# CANOPY NITROGEN ESTIMATION ON COTTON PLANT USING SATELLITE IMAGERY

B. J. Chew<sup>1</sup> \*, W. Wiratama<sup>1</sup>, M. H. Goh<sup>1</sup>

<sup>1</sup> ST Engineering Geo-Insights Pte Ltd, Singapore – (chew.boonjin, wahyu.wiratama, minhua.goh)@stengg.com

KEY WORDS: Canopy nitrogen prediction, satellite imagery, remote sensing, Sentinel 2, vegetation indices.

### **ABSTRACT:**

The optimization of nitrogen (N) management is becoming a key challenge to enhance crop yield production while protecting the environment. Analysis of canopy N content in crop plants is used as insights for fertilization management, in which actions can be taken to optimize N fertilizer usage. Traditionally, lab chemical processing is used to measure the crop plant's nutrient content. However, the collection of leaf samples from the field is labour intensive, and it would be costly to increase sampling frequency. Thus, this approach may not be the most optimal for large plantations. Remote sensing applications in agriculture have been widely studied. This study aims to evaluate the potential of using Sentinel 2 imagery to predict canopy N content, as an alternative wide scale method as compared to traditional methods. A cotton plantation with about 50 square km area in the state of Mato Grosso, Brazil, was used as the case study. About 180 samples across the cotton plantation were collected between March and April 2022 and the N contents of the crop plants were measured using lab chemical processes. Sentinel 2 images within 15 days of the sampling dates were retrieved from ESA's Copernicus Open Access Hub. This study proposes a Random Forest (RF) regression algorithm for the generation of an N prediction model. About 52 vegetation indices (VIs) were extracted as the features for model training, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). RF model allows easy measurement of the relative importance of each feature with respect to the prediction to achieve a good performance. Validation is done by using mean absolute error (MAE) and mean absolute percentage error (MAPE) to evaluate the prediction accuracy against the ground truth, which resulted to be 3.418 g/kg and 9.29% respectively. Finally, this study analyses the performance of the canopy N prediction model and assesses its ability as an alternative to traditional lab chemical sampling processes.

## 1. INTRODUCTION

Increasing global demand for agricultural products have resulted in more intensive farming that causes drains nutrients from the soil (Purwanto & Alam, 2019). Application of fertilizer replaces the nutrients for crop uptake which otherwise would have been insufficient. However, over-fertilisation of crop land occurs worldwide and may cause environmental issues due to surface run-off into the natural environment (Ritchie, 2021; Sishodia et al., 2020). Furthermore, application of excess fertiliser contributes to additional costs. This pushes for a need to identify the optimal amount of fertiliser to minimise cost as well as maintaining yield. This optimal amount depends on the plant status and thus the requirement to have an accurate estimate of the plant nutrient status.

Nitrogen is an important element in the plant, and is present in chlorophyll, amino acids and hence protein, nucleic acids, plant tissue, etc (Buchholz, 2022). Traditionally, N level can be obtained via lab chemical processing, however, this process takes time and increases the operational costs (Farella et al., 2022). Furthermore, the sampling results only applies for that set of leaf samples and does not represent the entire crop field. There is a need to consider alternate methods of estimating leaf nutrient that is cheaper and faster.

Satellite-based remote sensing provides an advantage in wide area monitoring and have been used for many different applications in agriculture, such as land use and crop classification, soil health and moisture, and vegetation health (Sishodia et al., 2020). Satellites such as European Space Agency's Sentinel 2 provides global coverage over land once every 5 days and have a wide imaging swath of 290 km (Sentinel-2). Sentinel 2 L2A product has 12 bands ranging from visible to short wave infrared at spectral resolutions ranging from 10m to 60m. It is provided for public access and is atmospherically corrected, hence it is a surface reflectance product. Band combinations – such as band ratios, normalised band differences, or more complex formulae – can be derived for different purposes. There are many indices derived for agricultural purposes, such as Normalised Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). These vegetation indices (VI) have their own advantages and limitations. One example is the usefulness of NDVI to determine broadly the vigour of a vegetated area, however it faces an oversaturation issue where NDVI value loses sensitivity beyond a vegetation density (Pettorelli et al., 2005).

Machine learning can be used to estimate nitrogen levels on crop leaves using satellite imagery by collecting data, extracting relevant features, training a machine learning model, and validating the model. Marang et al. (2021) proposed hybrid random forest regression, DBSCAN, and PCA to predict N level on cotton crop using hyperspectral UAV and sentinel imagery. Huang et al. (2015) estimated rice nitrogen status based on satellite imagery. R-squared was used to compute relationship between vegetation indices and rice N status. Moreover, Tan et al. (2020) proposed partial least square and remote sensing imagery to predict protein content.

Random forest (RF) regression is one of the common machine learning methods which have been used in estimation of foliar nitrogen levels (Abdel-Rahman et al., 2012; Soltanikazemi et al., 2022). RF is an ensemble method which uses a decision tree as a base estimator. It allows for easy measurement of the relative importance of each feature with respect to the prediction, hence achieving a good performance. In this study, we attempted to use RF regression model to estimate foliar nitrogen concentrations for cotton crops in Brazil. We want to validate the performance of applying RF regression model on selected indices based on Sentinel 2 and determine the limitations of the model.

## 2. STUDY AREA AND DATA COLLECTION

In this paper, field experiments were conducted from February to April 2022 over a cotton plantation in the state of Mato Grosso, Brazil with about 50 square km area, as shown in Figure 1. Leaf samples were collected during the vegetative and flowering stage of the cotton plants, between 70 to 120 days after emergence. The sampling process involve by first identifying a sampling coordinate (latitude, longitude) within the plantation. Leaf samples are then collected randomly within a 10m radius from the sampling coordinate. This process was iterated across different sampling coordinates and dates. Afterwards, the samples were handled by a professional vendor to measure the nitrogen content using chemical laboratory equipment, carried out with standardized procedure. The measured leaf nitrogen concentration of the leaf samples was then provided as g/kg. In this study, 180 samples were collected and used to generate and validate our model. The statistics of the sampled nitrogen concentration is as shown in Table 1 below.



Figure 1. Cotton Plantation Area

| Mean | Standard<br>Deviation | Min  | Max  |
|------|-----------------------|------|------|
| 38.3 | 5.15                  | 23.5 | 52.6 |

 Table 1. Statistics of Nitrogen samples in g/kg

We collected cloud-free Sentinel-2 L2A data that fall within 15 days from the sample date for each sampling coordinate. L2A products were used for our processing as the atmospheric effects were removed. We then up-sampled all bands to 10m spatial resolution, before extracting the 3x3 context pixels centred on the sampling coordinates. Vegetation indices (VIs) were computed to obtain the percentage of vegetation cover, amount of

chlorophyll content, leaf area, and so on (As-Syakur et al. 2012; Brecht 2018; Broge and Leblanc 2001; Chen 1996; Duong et al. 2017; El-Shikha et al. 2008; Frampton et al. 2013; Gitelson et al. 2002; Hiphen-plant 2022; Huang et al. 2012; Main et al. 2011; Metternicht 2003; NDRE index 2023; Pro.arcgis; Rasul et al. 2018; Sentinel Hub; Vincini et al. 2008; Waqar et al. 2012; Xu 2006; Zhao and Chen, 2005). A total of 52 VIs were computed to get handcrafted features, as described in the Appendix. After which, 52 VIs and 12 bands were deployed as the feature inputs to the RF model.

#### 3. METHOD

Figure 2 shows the overall flowchart of the proposed method, including pixel extraction, feature extraction, and RF regression model. Firstly, Sentinel-2 images and sample coordinates were used to retrieve sampled foliar nitrogen values and their respective pixels. The 52 VIs were then computed. Next, the training dataset was generated from the 12 bands and 52 VIs. The best hyperparameters of the RF model were chosen with reference to the training dataset, with the aid of Random Search CV optimization algorithm. Table 2 shows the hyperparameters that were fed into the optimization algorithm. The dataset was then incorporated into the model for training.



Figure 2. Overall Flowchart

| Parameters       | Hyperparameters values                                      |
|------------------|-------------------------------------------------------------|
| Max depth        | [10, 20, 30, 40, 50, 60, 70, 80, 90,<br>100]                |
| Max features     | ['auto', ''sqrt]                                            |
| Min sample leaf  | [1, 2, 4]                                                   |
| Min sample split | [2, 5, 10]                                                  |
| N estimators     | [200, 400, 600, 800, 1000, 1200,<br>1400, 1600, 1800, 2000] |

 
 Table 2. Settings for Hyperparameter Values as Input to the Random Search CV Algorithm

## 4. PERFORMANCE EVALUATION

Figure 3 shows the histogram of the dataset where we observe most N values ranged between 33 and 47 g/kg, therefore we assumed that values beyond this range were extreme values. In the experiment, we split the dataset randomly into 80% training and 20% testing with respect to the observed value.



Figure 3. Histogram of Dataset

The optimized RF model was trained using the training dataset, generating the feature importance scores as shown in Figure 4 below. It was shown that the top 15 features were the most important on the N prediction, namely Band 11, Band 1, IRECI, Band 5, MNDWI, BRBA, CCCI\_ALT, Band 12, Band 9, NDVI3, MCARI\_ALT, BUI, Band 2, Band 3, and NPCI.



Figure 4. Random Forest Feature Importance

The model was further evaluated using the mean absolute error (MAE) and mean absolute percentage error (MAPE). MAE is a common metric used to evaluate the performance of prediction model by measuring the average absolute difference between the observed and predicted values. MAPE is similar to MAE, except the average absolute difference is being divided by the observed value before summation. The formulas of MAE and MAPE are as shown below:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_{actual} - y_{predicted} \right| \tag{1}$$

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \frac{|y_{actual} - y_{predicted}|}{y_{predicted}}$$
(2)

where n = number of samples  $y_{actual} =$  observed value  $y_{predicted} =$  predicted value

Figure 5 below depicts the prediction plot using training and testing data that gives a fit prediction for training data. According to our experiment, this study presents MAE of 3.418 g/kg, which is MAPE of 9.29% for the testing dataset.

We observe that the model is able to achieve a better performance for N prediction where the values fall within the middle range highlighted above. Poorer performance for the extreme values could be attributed to lack of training data in that range, and that training with an imbalanced dataset resulted in higher errors. In addition, it is believed that the model loses sensitivity at the extreme ends of the distribution and the dataset is still lacking features with high correlation to N. Increase in variance of N distribution and the size of the dataset can be an alternative solution in the future to overcome the overfitting issue. Moreover, hyperspectral (HS) images can be an option to increase the number of features available for training since they are more sensitive than S2A images, which are multispectral images.



**Figure 5**. Prediction Plot a). using Training Data, b). using Testing Data

#### 5. CONCLUSION

This study proposed the use of Sentinel-2 imagery and machine learning method, specifically RF model, to predict the amount of N present in the canopy of the cotton crops, in hopes of replacing the traditional method, with the end goal to save cost and time. RF model was chosen since it could calculate which feature was important to the prediction to achieve a high accuracy, with the top 15 features being the most important on the N prediction to be Band 11, CSI, Band 1, IRECI, Band 5, MNDWI, BRBA, CCCI\_ALT, Band 12, Band 9, NDVI3, MCARI\_ALT, BUI, Band 2, Band 3. The validation metric used was MAE which resulted to be 3.418 g/kg, which was MAPE of 9.29% for the testing dataset. While MAE is considerably low, more could be done since MAE was mostly contributed by the inaccurate prediction of extreme N values. Improvements such as using hyperspectral imagery instead of Sentinel-2 imagery and using different VIs of different feature importance based on different methods could be done. Even though VIs among different methods could be of different feature importance, stacking them with the consideration of different methods could prevent overfitting and should be used to monitor agricultural fields to improve classification accuracy. In addition, boosting the dataset with more data, especially in the extreme range, would help to resolve the imbalanced dataset issue.

#### REFERENCES

Abdel-Rahman, E. M., Ahmed, F. B., Ismail, R. (2012). Random Forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 hyperion Hyperspectral Data. International Journal of Remote Sensing, 34(2), 712–728. https://doi.org/10.1080/01431161.2012.713142

As-Syakur, A.R., Adnyana, I.W.S., Arthana, I.W. and Nuarsa, I.W., 2012. Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote sensing, 4(10), pp.2957-2970. doi.org/10.3390/rs4102957

Brecht, 2018, Remote sensing indices, https://medium.com/regen-network/remote-sensing-indices-389153e3d947, accessed by 19 January 2023.

Broge, N.H., Leblanc, E., 2001, Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment. 76. 2. 156-172. doi.org/10.1016/S0034-4257(00)00197-8

Buchholz, D. 2022, March. Nitrogen in the plant. University of Missouri Extension. https://extension.missouri.edu/publications/wq259, accessed by 20 January 2023.

Chen, J.M., 1996. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), pp.229-242. doi.org/10.1080/07038992.1996.10855178

Duong, T., Chou, T., Fang, Y., 2017. Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province, Vietnam. International Journal of Environmental Science and Development. 8. 539-542. doi.org/10.18178/ijesd.2017.8.8.1012.

El-Shikha, D. M, Barnes, E. M, Clarke, T. R, Hunsaker, D. J, Haberland, J. A, Pinter, P. J, Waller, P. M, & Thompson, T. L., 2008. Remote Sensing of Cotton Nitrogen Status Using the Canopy Chlorophyll Content Index (CCCI). Transactions of the ASABE, 51, 73-82. doi.org/10.13031/2013.24228

Farella, M. M., Barnes, M. L., Breshears, D. D., Mitchell, J., van Leeuwen, W. J., & amp; Gallery, R. E., 2022. Evaluation of vegetation indices and imaging spectroscopy to estimate foliar nitrogen across disparate biomes. Ecosphere, 13(3). https://doi.org/10.1002/ecs2.3992

Frampton, W., Dash, J., Watmough, R.G., Milton, E.J., 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing. 82. 83–92. doi.org/10.1016/j.isprsjprs.2013.04.007.

Gitelson, A., Kaufman, Y., Stark, R., Rundquist, D., 2002. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sensing of Environment. 80. 76-87. doi.org/10.1016/S0034-4257(01)00289-9.

Hiphen-plant, 2022, Vegetation Indices for Chlorophyll, www.hiphen-plant.com, accessed by 20 January 2023.

Huang, W., Luo, J., Zhang, J., Zhao, J., Zhao, C., Wang, J., Yang, G., Huang, M., Huang, L. and Du, S., 2012. Crop disease and pest monitoring by remote sensing. In Remote Sensing-Applications. IntechOpen. doi.org/10.5772/35204

Huang, S., Miao, Y., Zhao, G., Yuan, F., Ma, X., Tan, C., Yu, W., Gnyp, M.L., Lenz-Wiedemann, V.I., Rascher, U. and Bareth, G., 2015. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote sensing, 7(8), pp.10646-10667. doi.org/10.3390/rs70810646

Main, R., Cho, M.A., Mathieu, R., O'Kennedy, M.M., Ramoelo, A., Koch, S., 2011. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and Remote Sensing. 66. 751-761. doi.org/10.1016/j.isprsjprs.2011.08.001

Marang, I.J., Filippi, P., Weaver, T.B., Evans, B.J., Whelan, B.M., Bishop, T.F., Murad, M.O., Al-Shammari, D. and Roth, G., 2021. Machine learning optimised hyperspectral remote sensing retrieves cotton nitrogen status. Remote Sensing, 13(8), p.1428. doi.org/10.3390/rs13081428

Metternicht, G., 2003. Vegetation indices derived from highresolution airborne videography for precision crop management. Int. J. Remote Sens. 24. doi.org/10.1080/01431160210163074.

NDRE index: Vegetation Analysis in mid and late season. EOS Data Analytics., 2023. https://eos.com/industries/agriculture/ndre/

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Marp: Stenseth, N. C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology, Evolution, 20(9), 503–510. https://doi.org/10.1016/j.tree.2005.05.011

Pro.arcgis, Indices gallery, https://pro.arcgis.com/en/proapp/help/data/imagery/indices-gallery.htm, accessed by 20 January 2023.

Purwanto, B. H., & Amp; Alam, S., 2019. Impact of intensive agricultural management on carbon and nitrogen dynamics in the Humid Tropics. Soil Science and Plant Nutrition, 66(1), 50–59. https://doi.org/10.1080/00380768.2019.1705182

Rasul, A., Balzter, H., Ibrahim, G.R.F., Hameed, H.M., Wheeler, J., Adamu, B., Ibrahim, S.A. and Najmaddin, P.M., 2018. Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land, 7(3), p.81. doi.org/10.3390/land7030081

Ritchie, H., 2021. Excess fertilizer use: Which countries cause environmental damage by overapplying fertilizers? Our World in Data. Retrieved February 24, 2023, from https://ourworldindata.org/excess-fertilizer Sentinel Hub, Collection of custom script, https://custom-scripts.sentinel-hub.com/, accessed by 20 January 2023.

Sentinel-2, ESA, https://www.esa.int/Applications/Observing\_the\_Earth/Coperni cus/Sentinel-2, accessed by 21 January 2023

Sishodia, R. P., Ray, R. L., & amp; Singh, S. K., 2020. Applications of remote sensing in Precision Agriculture: A Review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136

Soltanikazemi, M., Minaei, S., Shafizadeh-Moghadam, H., & Mahdavian, A., 2022. Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of sentinel-2: Application of random forest and support vector regression. Computers and Electronics in Agriculture, 200, 107130. https://doi.org/10.1016/j.compag.2022.107130

Tan, C., Zhou, X., Zhang, P., Wang, Z., Wang, D., Guo, W. and Yun, F., 2020. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. PLoS One, 15(3), p.e0228500. doi.org/10.1371/journal.pone.0228500

Vincini, M., Frazzi E., D'Alessio, P., 2008: A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9, 303-319. doi.org/10.1007/s11119-008-9075-z

Waqar, M.M., Mirza, J.F., Mumtaz, R. and Hussain, E., 2012. Development of new indices for extraction of built-up area & bare soil from landsat data. Open Access Sci. Rep, 1(1), p.4.

Xu, H., 2006. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing. 27. 3025–3033. doi.org/10.1080/01431160600589179.

Zhao, H. and Chen, X., 2005, July. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In International geoscience and remote sensing symposium (Vol. 3, p. 1666). doi.org/10.1109/IGARSS.2005.1526319

#### APPENDIX

| Sentinel-2 | Description         | Notations |
|------------|---------------------|-----------|
| L2A bands  |                     |           |
| Band 1     | Coastal or Aerosol  | Co        |
| Band 2     | Blue                | В         |
| Band 3     | Green               | G         |
| Band 4     | Red                 | R         |
| Band 5     | Vegetation red edge | RE1       |
| Band 6     | Vegetation red edge | RE2       |
| Band 7     | Vegetation red edge | RE3       |
| Band 8     | Near Infrared       | NIR       |
| Band 9     | Narrow NIR          | NNIR      |
| Band 10    | Water vapour        | WV        |
| Band 11    | SWIR                | S1        |
| Band 12    | SWIR                | S2        |

 Table 3. Sentinel-2 L2A bands description

| No | Indices | Full name                 | Formula Based on S2<br>bands                                   |
|----|---------|---------------------------|----------------------------------------------------------------|
|    |         | Normalised                | (Marta)                                                        |
| 1  | NDVI    | Difference                | NNIR - R                                                       |
| 1  | ND VI   | Vegetation                | $\overline{NNIR + R}$                                          |
|    |         | Index<br>Modified Soil    |                                                                |
|    | MSAVI   | Modified Soil             | (                                                              |
| 2  | 2       | Vegetation                | $\frac{2\times NNIR+1-\sqrt{(2\times NNIR+1)^2+8(NNIR-R)}}{2}$ |
|    |         | Index                     |                                                                |
|    |         | Visible                   |                                                                |
| 3  | VARI    | Atmospherica              | $\frac{G-R}{R}$                                                |
|    |         | Index                     | G + R - B                                                      |
|    |         | Modified                  |                                                                |
| 4  | MNDW    | Normalized                | G-S1                                                           |
| 4  | Ι       | Difference                | $\overline{G+S1}$                                              |
|    |         | Water Index               | NNUD C1                                                        |
| 5  | NDMI    | Normalized<br>Difference  | $\frac{NNIR - SI}{NNIR + SI}$                                  |
|    |         | Burn Area                 | $\frac{NNIR + SI}{1}$                                          |
| 6  | BAI     | Index                     | $(0.1-R)^2 + (0.06 - NNIR)^2$                                  |
|    |         | Normalized                |                                                                |
| 7  | NDBI    | Difference                | S1 - NNIR                                                      |
| ,  | TID DI  | Built-up                  | S1 + NNIR                                                      |
|    |         | Enhanced                  |                                                                |
| 8  | EVI     | Vegetation                | $2.5 \times \frac{NNIR-R}{1000}$                               |
| -  |         | Index                     | $NNIR+(6\times R-7.2\times B)+1$                               |
|    |         | Enhanced                  | NNIR - R                                                       |
| 9  | EVI2    | Vegetation                | $2.5 \times \frac{1.111}{NNIR + 2.4 \times R + 1}$             |
|    |         | Index                     |                                                                |
|    |         | Soil Adjusted             | NNIR – R                                                       |
| 10 | OSAVI   | Vegetation                | $\overline{NNIR + R + 0.16}$                                   |
|    |         | Index                     |                                                                |
|    |         | Soil Adjusted             |                                                                |
| 11 | SATVI   | Total<br>Vegetation       | $\frac{S1-R}{S1+R+L} \times (1+L) + \frac{S2}{2}$              |
|    |         | Index                     | 51 T K T L L                                                   |
| 42 | DCI     | Bare Soil                 | R + B - G                                                      |
| 12 | B21     | Index                     | $\overline{R + B + G}$                                         |
|    |         | Normalized                | NNIR - S1                                                      |
| 13 | NDWI    | Difference<br>Water Index | $\overline{NNIR + S1}$                                         |
|    |         | Structure                 |                                                                |
|    | CIDI    | Insensitive               | NNIR – CO                                                      |
| 14 | SIPI    | Pigment                   | NNIR + R                                                       |
|    |         | Index                     | C1                                                             |
| 15 | MSI     | Moisture                  | 51                                                             |
|    |         | Green                     | NNIR                                                           |
|    |         | Normalized                |                                                                |
| 16 | GNDVI   | Difference                | $\frac{NNIR - G}{NNIR + G}$                                    |
|    |         | Vegetation                | NNIR + G                                                       |
|    |         | Index                     | $(S1 \pm D) = (NNID \pm D)$                                    |
| 17 | BI      | Bare Soil                 | $\frac{(31 \pm N) - (NNIK \pm D)}{(S1 \pm D) + (NNID \pm D)}$  |
|    |         | Dry Bare Soil             | $\frac{(SI + K) + (NNK + B)}{SI - G}$                          |
| 18 | DBSI    | Index                     | $\frac{1}{S1+G} - NDVI$                                        |
| 19 | NBAI    | Normalised                | $S_{2}^{2} - S_{1}^{2}/G$                                      |
|    |         | Built-Up                  | $\frac{52}{52+51/6}$                                           |
|    |         | Area Index                | 52 1 51/0                                                      |
| 20 | BRBA    | for Built-Up              | R                                                              |
|    | DIND/I  | Araa                      | $S\overline{1}$                                                |

| 21GIGreenness<br>Index $\frac{G}{R}$ 22MSRModified<br>Simple Ratio $SR - 1$<br>$\sqrt{SR - 1}$ 23SRSimple Ratio $NNIR/R$ 24RDVIRenormalised<br>Uriference $\frac{NNIR - R}{\sqrt{NNIR + R}}$ 25NRIReflectance<br>Index $\frac{G - R}{G + R}$ 26TCARIReflectance<br>Absorption<br>and<br>Reflectance $\frac{G - R}{G + R}$ 27PSRIPlant<br>Senescence $\frac{R - B}{RE2}$ 28NPCIPlant<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 29MCARI<br>altAbsorption in<br>Reflectance $\frac{R - Co}{R + Co}$ 30MTCIModified<br>Chlorophyll<br>ratio Index $((RE1 - R) - 0.2 \times (RE1 - G) \cdot (\frac{RE1}{R}))$ 31MCARI<br>altAbsorption in<br>Reflectance $\frac{R - Co}{R + Co}$ 33CCL_aMerris<br>Chlorophyll<br>Index<br>(alternate) $((RE1 - R) - 0.2 \times (RE1 - G) \cdot (\frac{RE1}{R}))$ 34ACARI<br>Absorption in<br>Reflectance $\frac{(NNIR - RE2)}{(RE2 + R)}$ 35PVRCanopy<br>Chlorophyll<br>NIR + R $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 34AVIVegetation<br>Index $\frac{NNIR - R}{G^2}$ 35PVRChlorophyll<br>Ratio $\frac{\rho \times NNIR - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - R}{RE1}$ 37ARVI2Modified<br>Vigetation<br>Index $\frac{ONIR - R}{NNR + R}$ 38mNDVINDVI $\overline{NNIR - R} + 2 \times CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No  | Indices | Full name     | Formula Based on S2<br>bands                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|---------------|----------------------------------------------------------------|
| 21GIIndex $\overline{R}$ 22MSRModified<br>Simple Ratio $\overline{SR} - 1$<br>$\sqrt{SR} - 1$ 23SRSimple Ratio $NNIR/R$ 24RDVIRenormalised<br>Difference<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         | Greenness     | G                                                              |
| 22MSRModified<br>Simple Ratio $SR - 1$<br>$\sqrt{SR - 1}$ 23SRSimple Ratio $NNIR/R$ 24RDVIDifference<br>Vegetation<br>Index $NNIR - R$<br>$\sqrt{NNIR + R}$ 25NRIReflectance<br>Index $\frac{G - R}{G + R}$ 26TCARITransformed<br>Chlorophyll<br>Absorption<br>and<br>Reflectance<br>Index $\frac{G - R}{G + R}$ 27PSRISenescence<br>Reflectance<br>Index $\frac{R - B}{RE2}$ 28NPCIPlant<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 29MCARI<br>(Alternate)Modified<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{(INIR - RE2)}{(RE1 - R) - 0.2(NRI - G)(\frac{RE1}{R}))}$ 31MCARI<br>(Alternate)Merris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{(INIR - RE2)}{(RE2 + R)}$ 32CCCL_a<br>CLlorophyll<br>It<br>CLlorophyll<br>CLlorophyll<br>CLlorophyll<br>CLlorophyll<br>COntorphyll<br>Reflectance<br>Index $\frac{(INIR - RE2)}{(RE2 + R)}$ 33CVICanopy<br>Vegetation<br>Index $\frac{(INIR - RE2)}{(NNIR + RE2)}$ 34AVIVegetation<br>Index $\frac{G - R}{(NNIR + RE2)}$ 35PVRAdvanced<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho_{RE1}}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - R \times Co}{R + C}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - R \times Co}{R + R}$ 36NNVINDVINDVI $\frac{NNIR - R \times 2 \times CO}{NNIR + R}$ </td <td>21</td> <td>GI</td> <td>Index</td> <td><math>\overline{R}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21  | GI      | Index         | $\overline{R}$                                                 |
| 22MSRSimple Ratio $\sqrt{SR - 1}$ 23SRSimple RatioNNIR/R24RDVIRenormalised<br>Difference<br>Vegetation<br>IndexNNIR - R<br>$\sqrt{NNIR + R}$ 25NRIReflectance<br>Index $\frac{G - R}{G + R}$ 26TCARIPlant<br>Reflectance<br>Index $\frac{G - R}{G + R}$ 27PSRIPlant<br>Senescence $\frac{R - D}{RE2}$ 28NPCIPlant<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 29MCARI<br>Absorption<br>and<br>ReflectanceModified<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 30MCCIIMetris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{((RE1 - R) - 0.2 \times (RE1 - G) + \binom{RE1}{R})}{(RE2 + R)}$ 31MCARI<br>Absorption in<br>Reflectance<br>Index $\frac{R - Co}{R + Co}$ 32CCCL_a<br>Chlorophyll<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 33CVICanopy<br>Vegetation<br>Index $\frac{(NNIR - RE2)}{(NIR - RE2)}$ 34AVIVegetation<br>Index $\frac{(NNIR - RE2)}{(NIR - RE2)}$ 34AVIVegetation<br>Index $\frac{G - R}{(NNIR + RE2)}$ 35PVRPhotosyntheti<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{G^2}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - R \times Q}{P^{XRE1}}$ 37ARVI2NOVINOVI $\frac{NOVIR - R + 2 \times CO}{NOVIR + RE1}$ 38mNDVINDVI $\frac{NOVIR - R + 2 \times CO}{NOVIR + R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22  | MOD     | Modified      | SR - 1                                                         |
| 23SRSimple RatioNNIR/R24RDVIRenormalised<br>Difference<br>Reflectance<br>Index $\frac{NNIR - R}{\sqrt{NNIR + R}}$ 25NRINitrogen<br>Reflectance<br>Index $\frac{G - R}{G + R}$ 26NRITransformed<br>Chlorophyll<br>Absorption<br>Reflectance<br>Index $\frac{G - R}{G + R}$ 27PSRISenescence<br>Reflectance<br>Index $\frac{R - B}{RE2}$ 28NPCIPigment<br>Chlorophyll<br>Absorption in<br>alt $\frac{R - Co}{R + Co}$ 29MCARI<br>altMorrise<br>Chlorophyll<br>Absorption in<br>alt $\frac{(RE1 - R) - 0.2 (RE1 - G) (\frac{RE1}{R})}{(RE1 - R) - 0.2 (RE1 - G) (\frac{RE1}{R})}$ 30MCARI<br>altModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $\frac{(R - Co}{R + Co}$ 31MCARI<br>altMerris<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $\frac{((RE1 - R) - 0.2 (RE1 - G) + \frac{(RE1}{R}))}{(RE1 - R) - 0.2 (RE1 - G) + \frac{(RE1}{R})})$ 33MCARI<br>altMerris<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{((NNIR - RE2)}{(RE2 + R)}$ 34MCARI<br>Advanced<br>Vegetation<br>Index $\frac{((NNIR - RE2)}{(NNIR - R)}$ 35PVR<br>RAVICAlorophyll<br>Vegetation<br>Index $\frac{G - R}{G + R}$ 36RRECI<br>RatioInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{G + R}$ 37ARVI2Ily Resistant<br>Vegetation<br>Index $-0.18 + 0.17 (\frac{NNIR - R}{NNIR + R})$ 38mNDVINDVI $\frac{NDVIR}{NDR + R} + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22  | MSK     | Simple Ratio  | $\sqrt{SR-1}$                                                  |
| 24RDVIRenormalised<br>Difference<br>Vegetation $NNIR - R$<br>$\sqrt{NNIR + R}$ 25NRINitrogen<br>Reflectance<br>Index $\frac{G - R}{G + R}$ 26NRITransformed<br>Chlorophyll<br>Absorption<br>Reflectance<br>Index $\frac{G - R}{G + R}$ 27PSRISenescence<br>Reflectance<br>Reflectance<br>Index $\frac{R - B}{RE2}$ 28NPCIPlant<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 29MCARI<br>altModified<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 30MTCIMerris<br>Chlorophyll<br>ratio Index<br>(alternate) $((RE1 - R) - 0.2 \times (RE1 - G) + (\frac{RE1}{R}))$ 31MCARI<br>altModified<br>Chlorophyll<br>Index<br>(Chlorophyll<br>Reflectance $((RE1 - R) - 0.2 \times (RE1 - G) + (\frac{RE1}{R}))$ 31MCARI<br>altMerris<br>Chlorophyll<br>(Chlorophyll<br>Index<br>(Chlorophyll<br>(RE2 + R)) $((RE1 - R) - 0.2 \times (RE1 - G) + (\frac{RE1}{R}))$ 31MCARI<br>altMerris<br>Chlorophyll<br>(Chlorophyll<br>(Chlorophyll<br>(RE2 + R)) $((RE1 - R) - 0.2 \times (RE1 - G) + (\frac{RE1}{R}))$ 32CCCL_a<br>Chlorophyll<br>IndexModified<br>(Chlorophyll<br>(RE2 + R)) $((RNIR - RE2))$<br>( $(RZ + R)$ )33CVICClorophyll<br>Vegetation<br>Index $((NNIR - RE2))$<br>( $(NNIR - RE2)$<br>( $(NNIR + R)$ )34AVIVegetation<br>Index $\frac{G - R}{(RRC1)}$ 35PVRChlorophyll<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{G^2}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - R \times R}{G^2}$ 35PVRIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23  | SR      | Simple Ratio  | NNIR/R                                                         |
| 24RDVIDifference<br>Vegetation<br>Index $NNIR - R$<br>$\sqrt{NNIR + R}$ 25NRIReflectance<br>Index $\frac{G - R}{G + R}$ 26NRITransformed<br>Chlorophyll<br>Absorption<br>and<br>Reflectance<br>Index $\frac{G - R}{G + R}$ 27PSRIPlant<br>Senescence<br>Reflectance $\frac{R - B}{RE2}$ 28NPCIPlant<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 29MCARI<br>altModified<br>Chlorophyll<br>ratio Index $\frac{R - Co}{R + Co}$ 30MTCIMerris<br>Chlorophyll<br>ratio Index<br>(alternate) $\frac{((RE1 - R) - 0.2(RE1 - G) (\frac{RE1}{R}))}{(RE1 - R) - 0.2 \times (RE1 - G) (\frac{RE1}{R})}$ 31MCARI<br>altModified<br>Chlorophyll<br>Reflectance<br>Index<br>(alternate) $\frac{((NNIR - RE2)}{(RE2 + R)}$ 33MTCIMerris<br>Chlorophyll<br>Reflectance<br>Index $\frac{((NNIR - RE2)}{(RE2 + R)}$ 34MCARI<br>altCanopy<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{((NNIR - RE2)}{(NNIR + RE2)}$ 33CVIChlorophyll<br>Content<br>(Alternate) $\frac{((NNIR - RE2)}{(NNIR + RE2)}$ 34AVIChlorophyll<br>Vegetation<br>Index $\frac{G - R}{(NNIR + R)}$ 35PVRChlorophyll<br>Ratio $\frac{Q - R}{G + R}$ 36IRECIIndex $-0.18 + 0.17 (\frac{NNIR - R}{(NNIR - R)})$ 37ARVI2Wegetation<br>Index $-0.18 + 0.17 (\frac{NNIR - R}{(NNIR + R)})$ 38mNDVIModified<br>Vegetation<br>Index $-0.18 + 0.17 (\frac{NNIR - R}{(NNIR + R)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | Renormalised  |                                                                |
| 24RDV1Vegetation<br>Index $\sqrt{NNIR + R}$ 25NRINitrogen<br>Reflectance<br>Index $\overline{G - R}$<br>$\overline{G + R}$ 26TCARITransformed<br>Chlorophyll<br>Absorption<br>and<br>Reflectance<br>Index $\overline{G - R}$<br>$\overline{G + R}$ 27PSRIPlant<br>Senescence<br>Reflectance<br>Index $R - B$<br>$\overline{RE1}$ 28NPCIPigment<br>Chlorophyll<br>absorption in<br>Reflectance<br>Index $R - Co$<br>$\overline{R + Co}$ 28NPCIPigment<br>Chlorophyll<br>ratio Index $R - Co$<br>$\overline{R + Co}$ 30MCARI<br>altMerris<br>Terrestrial<br>Chlorophyll<br>Index $((RE1 - R) - 0.2 \times (RE1 - G) + (\overline{R}))$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $((RE1 - R) - 0.2 \times (RE1 - G) + (\overline{R}))$ 31MCARI<br>altMerris<br>Terrestrial<br>Chlorophyll<br>Index $((RE1 - R) - 0.2 \times (RE1 - G) + (\overline{R}))$ 31MCARI<br>altMerris<br>Terrestrial<br>Chlorophyll<br>Index $((RE1 - R) - 0.2 \times (RE1 - G) + (\overline{R}))$ 32CCCI_a<br>IndexMerris<br>Terrestrial<br>Chlorophyll<br>Reflectance<br>Index $((NNIR - RE2))$<br>$(NNIR - RE1) - 0.2(NNIR - G)$ 33CVIContent<br>(alternate) $((NNIR - RE1) - 0.2(NNIR - G))$<br>$\overline{RE1}$ 33CVIChlorophyll<br>Chlorophyll<br>Index $\sqrt{(NNIR - R)}$<br>$(NNIR + R)$ 34AVIVegetation<br>Index $\sqrt{(NNIR - R)}$<br>$\overline{RE1}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{P \times NNIR - p \times R}{G + R}$<br>$\frac{P \times RE2}$ 36IRECIIndex<br>Chlorophyll<br>Index $-0.18 + 0.17 (N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24  | DDI/I   | Difference    | NNIR - R                                                       |
| IndexIndex25NRINitrogen<br>Reflectance $\frac{G-R}{G+R}$<br>$\frac{G-R}{G+R}$ 26TCARITransformed<br>Chlorophyll<br>Absorption<br>and<br>Reflectance $3[(RE1-R)-0.2(RE1-G)(\frac{RE1}{R})]]$ 27PSRISenescence<br>Reflectance $\frac{R-B}{RE2}$ 28NPCINormalised<br>Pigment<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$<br>$\frac{R+Co}$ 29MCARI<br>_altModified<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{((RE1-R)-0.2\times(RE1-G)\cdot(\frac{RE1}{R}))}{(RE2+R)}$ 31MCARI<br>_altModified<br>Chlorophyll<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 33CCCI_a<br>ItCanopy<br>Chlorophyll<br>Reflectance<br>Index $\frac{(NNIR - RE2)}{(NNIR - RE2)}$ 34AVIChlorophyll<br>Vegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + R)}$ 35PVRChlorophyll<br>Chlorophyll<br>Index $\frac{\sqrt{(NNIR - RE2)}}{(NNIR + R)}$ 36IRECIAdvanced<br>Vegetation<br>Index $\frac{\sqrt{(NNIR - RE2)}}{(NNIR + R)}$ 36IRECIAdvanced<br>Vegetation<br>Index $\frac{\sqrt{(NNIR - RE2)}}{(NNIR + R)}$ 37ARV12Wegesistant<br>Vegetation<br>Index $-0.18 + 0.17(\frac{(NNIR - R)}{(NNIR - R)})$ 38mNDVIModified<br>Chlorophyll $-0.18 + 0.17(\frac{(NIR - R)}{(NNIR + R)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24  | RDVI    | Vegetation    | $\sqrt{NNIR + R}$                                              |
| 25NRINitrogen<br>Reflectance<br>Index $\frac{G-R}{G+R}$<br>$\frac{G+R}$ 26TCARITransformed<br>Chlorophyll<br>Absorption<br>and<br>Reflectance<br>Index $_3[(RE1-R) - 0.2(RE1-G)(\frac{RE1}{R})]]$ 27PSRIPlant<br>Senescence<br>Reflectance<br>Chlorophyll<br>ratio Index $R-B$<br>RE228NPCIPlant<br>Pigment<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$<br>$RE12$ 29MCARI<br>_altModified<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$<br>$(RE1-R) - 0.2 \times (RE1-G) + (\frac{RE1}{R}))$<br>$(RE1-R) - 0.2 \times (RE1-G) + (\frac{RE1}{R}))$ 30MTCIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $\frac{(NNIR - RE2)}{(RE2 + R)}$<br>$(RE1-R) - 0.2 \times (RE1-G) + (\frac{RE1}{R}))$ 31MCARI<br>Absorption in<br>Reflectance<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$<br>$(RE1-R) - 0.2(NNIR - G)$ 32CCCLa<br>(CLorophyll<br>ItChlorophyll<br>Chlorophyll<br>Content<br>(alternate)33CVIVegetation<br>Index34AVINordified<br>Chlorophyll<br>Index35PVRPhotosyntheti<br>c Vigour<br>Ratio36IRECIEdge<br>Chlorophyll<br>Index37ARVI2Photosyntheti<br>vegetation<br>Index38mNDVIModified<br>Chlorophyll<br>Index38mNDVIModified<br>Chlorophyll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         | Index         |                                                                |
| 25NRIReflectance<br>Index $\overline{G+R}$ 26TCARITransformed<br>Chlorophyll<br>Absorption<br>and<br>Reflectance<br>Index $3[(RE1-R) - 0.2(RE1-G)(\frac{(RE1)}{R})]$ 27PSRIPlant<br>Senescence<br>Reflectance<br>Reflectance $\frac{R-B}{RE2}$ 28NPCIPigment<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 29MCARI<br>_altModified<br>Chlorophyll<br>Reflectance<br>Index $\frac{(RE1-R) - 0.2(RE1-G)(\frac{RE1}{R}))}{(RE1-R) - 0.2 \times (RE1-G) \cdot (\frac{RE1}{R}))}$ 30MTCIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $\frac{(NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>Absorption in<br>Reflectance<br>IndexMerris<br>Terrestrial<br>Chlorophyll<br>NE1 $\frac{(NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>Absorption in<br>Reflectance<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 32CCCLa<br>ItChlorophyll<br>Chlorophyll<br>Chlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 33CVIVegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 34AVIVegetation<br>Index $\frac{p \times NNIR \times \frac{R}{G^2}}{RE1}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G-R}{G+R}$ 36IRECIEdge<br>Chlorophyll<br>Index $-0.18 + 0.17(\frac{(NIIR - R)}{(NIIR + R)})$ 37ARV12Wegistion<br>Index $-0.18 + 0.17(\frac{(NIIR - R)}{(NIIR + R)})$ 38mNDVIModified<br>Vegetation<br>Index 2 $-0.18 + 0.17(\frac{(NIIR - R)}{(NIIR - R)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         | Nitrogen      | G - R                                                          |
| 26IndexIndexIndex26TCARITransformed<br>Chlorophyll<br>Absorption<br>and<br>Reflectance<br>Index $3[(RE1 - R) - 0.2(RE1 - G)(\frac{RE1}{R})]$<br>$3[(RE1 - R) - 0.2(RE1 - G)(\frac{RE1}{R})]$<br>Reflectance27PSRIPlant<br>Senescence<br>Reflectance $R - B$<br>RE228NPCIPlant<br>Chlorophyll<br>ratio Index $R - Co$<br>$R + Co29MCARI_altModifiedChlorophyllReflectanceIndex((RE1 - R) - 0.2 \times (RE1 - G) \cdot (\frac{RE1}{R}))(RE1 - R) - 0.2 \times (RE1 - G) \cdot (\frac{RE1}{R}))30MTCIMerrisTerrestrialChlorophyllIndex((RE1 - R) - 0.2 \times (RE1 - G) \cdot (\frac{RE1}{R}))(RE2 + R)31MCARIAbsorption inReflectanceIndexMerrisTerrestrialChlorophyllIndex((NNIR - RE2))(RE2 + R)31MCARIAbsorption inReflectanceIndexContorphyllRE1((NNIR - RE2))(RE1 - R) - 0.2(NNIR - G)]RE132CCCI_aItCanopyChlorophyllContent(alternate)((NNIR - RE2))(NNIR + R)33CVICanopyVegetationIndex((NNIR - RE2))(NNIR + R)34AVIVegetationRatioNNIR \times \frac{R}{G^2}35PVRPhotosynthetic VigourIndexG - RG + R36IRECIPhotosynthetiChlorophyllIndex-0.18 + 0.17(\frac{(NIR - R)}{(NNIR + R)})37ARV12ModifiedChlorophyllNDVI(NNIR - R)NDVI38mNDVIModifiedVegetationNDVI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25  | NRI     | Reflectance   | $\overline{G+R}$                                               |
| 26TCARIInfansionied<br>Chlorophyll<br>and<br>Reflectance<br>Index $3[(RE1-R)-0.2(RE1-G)(\frac{RE1}{R})]]$ 27PSRIPlant<br>Senescence<br>Reflectance $\frac{R-B}{RE2}$ 28NPCIPigment<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 29MCARI<br>- altModified<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 30MTCIMerris<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{((RE1-R)-0.2 \times (RE1-G) \times (RE1))}{(RE1-R)-0.2 \times (RE1-G) \times (RE1))}$ 31MCARI<br>- altModified<br>Chlorophyll<br>Index $\frac{((RNIR - RE2)}{(RE2 + R)}$ 30MTCITerrestrial<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{((NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>- Colorophyll<br>IndexColorophyll<br>Absorption in<br>Reflectance $\frac{((NNIR - RE2)}{(RE1 - R) - 0.2(NNIR - G))}{(RE1 - R) - 0.2(NNIR - G)}$ 32CCCI_a<br>ItCanopy<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{((NNIR - RE2)}{(NNIR + R)}$ 33CVIColorophyll<br>Vegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + R)}$ 34AVIVegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + R)}$ 35PVRAdvanced<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{G^2}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{p^{ARE1}}$ 37ARV12Ily Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17(\frac{NNIR - R}{NNIR + R})$ 38mNDVIModified<br>NDVI $(NNIR - R + 2 \times CO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |         | Index         |                                                                |
| 26TCARIAbsorption<br>and<br>Reflectance<br>Index $3[(RE1-R) - 0.2(RE1-G)(\frac{RE1}{R})]]$ 27PSRISenescence<br>Reflectance $\frac{R-B}{RE2}$ 28NPCIPigment<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 29MCARI<br>altModified<br>Chlorophyll<br>Absorption in<br>Reflectance $\frac{R-Co}{R+Co}$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{((RE1-R) - 0.2 \times (RE1-G) \times (\frac{RE1}{R}))}{(RE2+R)})$ 31MCARI<br>altModified<br>Chlorophyll<br>Index $\frac{((NNIR - RE2)}{(RE2+R)})$ 31MCARI<br>CCCI_a<br>ItModified<br>Chlorophyll<br>Index $\frac{((NNIR - RE2)}{(RE2+R)})$ 32CCCI_a<br>ItCanopy<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{((NNIR - RE2)}{(RE1-R) - 0.2(NNIR-G)]}$ 33CVIChlorophyll<br>Chlorophyll<br>Index $\frac{((NNIR - RE2)}{(RE2+R)})$ 34AVIVegetation<br>Index $\frac{(NNIR + RE2)}{(NNIR + R)}$ 35PVRChlorophyll<br>Chlorophyll $\frac{\rho \times NNIR \times \frac{R}{G^2}}{\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2NDYINDYI $-0.18 + 0.17(\frac{NNIR - R}{NNIR + R})$ 38mNDVINDVI $\overline{NDYI}$ $\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         | Chlorophyll   |                                                                |
| 26TCARIInstant and and Reflectance Index $3[(RE1-R) - 0.2(RE1-G)(\frac{RE1}{R})]$ 27PSRIPlant $\frac{R-B}{RE1}$ 28NPCIPigment Chlorophyll ratio Index $\frac{R-Co}{R+Co}$ 29MCARI _altModified Chlorophyll Absorption in Reflectance Index (alternate) $\frac{(RE1-R) - 0.2 \times (RE1-G) \times (\frac{RE1}{R}))}{(RE1-R) - 0.2 \times (RE1-G) \times (\frac{RE1}{R}))}$ 30MTCIMerris Terrestrial Chlorophyll Index $\frac{((RE1-R) - 0.2 \times (RE1-G) \times (\frac{RE1}{R}))}{(RE2+R)}$ 30MTCIMerris Terrestrial Chlorophyll Index $\frac{((NNIR - RE2)}{(RE2+R)}$ 31MCARI Absorption in Reflectance Index $\frac{((NNIR - RE1) - 0.2(NNIR - G)]}{(RE2+R)}$ 32CCCI_a (Laternate)Content (alternate)33CVIChlorophyll Content (alternate)34AVIVegetation Index35PVRChlorophyll Vegetation Index36IRECIPhotosyntheti CV igour CV igour Ratio37ARVI2Inverted Red Edge Chlorophyll Index38mNDVIModified39NDVIMONTR CI30NDVI $\frac{(NNIR \times (1 - R)) \times (NNIR - R)}{RE1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         | Absorption    | [ ( <i>RE</i> 1)]                                              |
| Image: series of the series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26  | TCARI   | and           | $3\left[(RE1-R) - 0.2(RE1-G)\left(\frac{RE1}{R}\right)\right]$ |
| IndexIndex27PSRIPlant<br>Sensecence<br>Reflectance $\frac{R-B}{RE2}$ 28NPCINormalised<br>Pigment<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 29MCARI<br>_altModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $\frac{(NNIR - RE2)}{(RE1 - R) - 0.2 \times (RE1 - G) + (\frac{RE1}{R}))}$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{((NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>Reflectance<br>IndexModified<br>Chlorophyll<br>Index $\frac{((NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>Reflectance<br>IndexModified<br>Chlorophyll<br>Reflectance<br>Index $\frac{((NNIR - RE1) - 0.2(NNIR - G))}{(RE2 + R)}$ 33CCCI_a<br>ItCanopy<br>Chlorophyll<br>Chlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 33CVIContent<br>Index $\frac{(NNIR - RE2)}{(NNIR + R)}$ 34AVIVegetation<br>Index $\frac{NNIR \times \frac{R}{G^2}}{\frac{R}{G^2}}$ 35PVRPhotosyntheti<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{G+R}$ 37ARVI2Mrospherica<br>Index 2 $-0.18 + 0.17(\frac{(NNIR - R)}{NNIR + R})$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         | Reflectance   |                                                                |
| 27PSRIPlant<br>Senescence<br>Reflectance $\frac{R-B}{RE2}$ 28NPCINormalised<br>Pigment<br>(Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 29MCARI<br>altModified<br>Chlorophyll<br>alt $\frac{Modified}{Reflectance}$<br>Index<br>(alternate) $\frac{(RE1-R)-0.2 \times (RE1-G) \times (RE1)}{(RE1-R)-0.2 \times (RE1-G) \times (RE1)}$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{((NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>PACARIModified<br>Chlorophyll<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>Reflectance<br>IndexModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{(NNIR - RE1) - 0.2(NNIR - G)}{(RE2 + R)}$ 32CCCL_a<br>ItCanopy<br>Chlorophyll<br>Quiternate $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 33CVICanopy<br>Vegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + R)}$ 34AVIVegetation<br>Index $\frac{NNIR \times R}{G^2}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{\rho \times NNIR - \rho \times R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{P \times RE1}$ 37ARV12Ily Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 (\frac{NNIR - R}{NNIR + R})$ 38mNDVIModified<br>Vegetation<br>Index 2 $(NNIR - R) \times CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         | Index         |                                                                |
| 27PSRISenescence<br>Reflectance $\overline{RE2}$ 28NPCINormalised<br>Pigment<br>(Chlorophyll<br>alt $\frac{R - Co}{R + Co}$ 29MCARI<br>altAbsorption in<br>Reflectance<br>Index<br>(alternate) $\frac{(RE1 - R) - 0.2 \times (RE1 - G) \times (RE1)}{(RE1 - G) \times (RE1)}$ )30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{((NNIR - RE2)}{(RE2 + R)}$ )31MCARI<br>PARIModified<br>Chlorophyll<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 31MCARI<br>RE1Modified<br>Chlorophyll<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 32CCCL_a<br>ItConcent<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR - RE1)}$ 33CVIConcent<br>Vegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 34AVIVegetation<br>Index $\frac{\sqrt{(NNIR - RE2)}}{(NNIR + R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARV12Novin Modified<br>Vegetation<br>Index 2 $-0.18 + 0.17 (\frac{NNIR - R}{NNIR + R})$ 38mNDVINDVI $\overline{NDVIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         | Plant         | R - B                                                          |
| Reflectance $REL28NPCINormalisedPigmentChlorophyllatio Index\frac{R-Co}{R+Co}29MCARI_altAbsorption inReflectance(alternate)((RE1-R)-0.2 \times (RE1-G) \times (\frac{RE1}{R})))30MCARI_altAbsorption inReflectance(alternate)((RE1-R)-0.2 \times (RE1-G) \times (\frac{RE1}{R})))30MTCIMerrisTerrestrialChlorophyllIndex((RE1-R)-0.2 \times (RE1-G) \times (\frac{RE1}{R})))31MCARIMerrisTerrestrialChlorophyllIndex((RE1-R)-0.2 \times (RE1-G) \times (\frac{RE1}{R})))31MCARIMerrisTerrestrialChlorophyllIndex((RE2+R))32CCCL_aItChlorophyllChlorophyllIt((NNIR - RE2))(NNIR - RE1) - 0.2(NNIR - G)]RE133CVICanopyContent(alternate)((NNIR - RE2))(NNIR + RE2)(NNIR + R)33CVIChlorophyllVegetationIndex\sqrt{(NNIR - RE2)}(NNIR + R)34AVIVegetationIndex\sqrt{(NNIR + RE2)}(NNIR + R)35PVRPhotosynthetic VigourRatio\frac{G-R}{G+R}\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}36IRECIInverted RedEdgeChlorophyllIndex\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}37ARV12NoviriedNDVI-0.18 + 0.17 (\frac{NNIR - R}{NNIR + R})38mNDVIModifiedNDVI(NNIR - R + 2 \times CO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27  | PSRI    | Senescence    | RF2                                                            |
| 28NPCIPigment<br>Pigment<br>Chlorophyll<br>ratio Index $\frac{R-Co}{R+Co}$ 29MCARI<br>_altModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $((RE1-R)-0.2 \times (RE1-G) \times (\overline{RE1}))$ 30MCARI<br>_altMerris<br>Terrestrial<br>Chlorophyll<br>Index<br>(alternate) $((RE1-R)-0.2 \times (RE1-G) \times (\overline{RE1}))$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $((RE1-R)-0.2 \times (RE1-G) \times (\overline{RE1}))$ 31MCARI<br>MCARIMerris<br>Terrestrial<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $((NNIR - RE2))$<br>$(RE2 + R)$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $((NNIR - RE1) - 0.2(NNIR - G))$<br>$RE1$ 32CCCL_a<br>ItCanopy<br>Chlorophyll<br>Content<br>(alternate) $((NNIR - RE2))$<br>$(NNIR + RE2)$<br>$(NNIR + R)$ 33CVIChlorophyll<br>Vegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Ratio $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}$<br>$(RE1)$ 35PVRPhotosyntheti<br>C Vigour<br>Ratio $\frac{\rho \times NNIR - \rho \times R}{G + R}$<br>$\frac{\rho \times RE1}{\rho \times RE1}$ 36IRECIEdge<br>Chlorophyll<br>Index $-0.18 + 0.17(\frac{NNIR - R}{NNIR + R})$ 37ARV12Nodified<br>NDVI $(NNIR - R) + 2 \times CO$ 38mNDVINDVI $NDVI$ $NNIR - R + 2 \times CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         | Reflectance   |                                                                |
| 28NPCIInginent<br>Chlorophyll<br>ratio Index $\frac{N-65}{R+Co}$ 29MCARI<br>_altModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $((BE1-R)-0.2 \times (BE1-G) + (\frac{BE1}{R}))$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $((BE1-R)-0.2 \times (BE1-G) + (\frac{BE1}{R}))$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll $((BE1-R)-0.2 \times (BE1-G) + (\frac{BE1}{R}))$ 31MCARIMerris<br>Terrestrial<br>Chlorophyll $((BE1-R)-0.2 \times (BE1-G) + (\frac{BE1}{R}))$ 31MCARIModified<br>Chlorophyll $((BE1-R)-0.2 \times (BE1-G) + (\frac{BE1}{R}))$ 31MCARIModified<br>Chlorophyll $((BE1-R)-0.2 \times (BE1-G) + (\frac{BE1}{R}))$ 32CCCI_a<br>IndexModified<br>Chlorophyll $((BE1-R)-0.2 \times (BE1-G) + (\frac{BE1}{R}))$ 33CCCI_a<br>IndexModified<br>Chlorophyll $(NIR - RE2)$<br>$(RE2 + R)$ 33CVICanopy<br>Content<br>(alternate) $((NNIR - RE2))$<br>$(NNIR + R)$ 33CVIContent<br>Index $(NNIR - R)$<br>$(NNIR + R)$ 34AVIVegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\frac{\sqrt{(NNIR \times (1-R)) \times (NNIR - R)}}{Ratio}$ 35PVRPhotosyntheti<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 36IRECIEdge<br>Chlorophyll<br>Index $-0.18 + 0.17 (\frac{NNIR - R}{NNIR + R})$ 37ARV12Modified<br>NDVI $(NNIR - R) \times CO$ 38mNDVIModified<br>NDVI $(NNIR - R) \times CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | Pigment       | R - Co                                                         |
| $\begin{array}{ c c c c c c } & R + C \\ \hline ratio Index \\ \hline ratio Index \\ \hline ratio Index \\ \hline ratio Index \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE1-R) - 0.2 \times (RE1-G) + \binom{RE1}{R}) \\ \hline (RE2+R) \\ $ | 28  | NPCI    | Chlorophyll   | $\frac{R}{R+Co}$                                               |
| 29MCARI<br>_altModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index<br>(alternate) $((RE1-R)-0.2 \times (RE1-G) + (\frac{RE1}{R}))$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $((RE1-R)-0.2 \times (RE1-G) + (\frac{RE1}{R}))$ 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $((RE1-R)-0.2 \times (RE1-G) + (\frac{RE1}{R}))$ 31MCARIMerris<br>Terrestrial<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $((RE2+R))$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $((NNIR - RE2))$<br>$(RE2+R)$ 32CCCI_a<br>ItConopy<br>Chlorophyll<br>Vegetation<br>Index $((NNIR - RE2))$<br>$(NNIR + R)$ 33CVIChlorophyll<br>Vegetation<br>Index $((NNIR - RE2))$<br>$(NNIR + R)$ 34AVIVegetation<br>Index $\sqrt{(NNIR + RE2)}$<br>$(NNIR + R)$ 35PVRChlorophyll<br>Chlorophyll<br>Index $\frac{g - R}{G + R}$<br>$\frac{p \times NNIR - \rho \times R}{p \times RE1}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\rho \times NNIR - \rho \times R$<br>$\frac{p \times RE2}{p \times RE1}$ 37ARVI2Modified<br>NOPI $(NNIR - R)$<br>NDVI38mNDVIModified<br>NDVI $(NNIR - R)$<br>$NNIR - R + 2 \times CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | ratio Index   | K + CO                                                         |
| $\begin{array}{cccc} & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |         | Modified      |                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | Chlorophyll   |                                                                |
| 25altReflectance<br>Index<br>(alternate)(alternate)30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{(NNIR - RE1) - 0.2(NNIR - G)]}{RE1}$ 32CCCL_a<br>ItCanopy<br>Chlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$<br>$\frac{(NNIR + RE2)}{(NNIR + R)}$ 33CVIChlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 34AVIVegetation<br>Index $\frac{3}{((NNIR \times (1 - R)) \times (NNIR - R))}$ 35PVRPhotosyntheti<br>C Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Modified<br>NDVI $-0.18 + 0.17 (\frac{NNIR - R}{NNIR + R})$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29  | MCARI   | Absorption in | $((RE1 - R) - 0.2 \times (RE1 - G) * (\frac{RE1}{2}))$         |
| Index<br>(alternate)Index<br>(alternate)30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{(NNIR - RE1) - 0.2(NNIR - G)]}{RE1}$ 32CCCL_a<br>ItCanopy<br>Chlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$<br>$\frac{(NNIR + RE2)}{(NNIR + R)}$ 33CVIChlorophyll<br>Chlorophyll<br>Vegetation<br>Index $\frac{NNIR + RE2}{(NNIR + R)}$ 34AVIVegetation<br>Index $\frac{3}{((NNIR \times (1 - R)) \times (NNIR - R))}$ 35PVRPhotosyntheti<br>C Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Modified<br>Vegetation<br>Index 2 $\frac{(NNIR - R)}{NNIR + R}$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR + R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25  | _alt    | Reflectance   |                                                                |
| 30MTCIMerris<br>Terrestrial<br>Chlorophyll<br>Index $(NNIR - RE2)$<br>$(RE2 + R)$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $(NNIR - RE1) - 0.2(NNIR - G)]$<br>$RE1$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance $(NNIR - RE2)$<br>$(NNIR + RE2)$<br>$(NNIR + RE2)$<br>$(NNIR + RE2)$<br>$(NNIR + RE2)$ 32CCCI_a<br>ItCanopy<br>Chlorophyll<br>(alternate) $(NNIR - RE2)$<br>$(NNIR + RE2)$<br>$(NNIR + RE2)$<br>$(NNIR + RE2)$ 33CVIVegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\sqrt[3]{(NNIR \times (1 - R)) \times (NNIR - R)}$<br>Index35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$<br>$\frac{P \times NNIR - \rho \times R}{\frac{P \times RE2}{\rho \times RE1}}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $-0.18 + 0.17(\frac{(NNIR - R)}{NNIR + R})$ 37ARVI2Modified<br>NDVI $(NNIR - R)$<br>NDVI38mNDVIModified<br>NDVI $(NNIR - R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         | Index         |                                                                |
| 30MTCITerrestrial<br>Chlorophyll<br>Index $\frac{(NNIR - RE2)}{(RE2 + R)}$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{(NNIR - RE1) - 0.2(NNIR - G)]}{RE1}$ 32CCCI_a<br>ItCanopy<br>Chlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$<br>$\frac{(NNIR + RE2)}{(NNIR + R)}$ 33CVIVegetation<br>Index $\frac{NNIR - R}{G^2}$ 34AVIVegetation<br>Index $\frac{\sqrt{(NNIR - R}) \times (NNIR - R)}{(NNIR + R)}$ 35PVRPhotosyntheti<br>Chlorophyll<br>Index $\frac{G - R}{G + R}$<br>$\frac{Chlorophyll}{Index}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>Ily Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         | (alternate)   |                                                                |
| 30MTCIInterstant<br>Chlorophyll<br>Index $\overline{(RE2 + R)}$ 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $\overline{(RE2 + R)}$ 31MCARIModified<br>Chlorophyll<br>Reflectance<br>It $\overline{(NNIR - RE1) - 0.2(NNIR - G)]}$<br>RE132CCCI_a<br>ItCanopy<br>Chlorophyll<br>Content<br>(alternate) $\overline{(NNIR - RE2)}$<br>$\overline{(NNIR + RE2)}$<br>$\overline{(NNIR + R)}$ 33CVIContent<br>(alternate) $\overline{(NNIR - R)}$<br>$\overline{(NNIR + R)}$ 34AVIVegetation<br>Index $\overline{NNIR \times \frac{R}{G^2}}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$<br>$\frac{p \times NNIR - \rho \times R}{p \times RE1}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\rho \times NNIR - \rho \times R$<br>$\frac{p \times RE2}{p \times RE1}$ 37ARVI2Modified<br>NDVI $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         | Terrestrial   | (NNIR - RE2)                                                   |
| IndexModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $(NNIR - RE1) - 0.2(NNIR - G)]$<br>$RE1$ 31MCARIModified<br>Chlorophyll<br>It $(NNIR - RE1) - 0.2(NNIR - G)]$<br>$RE1$ 32CCCI_a<br>ItCanopy<br>Chlorophyll<br>(alternate) $(NNIR - RE2)$<br>$(NNIR + RE2)$<br>$(NNIR + R)$ 33CVIContent<br>(alternate) $(NNIR - R)$<br>$(NNIR + R)$ 33CVIVegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\sqrt{(NNIR \times (1 - R)) \times (NNIR - R)}$<br>Index35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$<br>$\frac{p \times NNIR - p \times R}{p \times RE1}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{p \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30  | MTCI    | Chlorophyll   | $\frac{(RE2 + R)}{(RE2 + R)}$                                  |
| 31MCARIModified<br>Chlorophyll<br>Absorption in<br>Reflectance<br>Index $[(NNIR - RE1) - 0.2(NNIR - G)]$<br>RE132CCCI_a<br>ItCanopy<br>Chlorophyll<br>(alternate) $(\frac{(NNIR - RE2)}{NNIR + RE2})$<br>$(\frac{NNIR + RE2})$ 33CVIContent<br>(alternate) $(\frac{(NNIR - R}{(NNIR + R)})$ 33CVIVegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\sqrt{(NNIR \times (1 - R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         | Index         |                                                                |
| 31MCARIChlorophyll<br>Absorption in<br>Reflectance<br>Index $\frac{[(NNIR - RE1) - 0.2(NNIR - G)]}{RE1}$ 32CCCI_a<br>ItCanopy<br>Chlorophyll<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$<br>$\frac{(NNIR + R)}{(NNIR + R)}$ 33CVIChlorophyll<br>Vegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + R)}$ 34AVIVegetation<br>Index $NNIR \times \frac{R}{G^2}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | Modified      |                                                                |
| 31MCARIAbsorption in<br>Reflectance<br>Index $\frac{1(MNR - RE1) = 0.2(MNR - 0)}{RE1}$ 32CCCI_a<br>ItCanopy<br>Chlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$ 33CVIChlorophyll<br>Vegetation<br>Index $\frac{(NNIR - RE2)}{(NNIR + R)}$ 34AVIVegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\sqrt[3]{(NNIR \times (1 - R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         | Chlorophyll   | $[(NNIP PE1) \cap 2(NNIP C)]$                                  |
| 32Reflectance<br>Index32CCCI_a<br>ItCanopy<br>Chlorophyll<br>Content<br>(alternate) $\frac{(NNIR - RE2)}{NNIR + RE2}$<br>$\frac{(NNIR + RE2)}{(NNIR + R)}$ 33CVIChlorophyll<br>Vegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\sqrt{(NNIR \times (1 - R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31  | MCARI   | Absorption in | $\frac{[(NNIK - KE1) - 0.2(NNIK - G)]}{RE1}$                   |
| 10dexIndex32CCCI_aCanopy<br>Chlorophyll<br>(alternate) $\frac{(NNIR - RE2)}{NNIR + RE2}$<br>$\frac{(NNIR + RE2)}{(NNIR + R)}$ 33CVIContent<br>(alternate) $\frac{(NNIR - R}{(NNIR + R)}$ 33CVIChlorophyll<br>Vegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\frac{3}{\sqrt{(NNIR \times (1 - R)) \times (NNIR - R)}}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         | Reflectance   |                                                                |
| 32CCCI_a<br>ltChirophyll<br>Chlorophyll<br>(alternate) $\frac{(NNIR - RE2)}{(NNIR + RE2)}$<br>$\frac{(NNIR + RE2)}{(NNIR + R)}$ 33CVIContent<br>(alternate) $\frac{(NNIR - R}{(NNIR + R)})$ 33CVIChlorophyll<br>Vegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\frac{\sqrt{(NNIR + (1 - R)) \times (NNIR - R)}}{\sqrt{(NNIR \times (1 - R)) \times (NNIR - R)}}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $\frac{(NNIR - R)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         | Index         |                                                                |
| 32COUCL_AChiloppiyit $(MNR + REZ)$ 1tContent<br>(alternate) $(NNIR - R)$ 33CVIChlorophyll<br>Vegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Index $\sqrt{(NNIR \times (1 - R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G - R}{G + R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE^2}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R + 2 \times CO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | CCCI a  | Chlorophyll   | $\left(\frac{NNIR - RE2}{NNIP + PE2}\right)$                   |
| Image: Normal (alternate) $(\overline{NNIR} + \overline{R})$ (alternate) $(\overline{NNIR} + \overline{R})$ (alternate) $(\overline{NNIR} + \overline{R})$ (alternate) $(\overline{NNIR} + \overline{R})$ (alternate) $NNIR \times \frac{R}{G^2}$ (alternate) $\overline{NNIR} \times \frac{R}{G^2}$ (alternate) $\overline{NNIR} \times \frac{R}{G^2}$ (alternate) $\overline{NNIR} \times \frac{R}{G^2}$ (alternate) $\overline{NNIR} \times (1 - R)) \times (NNIR - R)$ (alternate) $\overline{NNIR} \times (1 - R)) \times (NNIR - R)$ (alternate) $\overline{NNIR} \times (1 - R)) \times (NNIR - R)$ (alternate) $\overline{PVR}$ (alternate) $\overline{Q} \times RE2$ (alternate) $\overline{Q} \times RE2$ (alternate) $\overline{PVR}$ (alternate) $\overline{PVR}$ (alternate) $\overline{P} \times NNIR - \rho \times R$ (alternate) $\overline{P} \times NNIR - \rho \times R$ (alternate) $\overline{P} \times RE2$ </td <td>32</td> <td rowspan="2">lt</td> <td>Content</td> <td><math display="block">\frac{(NNIR + RE2)}{(NNIR - R)}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32  | lt      | Content       | $\frac{(NNIR + RE2)}{(NNIR - R)}$                              |
| 33CVIChlorophyll<br>Vegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIVegetation<br>Vegetation<br>Index $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}$ 34AVIVegetation<br>Index $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G-R}{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE2}$ 36IRECIAtmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R + 2 \times CO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |         | (alternate)   | $\left(\frac{1}{NNIR+R}\right)$                                |
| 33CVIVegetation<br>Index $NNIR \times \frac{R}{G^2}$ 34AVIAdvanced<br>Vegetation<br>Index $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G-R}{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R + 2 \times CO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         | Chlorophyll   | P                                                              |
| IndexIndex $G^{P}$ 34AVIAdvanced<br>Vegetation<br>Index $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G-R}{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R + 2 \times CO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33  | CVI     | Vegetation    | NNIR $\times \frac{R}{C^2}$                                    |
| 34AVIAdvanced<br>Vegetation<br>Index $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}$<br>$\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G-R}{G+R}$<br>$\frac{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         | Index         | <u>u-</u>                                                      |
| 34AVIVegetation<br>Index $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}}{(NNIR \times (1-R)) \times (NNIR - R)}$ 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G-R}{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE_2}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~ ~ |         | Advanced      |                                                                |
| 35PVRPhotosyntheti<br>c Vigour<br>Ratio $\frac{G-R}{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE2}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R + 2 \times CO)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34  | AVI     | Vegetation    | $\sqrt[3]{(NNIR \times (1-R)) \times (NNIR - R)}$              |
| 35PVRC Vigour<br>Ratio $\frac{G-R}{G+R}$<br>$\frac{G+R}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\frac{\rho \times NNIR - \rho \times R}{\rho \times RE2}$<br>$\frac{\rho \times RE2}{\rho \times RE1}$ 37ARVI2Atmospherica<br>Ily Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         | Photosyntheti |                                                                |
| 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\rho \times NNIR - \rho \times R$<br>$\frac{\rho \times RE2}{\rho \times RE1}$ 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\rho \times NNIR - \rho \times R$<br>$\frac{\rho \times RE2}{\rho \times RE1}$ 37ARVI2Atmospherica<br>Ily Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35  | PVR     | c Vigour      | G-R                                                            |
| 36IRECIInverted Red<br>Edge<br>Chlorophyll<br>Index $\rho \times NNIR - \rho \times R$<br>$\frac{\rho \times RE2}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55  | IVK     | Ratio         | G + R                                                          |
| 36IRECIEdge<br>Chlorophyll<br>Index $\rho \times NNIR - \rho \times R$<br>$\frac{\rho \times RE2}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36  | IRECI   | Inverted Red  |                                                                |
| 36IKECIChlorophyll $\frac{\rho \times RE2}{\rho \times RE1}$ IndexIndex $\frac{\rho \times RE2}{\rho \times RE1}$ 37ARVI2Atmospherica<br>lly Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         | Edge          | $\rho \times NNIR - \rho \times R$                             |
| Index37ARVI2Atmospherica<br>Ily Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left( \frac{NNIR - R}{NNIR + R} \right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | Chlorophyll   | $\frac{\rho \times RE2}{\rho \times RE1}$                      |
| 37ARV12Atmospherica<br>Ily Resistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         | Index         |                                                                |
| 37ARVI2IIy Kesistant<br>Vegetation<br>Index 2 $-0.18 + 0.17 \left(\frac{NNIR - R}{NNIR + R}\right)$ 38mNDVIModified<br>NDVI $(NNIR - R)$<br>$\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37  | ARVI2   | Atmospherica  |                                                                |
| VegetationIndex 238mNDVIModified $(NNIR - R)$ NDVI $\overline{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         | Ily Resistant | $-0.18 + 0.17 \left( \frac{NNIR - R}{NNIR + R} \right)$        |
| $\begin{array}{c c} \text{38} & \text{mNDVI} & \text{Modified} \\ \text{NDVI} & \text{NDVI} & \frac{(NNIR - R)}{NNIR - R + 2 \times CO} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         | Index 2       | (WWINTK + K)                                                   |
| 38 mNDVI NDVI $\frac{(mnn + 1)}{NNIR - R + 2 \times CO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |         | Modified      | (NNIR - R)                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38  | mNDVI   | NDVI          | $\overline{NNIR - R + 2 \times CO}$                            |

This contribution has been peer-reviewed. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-73-2023 | © Author(s) 2023. CC BY 4.0 License.

| No | Indices      | Full name                                                           | Formula Based on S2<br>bands                                                        |
|----|--------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 39 | MNDR<br>E    | Modified<br>Normalised<br>Difference<br>Red-edge                    | $\frac{(RE2 - RE1)}{RE2 - RE1 + 2 \times CO}$                                       |
| 40 | MACC         | Maccioni                                                            | $\frac{(RE3 - RE1)}{RE3 + R}$                                                       |
| 41 | Datt         | Datt                                                                | $\frac{(NNIR - RE1)}{(NNIR + R)}$                                                   |
| 42 | NDVI2        | NDVI2                                                               | $\frac{(RE2 - RE1)}{(RE2 + RE1)}$                                                   |
| 43 | NDVI3        | NDVI3                                                               | $\frac{(R-G)}{(R+G)}$                                                               |
| 44 | MTCI_<br>at  | Meris<br>Terrestrial<br>Chlorophyll<br>Index                        | $\frac{(RE2 - RE1)}{RE1 - R}$                                                       |
| 45 | BUI          | Built-up<br>Index                                                   | $\left(\frac{S1 - NNIR}{S1 + NNIR}\right) - \left(\frac{NNIR - R}{NNIR + R}\right)$ |
| 46 | NDWI_<br>G_N | Normalised<br>Difference<br>Water Index<br>(using G and<br>N bands) | $\frac{G - NNIR}{G + NNIR}$                                                         |
| 47 | NMDI         | Normalised<br>Multiband<br>Drought<br>Index                         | $\frac{(NNIR - (S1 - S2))}{(NNIR + (S1 - S2))}$                                     |
| 48 | NDRE         | Normalised<br>Difference<br>Red Edge                                | $\frac{NNIR - RE1}{NNIR + RE1}$                                                     |
| 49 | CCCI         | Canopy<br>Content<br>Chlorophyll<br>Index                           | $\frac{(NNIR - RE2)/(NNIR + RE2)}{(NNIR - R)/(NNIR + R)}$                           |
| 50 | SELI         | Sentinel<br>Estimated<br>Leaf-Area<br>Index                         | NNIR – RE1<br>NNIR + RE1                                                            |
| 51 | LAI_alt      | Leaf-Area<br>Index<br>(alternate)                                   | SELI*5.405-0.114                                                                    |
| 52 | DM_N<br>DVI  | Dry Mass<br>using NDVI                                              | NDVI*12.3245-5.70                                                                   |

Table 4. Index description