
LARGE VECTOR SPATIAL DATA STORAGE AND QUERY PROCESSING USING

CLICKHOUSE

Shuaijun Chen 1, Zhibao Wang 1,2 *, Lu Bai 3, Kunyi Liu 1, Juntao Gao 1, Man Zhao 4, Maurice D. Mulvenna 3

1 School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China

2 Bohai-Rim Energy Research Institute, Northeast Petroleum University, Qinhuangdao 066004, China
3 School of Computing, Ulster University, Belfast BT15 1ED, UK

4 School of Communication and Electronic Engineering, Qiqihaer University, Qiqihaer 161003, China

KEY WORDS: ClickHouse, vector spatial data, query processing, HBase, remote sensing.

ABSTRACT:

The exponential growth of geospatial data resulting from the development of earth observation technology has created significant

challenges for traditional relational databases. While NoSQL databases based on distributed file systems can handle massive data

storage, they often struggle to cope with real-time query. Column-storage databases, on other hand, are highly effective at both

storage and query processing for large-scale datasets. In this paper, we propose a spatial version of ClickHouse that leverages R-Tree

indexing to enable efficient storage and real-time analysis of massive remote sensing data. ClickHouse is a column-oriented, open-

source database management system designed for handling large-scale datasets. By integrating R-Tree indexing, we have created a

highly efficient system for storing and querying geospatial data. To evaluate the performance of our system, we compare it with

HBase, a popular distributed, NoSQL database system. Our experimental results show that ClickHouse outperforms HBase in

handling spatial data queries, with a response time approximately three times faster than HBase. We attribute this performance gain

to the highly efficient R-Tree indexing used in ClickHouse, which allows for fast spatial data query.

* Corresponding author

1. INTRODUCTION

In recent years, the advancement of Earth observation

technology has led to an increasing importance of remote

sensing data in various fields such as urban construction, land

resource survey, crop disease analysis, smart city, land use and

environmental protection (Chi et al., 2016; Kucherov et al.,

2017; Li et al., 2020; Shi et al., 2022; Song et al., 2020; Wang

et al., 2022; Zhang et al., 2021; Zhu et al., 2021). The

exponential increase in remote sensing data volume presents a

considerable obstacle to the efficient organization and

management of data. Furthermore, it hinders the capacity to

analyse and respond promptly to spatial data queries and

analyses. Moreover, as a result of the development of global

positioning system and mobile intelligent terminals, high

accuracy and low latency requirements have emerged for

location services including precise positioning, regional query,

route planning. In this era of massive spatial data, the key

challenges in GIS development is to effectively organize,

manage and store large-scale spatial data.

The use of relational databases for spatial data storage dates

back to 1970 (Codd, 1970). Today they are widely used for

spatial data storage, with popular databases such as Oracle

Spatial and PostGIS for PostgreSQL featuring spatial data

analysis capabilities. PostGIS, based on PostgreSQL for spatial

expansion, has surpassed Oracle Spatial with query speeds that

are 300% and 450% faster for spatial data querying and

analysis, respectively (Shukla et al., 2016). PostgreSQL

provides a simple development path to incorporate new space

types, offering numerous features such as reliability, transaction

integrity, support for SQL standards, pluggable type extension,

and community-oriented development model, along with

support for large GIS objects and R-Tree index as a general

index structure. PostgreSQL mainly extends the geometry data

type for the storage of spatial data, capable of effectively storing

point, line, polygon, multipoint, multiline, and multipolygon.

Despite its powerful spatial analysis function, traditional

relational databases face significant performance bottlenecks.

The efficient storage and access of massive data, high

scalability, and availability of the database are the major gaps

that a relational database cannot resolve. PostgreSQL struggles

with decreasing query and processing efficiency as data volume

increases. Additionally, deployment and installation of a single

node result in limited data storage capacity and low security,

and node failures can lead to data loss.

With the continuous growth of data volume and the arrival of

the era of big data, data storage has begun to shift from

centralized storage to distributed storage on multiple machines.

There are three main types of data modes: (1) Tree-structured

storage where data is organized in a folder containing file

organization. (2) Block storage where data is grouped into

blocks of the same size with each block having its own

identifier, and (3) Object storage where data is stored in an

object unit, and the metadata describing the data is stored in an

independent database. In 2003, Google released its own

distributed file storage system, Google File System (GFS),

which uses a single master and multiple chunkservers to

organize data. GFS divides files into chunks, each with a unique

64-bit identifier, and replicates each data block to multiple

chunkservers to improve reliability (Ghemawat et al., 2003).

Distributed data storage and replication mechanisms are capable

of overcoming the limitations of traditional database security

and storage scalability. NoSQL databases can be used on

distributed clusters, providing strong scalability and storage

capabilities, as well as low-latency query services (Wang et al.,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

65

2017). In recent years, there has been extensive exploration of

NoSQL database storage for spatial data.

This paper proposes a spatial data storage strategy based on

ClickHouse database that utilizes the superior performance of

the R-Tree index for spatial data retrieval in traditional

relational databases. The R-Tree index is still used as the index

of spatial data in ClickHouse. R-Tree is a balanced tree similar

to B-Tree but it solves the problem of fast search high-

dimensional space, unlike B-Tree, which solves the problem of

fast search in one-dimensional space. R-Tree uses the minimum

circumscribed rectangle as the boundary of the space geometry,

and during the spatial retrieval, it filters out most of the areas

that do not overlap with the search rectangle by gradually

expanding the boundary (Guttman, 1984). Before storing vector

data in ClickHouse, the proposed strategy build the data into an

R-Tree, traverses the R-Tree in a hierarchical way during

storage, and stores non-leaf nodes in the index table and leaf

nodes in the detailed wide table. The data is partitioned based

on the root node before storage, so that the non-search areas can

be effectively isolated during the query, thereby speeding up the

query process.

2. RELATED WORK

In recent years, there has been a surge of interest in using

NoSQL databases for managing and storing large-scale datasets.

Redis, Elasticsearch, MongoDB and HBase. Compared with

these mainstream NoSQL databases, ClickHouse’s architecture

is highly scalable, fault-tolerant, and distributed, making it an

ideal choice for use cases that require high throughput, low

latency, and real-time analytics. In this related work section, we

provide an overview of the relevant literature that discusses the

use of Redis, Elasticsearch, MongoDB, HBase, and

ClickHouse, highlighting their advantages and disadvantages in

handling Geospatial data.

2.1 Redis

Redis is an open source, memory-based data structure storage

system that supports a variety of use cases, including serving as

a database, cache, message broker, and streaming engine. It

offers support for various data structures such as strings, hashes,

lists, sets, sorted sets, bitmaps, hyperloglogs, and geospatial

indexs and streams. Redis has built-in replication, Lua scripting,

LRU eviction and different levels of persistence. Additionally,

it provides high availability through Redis Sentinel and Cluster.

When storing geographical locations, Redis uses corresponding

key to store the longitude and latitude and the name of the data

using Geo Set data structure, which is similar to the Sorted Set

data structure. Its implementation leverages Geohash

technology to encode the longitude and latitude bits in a

staggered manner, and divides the geographical space into grid-

shaped buckets with each grid having its own corresponding

code (Makris et al., 2019). When querying a spatial range using

the georadius method, it transforms the query of two-

dimensional space into the comparison of strings of one-

dimensional space, which makes it highly efficient for spatial

range queries (Liu et al., 2014). (Hao Yu et al., 2012) proposed

to use Redis to cache terabytes of geospatial data to cope with

highly concurrent queries. However, Redis does not provide

data security guarantees and improper design can lead to cache

breakdown, cache penetration and cache avalanche.

2.2 Elasticsearch

Elasticsearch is a distributed, real-time search and data analysis

engine that is highly scalable. It can perform full-text search,

structured search, and analysis, making it a versatile tool for

many use cases. Geographical location is represented in

Elasticsearch using two different data types: geo_point and

geo_shape. The former is used to represent geographical

coordinate points with latitude and longitude, while the latter is

used for complex geographical shapes using GeoJSON.

Geo_points is useful for finding points within a certain range,

calculating distances, and aggregating data display on the maps.

On the other hand, geo_shape is used to filter the data and

analyse whether two shapes intersect, contain or overlap in the

geographical space. Elasticsearch uses GeoHash indexing for

geographical location queries, ensuring high accuracy. One

example of using Elasticsearch is for retrieving geographical

location in digital corpus (Bartlett, 2019).

2.3 MongoDB

MongoDB database is a document-based database that

organizes data in the form of BJSON. It offers high-

performance data persistence, and an API query interface that

allows for easy integration with external programs for CRUD

operations. MongoDB is highly reliable and offers failover and

redundancy mechanisms to prevent data loss as well as

horizontal scalability through data partitioning across multiple

machines. It supports multiple storage engines, including

memory storage engine and WiredTiger storage engine. To

efficiently retrieve geospatial coordinates, MongoDB employs

two indexing methods: the 2D index for planar geometry and

2dsphere index for spherical geometry. GeoJSON format must

be used for organizing geospatial data in MongoDB due to these

indexing methods. MongoDB also provides the calculation of

geospatial relationships such as geoWithin for inclusion,

geoIntersects for intersection, and nearSphere for adjacency.

Recent studies have explored different methods of storing

remote sensing data in MongoDB. For instance, a remote

sensing data management method was proposed based on

MongoDB that stores metadata as documents, and image data in

GridFS format (Wang et al., 2019) .

2.4 HBase

HBase is a highly scalable NoSQL database that enables the

storage of massive amounts of data in a distributed environment.

Leveraging the Hadoop Distributed File System (HDFS),

HBase uses Namespaces for data space division and Regions for

data organization, storing data in a columnar format. Rather

than defining specific columns when creating a table, HBase

only requires a declaration of the Column Family, providing

dynamic field specifications when writing data. This makes

Hbase more suitable for scenarios with varying fields, when

compared to traditional relational databases. Though HBase

does not support geospatial data storage natively, its flexible

architecture has led many researchers to explore the use of

HBase for this purpose. For example, (Wang et al., 2017)

proposed a method of storing vector data in HBase by dividing

it into grids using space Z curve filling with the number of

space filling curves used as RowKey for storage, and the

geometric objects within each grid used as columns (Wang et

al.,2017). Similarly, (Wang et al., 2019) proposed an efficient

spatial big data storage and query method in HBase, which

leverages Hilbert spatial curve filling to convert high-

dimensional data into one-dimensional data, allowing for faster

query processing.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

66

2.5 ClickHouse

Clickhouse is an open-source column-oriented storage database

(DBMS) that specializes in online analytical processing (OLAP)

queries, allowing real-time generation of data analysis reports

through SQL queries. ClickHouse has the following features: (1)

ClickHouse supports various table-level storage engine, with

over 20 engines in four categories, namely merge tree, log,

interface and others enabling users to choose different storage

engines according to specific requirements. (2) ClickHouse has

a high throughput capacity and uses a structure similar to LSM

tree to achieve sequential write performance, allowing it to

write data in a sequential append manner during data import,

and merge-sort multiple segments to optimize disk usage.

ClickHouse’s write performance is superior, with an official

open benchmark test showing it can achieve a write throughput

of 50MB-200MB/s, equivalent to a write speed of 50W-200W

pieces/s (based on an estimated 100 bytes per line). (3)

ClickHouse divides the data into multiple partitions and further

divides each partition into multiple index granularities, which

can then be processed by multiple CPU cores for parallel data

processing. This design allows a single query to utilize all the

CPU of the entire machine, greatly reduces the query delay.

Compared with other databases, ClickHouse has superior

performance in various SQL queries, making it an excellent

choice for low performance machines and outperforming

MySQL which is the most popular open-source database at

presently available (Wickramasekara et al., 2020).

3. METHODS

3.1 Storage method of spatial data in ClickHouse

ClickHouse lacks the inherent capability to store geospatial

data, but this study builds a logic layer on top of ClickHouse to

enable it to do so. This section will focus on the design of this

extended logic layer with Figure 1 displaying the

comprehensive structure of ClickHouse’s storage and retrieval

of geospatial data.

Figure 1. The overall architecture of ClickHouse for storing and retrieving geospatial data.

3.1.1 Storage service: The storage service in the ClickHouse

shared cluster for spatial data performs the following operations:

S1: Read the corresponding shapefile file from the

corresponding file system based on the path carried in the

application request.

S2: Construct an R-Tree using the data from the shapefile file.

R-Tree is preferred over the improved R*-Tree due to its proven

ability of R-Tree to retrieve geospatial data has been fully

proved in traditional relational databases. The construction time

of R*-Tree is relatively long, and its query efficiency is not

optimal when handling small data amounts.

S3: Generate a separate table for each shapefile since they

contain unique geographic information. To accelerate geospatial

query performance, two tables are created: an index table and a

detailed wide table. The index table stores non-leaf node

information, while the detailed wide table stores leaf node

information in the R-Tree. Table 1 shows the structure of the

index table, while Table 2 shows the structure of the detailed

wide table.

id partition_id level parent_id min_x max_x min_y max_y is_leaf

971074336

477675520

0 0 0 563069.67100

08697

586413.16049

43711

4483095.74101

6292

4494680.8556

37121

false

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

67

971074336

477675536

0 1 97107433

64776755

20

563189.80724

39035

564977.91167

48271

4483095.74101

6292

4484222.7475

09402

true

971074336

477675537

0 1 97107433

64776755

20

563069.67100

08697

566930.17859

16027

4483656.95563

5705

4484856.8395

5023

true

971074336

477675538

0 1 97107433

64776755

20

563073.67784

94965

568354.48896

19449

4484207.59796

222

4485157.4148

93977

true

971074336

481869824

0 1 97107433

64776755

20

563147.74145

93172

568336.82245

99154

4484451.31449

2935

4485683.8545

11977

true

971074336

481869825

0 1 97107433

64776755

20

563875.08722

99344

568345.09513

854

4484857.71861

2959

4485934.1159

92783

true

...

Table 1. Structure and partial data of index table

id parent_id min_x max_x min_y max_y ... the_geom

9710743709

96797440

9710743364

77675536

607240.627

0169418

607393.343

7808634

4508814.17

6007433

4508929.7

88199221

... MULTIPOLYGON

(((607393.3437808634

4508853.954510309,

607263.5223237597

4508814.176007433,

607240.6270169418

4508889.966283751,

607370.2550110875

4508929.788199221,

607393.3437808634

4508853.954510309)))

...

Table 2. Structure of detailed wide table and partial data.

ClickHouse’s ability to partition data allows for effective

isolation of irrelevant data during queries, which is cleverly

used when designing the index table. The table is built based on

the root node with elements in the root node and the subtree

below it stored in the corresponding partition as data of the

same partition. The partition number is determined by the left-

to-right position of the current element in the root node, while

the partition number of the leaf node in the detailed wide table

is the ID of the parent node, as shown in Figure 2. The level

field records the level of the current node in the entire R-Tree.

Since the index data is stored in the database, retrieval needs to

be performed recursively with each retrieval taking the ID of the

parent node as the filter condition is to isolate unrelated nodes

in the same subtree. Fortunately, ClickHouse provides the

Prewhere statement, which can filter the data in advance before

the selection, and significantly improve efficiency, especially

when the number of columns queried is significantly more than

that filtered. The minimum bounding rectangle of the current

node is defined by the min_x, max_ x, min_y and max_ y

values. The is_leaf field identifies whether the current node is

the last level of the index node and serves as the exit of the

recursive query.

In the detailed wide table, the smallest granularity data of the

current shapefile file is stored, with the ID generated by the

snowflake algorithm used to identify and sort data. The index of

ClickHouse itself is used to speed up retrieval efficiency when

querying. The parent_id is used as a partition field, and the data

of the same parent node is stored in a partition. The minimum

limited rectangle can exclude the data that does not meet the

requirements when querying. The_geom field records geometric

data, while the remaining fields contain non-spatial attributes of

the current data.

Figure 2. Use R-Tree to build the logic of index table and detail table.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

68

3.1.2 Retrieval service: Data retrieval services can be

categorized into geospatial retrieval and conventional retrieval.

Geospatial retrieval involves providing spatial geometry

information to retrieve data, while conventional retrieval

requires general retrieval conditions such as city name, street

name, etc. For conventional retrieval, index query is avoided,

and the corresponding information is directly queried in the

detailed wide table based on the conditions. For example, if the

geometric value of a street named “Atlantic commons” is

needed, the system will retrieve the relevant information from

the detailed wide table and return it to the application. In

contrast, geospatial retrieval requires calculating the minimum

restricted rectangle of the incoming geometry first. The index

table is then retrieved from the root node. When R-Tree is

stored in the table, parent_id of the root node is set to 0.

Therefore, when searching, the filter condition can be set to

parent_id=0 to find the root node. Then, determine the node that

intersects with the minimum bounding rectangle of the spatial

geometry being queried in the root node. The system then

recursively searches the lower level of R-Tree in the index table,

taking the id of the parent node as the filter condition at each

recursion. When the leaf node of the index is reached, the

current node id is used as the filter condition to retrieve the

corresponding data in the detailed wide table. During the search

in the detailed wide table, the system still uses the intersection

of the minimum restricted rectangle as the filter condition.

However, the intersection of the minimum restricted rectangle

in R-Tree does not necessarily mean that the real geometry is

intersected (as shown in Figure 3). Therefore, further judgment

is required when the corresponding data is obtained. Finally,

when the geometric information is retrieved and the geometric

information in the detailed wide table meets the topological

requirements of the retrieval, the corresponding results are

returned to the upper application.

Figure 3. The minimum bounding rectangle of two polygons

intersects, but the polygons do not intersect.

3.1.3 ClickHouse Sharded Cluster: ClickHouse provides two

mechanisms for distributed data storage: replica and sharded

cluster. The replica mechanism ensures the high availability of

data by allowing the same data to be obtained from other

servers if a ClickHouse node goes down. The write process of

the replica mechanism is shown in Figure 4. However, it

requires each server to accommodate the full amount of data,

limiting horizontal expansion. To overcome this limitation,

ClickHouse introduces sharding, which segments a complete

piece of data and distributes different shards to different nodes.

The Distributed Table Engine acts as a middleware, routing

distributed data from multiple nodes with different shards

through distributed logical tables. Unlike the replica mechanism,

the sharded cluster mechanism allows for horizontal expansion

of massive data storage. To ensure both horizontal scalability

and high availability, ClickHouse combines sharding and

replica mechanisms. In this paper, a sharded cluster architecture

is adopted, where three machines are used as the partition

cluster. Figure 5 illustrates the design of this architecture. By

leveraging sharding and replica mechanisms, ClickHouse

provides a powerful solution for distributed data storage and

processing.

Figure4 . Copy writing process.

Figure5 . Design architecture of sharded cluster.

3.2 Storage method of spatial data in HBase

To better evaluate the advantages of ClickHouse in querying

spatial geographic data, this paper includes a comparative test

with Hbase. The experiment expands HBase using R-Tree index

while maintaining the independent storage mode for index and

detailed wide table to speed up the query. This is achieved by

dividing the data into two tables, namely index table and detail

table. Table 3 shows the design of the index table while Table 4

shows the design of the detailed wide table.

HBase stores data using a single partition and employs the

“parentRowKey_SnowflakesAlgorithm” design rule for

Row_Key to ensure its uniqueness. The parameters min_x,

max_x, min_y, and max_y represent the smallest circumscribed

rectangle, while is_ Leaf identifies whether the current node is a

leaf node of the R-Tree index. The Start_Row and Stop_Row

parameters specify the range of Row_Key of the child node.

The primary purpose of these design features is to accelerate

query performance using scan operations. To optimize query

performance, HBase stores data for different column families

separately. In the design of the detailed wide table, two column

families are used: “ordinary” to store non-geometric

information and “geometry” to store geometric information.

This approach isolates geometric and non-geometric queries,

enabling each to be optimized independently. By separating the

data into two column families, HBase can accelerate both

geometric and non-geometric queries, resulting in faster query

performance and better scalability.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

69

 Index_Info

Row_Key min_x max_x min_y max_y is_leaf Start_Row Stop_Row

0_97396928709184

7168

563069.671

0008697

586413.16

04943711

4483095.7

41016292

4494680.85

5637121

false 09739692

87091847

168_

09739692870

91847168|

0_97396928709184

7169

586214.691

145163

593074.05

78981118

4488435.7

70831544

4500914.98

72505395

false 09739692

87091847

169_

09739692870

91847169|

0_97396928709184

7170

567299.814

0316624

586522.29

45189208

4492040.8

63678092

4498558.07

9844725

false 09739692

87091847

170_

09739692870

91847170|

0_97396928709184

7171

591493.622

9326547

598798.51

87040224

4489965.5

61497574

4506856.94

2924007

false 09739692

87091847

171_

09739692870

91847171|

...

Table 3. Design of index table in HBase.

 ordinary geometry

rowkey ... min_x max_x min_y max_y the_geom

09739692870918471689

73969287091847204_0

... 573351.878

0943268

573878.107

750165

4487638.4

6718892

4488463.03

9496107

MULTIPOLYGON

(((572938.2665684235

4486928.674520253,

572933.6947068771

4486936.54728656,

572929.7565177245

4486944.75539434,

572926.4764236218

4486953.247941074,

572923.8747660567

4486961.97226028,

572921.9676791976)))

...

Table 4. Design of Detail Table in HBase.

4. EXPERIMENT AND RESULTS

This section is based on real world data and aims to provide a

comprehensive evaluation of the experimental systems. To

achieve this, section 4.1 presents the experimental environment

used in the study, including details about the hardware and

software configurations. Section 4.2 provides a detailed

description of the experimental dataset. Finally, in section 4.3,

the experimental results are presented and compared to provide

insights into the strengths and weaknesses of the systems under

test. By using real-world data and a rigorous experimental

methodology, this study aims to provide valuable insights into

the performance and scalability of the experimental systems,

which can be used to inform decisions about their use in real-

world applications.

4.1 Experiment setting

The experiments were performed on a virtual machine

environment with a 4GB RAM and 2.80GHz Intel(R) Core(TM)

i7-7700HQ CPU. ClickHouse was deployed in a single-node

storage configuration, while HBase was set up as a three-node

cluster with identical hardware and software configurations.

Table 5 provides detailed specifications for each of the nodes in

the HBase cluster.

CPU type Intel(R) Core(TM) i7-

7700HQ CPU @ 2.80GHz

Processor number 3

RAM 4G

ClickHouse Version 21.7.3.14

Hadoop version 3.1.3

Zookeeper version 3.5.7

HBase version 1.3.1

Table 5. Node configuration for HBase

4.2 Dataset

To evaluate the performance and scalability of the systems

under test, a range of real-world datasets were used in the

experiments. Specifically, the datasets included community

data, census data for New York (“New York Census Data,”

n.d.), building data, and land data for Papua New Guinea in

2018 (“Papua New Guinea Data,” n.d.). The size and

characteristics of each dataset are summarized in Table 6, which

provides details such as the number of records, file size, and

data format. By using real-world datasets, this study aims to

provide insights into the systems’ ability to handle complex and

diverse data types, as well as their performance and scalability

under realistic conditions.

Name Description Amount

of data

nyc_neighborhoods New York Community

Data

129

gis_osm_landuse_a_

free_1

Land Data in Papua New

Guinea

34700

nyc_census_blocks New York 2018 Census

Data

38700

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

70

gis_osm_buildings_a

_free_1

Building Data in Papua

New Guinea

369254

Table 6. Experimental dataset

4.3 Experiment results

To compare the efficiency of spatial queries between

ClickHouse and HBase for different data volumes and query

rates, we randomly selected 1% of the data from the tables for

cross-checking during the experiments. The results, as shown in

Figure 6 indicate that ClickHouse outperforms HBase in terms

of query speed, particularly for large amounts of data. When the

data volume in a single table data was 129 records, HBase’s

response time for a data query reached the second level, while

ClickHouse returned the query results in milliseconds. When

the data volume in a single table increased to 10,000 records,

HBase’s response time was about three times longer than

ClickHouse’s. Furthermore, with the increase in the volume of

data, HBase’s response time increased significantly. These

findings demonstrate that ClickHouse is more efficient than

HBase is spatial data query, especially for larger datasets.

Figure 6. The minimum bounding rectangle of two polygons

intersects, but the polygons do not intersect.

5. CONCLUSIONS

This paper proposes a storage model for spatial data using

ClickHouse and R-Tree as an index for spatial queries. To

evaluate its performance, we compare the geospatial data

queries with the HBase database using the same indexes. The

results of the experiments demonstrate that ClickHouse

outperforms HBase in geospatial data queries, even when using

the same indexes.

REFERENCES

Bartlett, R., 2019. Local geographic information storing and

querying using Elasticsearch, in: Proceedings of the 13th

Workshop on Geographic Information Retrieval. Presented at

the GIR’19: 13th Workshop on Geographic Information

Retrieval, ACM, Lyon France, pp. 1–4.

https://doi.org/10.1145/3371140.3371144

Chi, M., Plaza, A., Benediktsson, J.A., Sun, Z., Shen, J., Zhu,

Y., 2016. Big Data for Remote Sensing: Challenges and

Opportunities. Proc. IEEE 104, 2207–2219.

https://doi.org/10.1109/JPROC.2016.2598228

Codd, E.F., 1970. A relational model of data for large shared

data banks. Commun. ACM 13, 377–387.

https://doi.org/10.1145/362384.362685

Ghemawat, S., Gobioff, H., Leung, S.-T., 2003. The Google file

system, in: Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles. Presented at the SOSP03: ACM

Symposium on Operating Systems Principles, ACM, Bolton

Landing NY USA, pp. 29–43.

https://doi.org/10.1145/945445.945450

Guttman, A., 1984. R-trees: a dynamic index structure for

spatial searching. ACM SIGMOD Rec. 14, 47–57.

https://doi.org/10.1145/971697.602266

Hao Yu, Yuehu Liu, Chuan Tian, Liang Liu, Mingchao Liu,

Yong Gao, 2012. A cache framework for geographical feature

store, in: 2012 20th International Conference on

Geoinformatics. Presented at the 2012 20th International

Conference on Geoinformatics, IEEE, Hong Kong, China, pp.

1–4. https://doi.org/10.1109/Geoinformatics.2012.6270288

Jiajun Liu, Haoran Li, Yong Gao, Hao Yu, Dan Jiang, 2014. A

geohash-based index for spatial data management in distributed

memory, in: 2014 22nd International Conference on

Geoinformatics. Presented at the 2014 22nd International

Conference on Geoinformatics, IEEE, Kaohsiung, Taiwan, pp.

1–4.

https://doi.org/10.1109/GEOINFORMATICS.2014.6950819

Kucherov, B., Pribyl, O., Artyushenko, V., 2017. Increasing

efficiency of getting results of satellite remote sensing for smart

cities, in: 2017 Smart City Symposium Prague (SCSP).

Presented at the 2017 Smart City Symposium Prague (SCSP),

IEEE, Prague, Czech Republic, pp. 1–6.

https://doi.org/10.1109/SCSP.2017.7973854

Li, J., Pei, Y., Zhao, S., Xiao, R., Sang, X., Zhang, C., 2020. A

Review of Remote Sensing for Environmental Monitoring in

China. Remote Sens. 12, 1130.

https://doi.org/10.3390/rs12071130

Makris, A., Tserpes, K., Anagnostopoulos, D., Nikolaidou, M.,

de Macedo, J.A.F., 2019. Database system comparison based on

spatiotemporal functionality, in: Proceedings of the 23rd

International Database Applications & Engineering Symposium

on - IDEAS ’19. Presented at the the 23rd International

Database Applications & Engineering Symposium, ACM Press,

Athens, Greece, pp. 1–7.

https://doi.org/10.1145/3331076.3331101

New York Census Data [WWW Document], n.d. URL

http://postgis.net/workshops/zh_Hans/postgis-

intro/about_data.html

Papua New Guinea Data [WWW Document], n.d. URL

http://download.geofabrik.de/australia-oceania/

Shi, K., Bai, L., Wang, Z., Tong, X., Mulvenna, M.D., Bond,

R.R., 2022. Photovoltaic Installations Change Detection from

Remote Sensing Images Using Deep Learning, in: IGARSS

2022 - 2022 IEEE International Geoscience and Remote

Sensing Symposium. Presented at the IGARSS 2022 - 2022

IEEE International Geoscience and Remote Sensing

Symposium, IEEE, Kuala Lumpur, Malaysia, pp. 3231–3234.

https://doi.org/10.1109/IGARSS46834.2022.9883738

Shukla, D., Shivnani, C., Shah, D., 2016. Comparing oracle

spatial and postgres PostGIS. IJCSC 7, 95–100.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

71

Song, G., Wang, Z., Bai, L., Zhang, J., Chen, L., 2020.

Detection of oil wells based on faster R-CNN in optical satellite

remote sensing images, in: Notarnicola, C., Bovenga, F.,

Bruzzone, L., Bovolo, F., Benediktsson, J.A., Santi, E.,

Pierdicca, N. (Eds.), Image and Signal Processing for Remote

Sensing XXVI. Presented at the Image and Signal Processing

for Remote Sensing XXVI, SPIE, Online Only, United

Kingdom, p. 17. https://doi.org/10.1117/12.2572996

Wang, H., Zhu, Y., Wang, J., Han, H., Niu, J., Chen, X., 2022.

Modeling of spatial pattern and influencing factors of cultivated

land quality in Henan Province based on spatial big data. PLOS

ONE 17, e0265613.

https://doi.org/10.1371/journal.pone.0265613

Wang, S., Li, G., Yao, X., Zeng, Y., Pang, L., Zhang, L., 2019.

A Distributed Storage and Access Approach for Massive

Remote Sensing Data in MongoDB. ISPRS Int. J. Geo-Inf. 8,

533. https://doi.org/10.3390/ijgi8120533

Wang, Y., Li, C., Li, M., Liu, Z., 2017. HBase storage schemas

for massive spatial vector data. Clust. Comput. 20, 3657–3666.

https://doi.org/10.1007/s10586-017-1253-1

Wickramasekara, A., Liyanage, M.P.P., Kumarasinghe, U.,

2020. A comparative study between the capabilities of MySQL

and ClickHouse in low-performance Linux environment, in:

2020 20th International Conference on Advances in ICT for

Emerging Regions (ICTer). Presented at the 2020 20th

International Conference on Advances in ICT for Emerging

Regions (ICTer), IEEE, Colombo, Sri Lanka, pp. 276–277.

https://doi.org/10.1109/ICTer51097.2020.9325483

Zhang, J., Wang, Z., Bai, L., Song, G., Tao, J., Chen, L., 2021.

Deforestation Detection Based on U-Net and LSTM in Optical

Satellite Remote Sensing Images, in: 2021 IEEE International

Geoscience and Remote Sensing Symposium IGARSS.

Presented at the IGARSS 2021 - 2021 IEEE International

Geoscience and Remote Sensing Symposium, IEEE, Brussels,

Belgium, pp. 3753–3756.

https://doi.org/10.1109/IGARSS47720.2021.9554689

Zhu, M., Wang, Z., Bai, L., Zhang, J., Tao, J., Chen, L., 2021.

Detection of industrial storage tanks at the city-level from

optical satellite remote sensing images, in: Bruzzone, L.,

Bovolo, F., Benediktsson, J.A. (Eds.), Image and Signal

Processing for Remote Sensing XXVII. Presented at the Image

and Signal Processing for Remote Sensing XXVII, SPIE,

Online Only, Spain, p. 33. https://doi.org/10.1117/12.2600008

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-M-1-2023
39th International Symposium on Remote Sensing of Environment (ISRSE-39) “From Human Needs to SDGs”, 24–28 April 2023, Antalya, Türkiye

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-65-2023 | © Author(s) 2023. CC BY 4.0 License.

72

