4508814.17

6007433 

4508929.7

88199221 

... MULTIPOLYGON 

(((607393.3437808634 

4508853.954510309, 

607263.5223237597 

4508814.176007433, 

607240.6270169418 

4508889.966283751, 

607370.2550110875 

4508929.788199221, 

607393.3437808634 

4508853.954510309))) 

... ... ... ... ... ... ... ... 

Table 2. Structure of detailed wide table and partial data. 

 

ClickHouse’s ability to partition data allows for effective 

isolation of irrelevant data during queries, which is cleverly 

used when designing the index table. The table is built based on 

the root node with elements in the root node and the subtree 

below it stored in the corresponding partition as data of the 

same partition. The partition number is determined by the left-

to-right position of the current element in the root node, while 

the partition number of the leaf node in the detailed wide table 

is the ID of the parent node, as shown in Figure 2. The level 

field records the level of the current node in the entire R-Tree. 

Since the index data is stored in the database, retrieval needs to 

be performed recursively with each retrieval taking the ID of the 

parent node as the filter condition is to isolate unrelated nodes 

in the same subtree. Fortunately, ClickHouse provides the 

Prewhere statement, which can filter the data in advance before 

the selection, and significantly improve efficiency, especially 

when the number of columns queried is significantly more than 

that filtered. The minimum bounding rectangle of the current 

node is defined by the min_x, max_ x, min_y and max_ y 

values. The is_leaf field identifies whether the current node is 

the last level of the index node and serves as the exit of the 

recursive query. 

 

In the detailed wide table, the smallest granularity data of the 

current shapefile file is stored, with the ID generated by the 

snowflake algorithm used to identify and sort data. The index of 

ClickHouse itself is used to speed up retrieval efficiency when 

querying. The parent_id is used as a partition field, and the data 

of the same parent node is stored in a partition. The minimum 

limited rectangle can exclude the data that does not meet the 

requirements when querying. The_geom field records geometric 

data, while the remaining fields contain non-spatial attributes of 

the current data. 

 

 

Figure 2. Use R-Tree to build the logic of index table and detail table. 
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3.1.2 Retrieval service: Data retrieval services can be 

categorized into geospatial retrieval and conventional retrieval. 

Geospatial retrieval involves providing spatial geometry 

information to retrieve data, while conventional retrieval 

requires general retrieval conditions such as city name, street 

name, etc. For conventional retrieval, index query is avoided, 

and the corresponding information is directly queried in the 

detailed wide table based on the conditions. For example, if the 

geometric value of a street named “Atlantic commons” is 

needed, the system will retrieve the relevant information from 

the detailed wide table and return it to the application. In 

contrast, geospatial retrieval requires calculating the minimum 

restricted rectangle of the incoming geometry first. The index 

table is then retrieved from the root node. When R-Tree is 

stored in the table, parent_id of the root node is set to 0. 

Therefore, when searching, the filter condition can be set to 

parent_id=0 to find the root node. Then, determine the node that 

intersects with the minimum bounding rectangle of the spatial 

geometry being queried in the root node. The system then 

recursively searches the lower level of R-Tree in the index table, 

taking the id of the parent node as the filter condition at each 

recursion. When the leaf node of the index is reached, the 

current node id is used as the filter condition to retrieve the 

corresponding data in the detailed wide table. During the search 

in the detailed wide table, the system still uses the intersection 

of the minimum restricted rectangle as the filter condition. 

However, the intersection of the minimum restricted rectangle 

in R-Tree does not necessarily mean that the real geometry is 

intersected (as shown in Figure 3). Therefore, further judgment 

is required when the corresponding data is obtained. Finally, 

when the geometric information is retrieved and the geometric 

information in the detailed wide table meets the topological 

requirements of the retrieval, the corresponding results are 

returned to the upper application. 

 

 

Figure 3. The minimum bounding rectangle of two polygons 

intersects, but the polygons do not intersect. 

3.1.3 ClickHouse Sharded Cluster: ClickHouse provides two 

mechanisms for distributed data storage: replica and sharded 

cluster. The replica mechanism ensures the high availability of 

data by allowing the same data to be obtained from other 

servers if a ClickHouse node goes down. The write process of 

the replica mechanism is shown in Figure 4. However, it 

requires each server to accommodate the full amount of data, 

limiting horizontal expansion. To overcome this limitation, 

ClickHouse introduces sharding, which segments a complete 

piece of data and distributes different shards to different nodes. 

The Distributed Table Engine acts as a middleware, routing 

distributed data from multiple nodes with different shards 

through distributed logical tables. Unlike the replica mechanism, 

the sharded cluster mechanism allows for horizontal expansion 

of massive data storage. To ensure both horizontal scalability 

and high availability, ClickHouse combines sharding and 

replica mechanisms. In this paper, a sharded cluster architecture 

is adopted, where three machines are used as the partition 

cluster. Figure 5 illustrates the design of this architecture. By 

leveraging sharding and replica mechanisms, ClickHouse 

provides a powerful solution for distributed data storage and 

processing. 

Figure4 . Copy writing process. 

 

 

Figure5 . Design architecture of sharded cluster. 

3.2 Storage method of spatial data in HBase 

To better evaluate the advantages of ClickHouse in querying 

spatial geographic data, this paper includes a comparative test 

with Hbase. The experiment expands HBase using R-Tree index 

while maintaining the independent storage mode for index and 

detailed wide table to speed up the query. This is achieved by 

dividing the data into two tables, namely index table and detail 

table. Table 3 shows the design of the index table while Table 4 

shows the design of the detailed wide table. 

 

HBase stores data using a single partition and employs the 

“parentRowKey_SnowflakesAlgorithm” design rule for 

Row_Key to ensure its uniqueness. The parameters min_x, 

max_x, min_y, and max_y represent the smallest circumscribed 

rectangle, while is_ Leaf identifies whether the current node is a 

leaf node of the R-Tree index. The Start_Row and Stop_Row 

parameters specify the range of Row_Key of the child node. 

The primary purpose of these design features is to accelerate 

query performance using scan operations. To optimize query 

performance, HBase stores data for different column families 

separately. In the design of the detailed wide table, two column 

families are used: “ordinary” to store non-geometric 

information and “geometry” to store geometric information. 

This approach isolates geometric and non-geometric queries, 

enabling each to be optimized independently. By separating the 

data into two column families, HBase can accelerate both 

geometric and non-geometric queries, resulting in faster query 

performance and better scalability. 
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  Index_Info 

Row_Key min_x max_x min_y max_y is_leaf Start_Row Stop_Row 

0_97396928709184

7168 

563069.671

0008697 

586413.16

04943711 

4483095.7

41016292 

4494680.85

5637121 

false 09739692

87091847

168_ 

09739692870

91847168| 

0_97396928709184

7169 

586214.691

145163 

593074.05

78981118 

4488435.7

70831544 

4500914.98

72505395 

false 09739692

87091847

169_ 

09739692870

91847169| 

0_97396928709184

7170 

567299.814

0316624 

586522.29

45189208 

4492040.8

63678092 

4498558.07

9844725 

false 09739692

87091847

170_ 

09739692870

91847170| 

0_97396928709184

7171 

591493.622

9326547 

598798.51

87040224 

4489965.5

61497574 

4506856.94

2924007 

false 09739692

87091847

171_ 

09739692870

91847171| 

... ... ... ... ... ... ... ... 

Table 3. Design of index table in HBase. 

 

 ordinary  geometry 

rowkey ... min_x max_x min_y max_y the_geom 

09739692870918471689

73969287091847204_0 

... 573351.878

0943268 

573878.107

750165 

4487638.4

6718892 

4488463.03

9496107 

MULTIPOLYGON 

(((572938.2665684235 

4486928.674520253, 

572933.6947068771 

4486936.54728656, 

572929.7565177245 

4486944.75539434, 

572926.4764236218 

4486953.247941074, 

572923.8747660567 

4486961.97226028, 

572921.9676791976))) 

... ... ... ... ... ... ... 

Table 4. Design of Detail Table in HBase. 

 

 

4. EXPERIMENT AND RESULTS 

This section is based on real world data and aims to provide a 

comprehensive evaluation of the experimental systems. To 

achieve this, section 4.1 presents the experimental environment 

used in the study, including details about the hardware and 

software configurations. Section 4.2 provides a detailed 

description of the experimental dataset. Finally, in section 4.3, 

the experimental results are presented and compared to provide 

insights into the strengths and weaknesses of the systems under 

test. By using real-world data and a rigorous experimental 

methodology, this study aims to provide valuable insights into 

the performance and scalability of the experimental systems, 

which can be used to inform decisions about their use in real-

world applications. 

 

4.1 Experiment setting 

The experiments were performed on a virtual machine 

environment with a 4GB RAM and 2.80GHz Intel(R) Core(TM) 

i7-7700HQ CPU. ClickHouse was deployed in a single-node 

storage configuration, while HBase was set up as a three-node 

cluster with identical hardware and software configurations. 

Table 5 provides detailed specifications for each of the nodes in 

the HBase cluster. 

 

CPU type Intel(R) Core(TM) i7-

7700HQ CPU @ 2.80GHz 

Processor number 3 

RAM 4G 

ClickHouse Version 21.7.3.14 

Hadoop version 3.1.3 

Zookeeper version 3.5.7 

HBase version 1.3.1 

  

Table 5. Node configuration for HBase 

4.2 Dataset 

To evaluate the performance and scalability of the systems 

under test, a range of real-world datasets were used in the 

experiments. Specifically, the datasets included community 

data, census data for New York (“New York Census Data,” 

n.d.), building data, and land data for Papua New Guinea in 

2018 (“Papua New Guinea Data,” n.d.). The size and 

characteristics of each dataset are summarized in Table 6, which 

provides details such as the number of records, file size, and 

data format. By using real-world datasets, this study aims to 

provide insights into the systems’ ability to handle complex and 

diverse data types, as well as their performance and scalability 

under realistic conditions. 

 

Name Description Amount 

of data 

nyc_neighborhoods New York Community 

Data 

129 

gis_osm_landuse_a_

free_1 

Land Data in Papua New 

Guinea 

34700 

nyc_census_blocks New York 2018 Census 

Data 

38700 
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gis_osm_buildings_a

_free_1 

Building Data in Papua 

New Guinea 

369254 

   

Table 6. Experimental dataset 

4.3 Experiment results 

To compare the efficiency of spatial queries between 

ClickHouse and HBase for different data volumes and query 

rates, we randomly selected 1% of the data from the tables for 

cross-checking during the experiments. The results, as shown in 

Figure 6 indicate that ClickHouse outperforms HBase in terms 

of query speed, particularly for large amounts of data. When the 

data volume in a single table data was 129 records, HBase’s 

response time for a data query reached the second level, while 

ClickHouse returned the query results in milliseconds. When 

the data volume in a single table increased to 10,000 records, 

HBase’s response time was about three times longer than 

ClickHouse’s. Furthermore, with the increase in the volume of 

data, HBase’s response time increased significantly. These 

findings demonstrate that ClickHouse is more efficient than 

HBase is spatial data query, especially for larger datasets. 

 

 

Figure 6. The minimum bounding rectangle of two polygons 

intersects, but the polygons do not intersect. 

 

5. CONCLUSIONS 

This paper proposes a storage model for spatial data using 

ClickHouse and R-Tree as an index for spatial queries. To 

evaluate its performance, we compare the geospatial data 

queries with the HBase database using the same indexes. The 

results of the experiments demonstrate that ClickHouse 

outperforms HBase in geospatial data queries, even when using 

the same indexes. 
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