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ABSTRACT: 

 

The optimization of nitrogen (N) management is becoming a key challenge to enhance crop yield production while protecting the 

environment. Analysis of canopy N content in crop plants is used as insights for fertilization management, in which actions can be 

taken to optimize N fertilizer usage. Traditionally, lab chemical processing is used to measure the crop plant’s nutrient content. 

However, the collection of leaf samples from the field is labour intensive, and it would be costly to increase sampling frequency. Thus, 

this approach may not be the most optimal for large plantations. Remote sensing applications in agriculture have been widely studied. 

This study aims to evaluate the potential of using Sentinel 2 imagery to predict canopy N content, as an alternative wide scale method 

as compared to traditional methods. A cotton plantation with about 50 square km area in the state of Mato Grosso, Brazil, was used as 

the case study. About 180 samples across the cotton plantation were collected between March and April 2022 and the N contents of 

the crop plants were measured using lab chemical processes. Sentinel 2 images within 15 days of the sampling dates were retrieved 

from ESA’s Copernicus Open Access Hub. This study proposes a Random Forest (RF) regression algorithm for the generation of an 

N prediction model. About 52 vegetation indices (VIs) were extracted as the features for model training, such as Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). RF model allows easy measurement of the relative importance of 

each feature with respect to the prediction to achieve a good performance. Validation is done by using mean absolute error (MAE) and 

mean absolute percentage error (MAPE) to evaluate the prediction accuracy against the ground truth, which resulted to be 3.418 g/kg 

and 9.29% respectively. Finally, this study analyses the performance of the canopy N prediction model and assesses its ability as an 

alternative to traditional lab chemical sampling processes.  

 

1. INTRODUCTION 

Increasing global demand for agricultural products have resulted 

in more intensive farming that causes drains nutrients from the 

soil (Purwanto & Alam, 2019). Application of fertilizer replaces 

the nutrients for crop uptake which otherwise would have been 

insufficient. However, over-fertilisation of crop land occurs 

worldwide and may cause environmental issues due to surface 

run-off into the natural environment (Ritchie, 2021; Sishodia et 

al., 2020). Furthermore, application of excess fertiliser 

contributes to additional costs. This pushes for a need to identify 

the optimal amount of fertiliser to minimise cost as well as 

maintaining yield. This optimal amount depends on the plant 

status and thus the requirement to have an accurate estimate of 

the plant nutrient status. 

 

Nitrogen is an important element in the plant, and is present in 

chlorophyll, amino acids and hence protein, nucleic acids, plant 

tissue, etc (Buchholz, 2022). Traditionally, N level can be 

obtained via lab chemical processing, however, this process takes 

time and increases the operational costs (Farella et al., 2022). 

Furthermore, the sampling results only applies for that set of leaf 

samples and does not represent the entire crop field. There is a 

need to consider alternate methods of estimating leaf nutrient that 

is cheaper and faster. 

 

Satellite-based remote sensing provides an advantage in wide 

area monitoring and have been used for many different 

applications in agriculture, such as land use and crop 

classification, soil health and moisture, and vegetation health 

(Sishodia et al., 2020). Satellites such as European Space 

Agency’s Sentinel 2 provides global coverage over land once 

every 5 days and have a wide imaging swath of 290 km (Sentinel-

2). Sentinel 2 L2A product has 12 bands ranging from visible to 

short wave infrared at spectral resolutions ranging from 10m to 

60m. It is provided for public access and is atmospherically 

corrected, hence it is a surface reflectance product. Band 

combinations – such as band ratios, normalised band differences, 

or more complex formulae – can be derived for different 

purposes. There are many indices derived for agricultural 

purposes, such as Normalised Difference Vegetation Index 

(NDVI) and Enhanced Vegetation Index (EVI). These vegetation 

indices (VI) have their own advantages and limitations. One 

example is the usefulness of NDVI to determine broadly the 

vigour of a vegetated area, however it faces an oversaturation 

issue where NDVI value loses sensitivity beyond a vegetation 

density (Pettorelli et al., 2005). 

 

Machine learning can be used to estimate nitrogen levels on crop 

leaves using satellite imagery by collecting data, extracting 

relevant features, training a machine learning model, and 

validating the model. Marang et al. (2021) proposed hybrid 

random forest regression, DBSCAN, and PCA to predict N level 

on cotton crop using hyperspectral UAV and sentinel imagery. 

Huang et al. (2015) estimated rice nitrogen status based on 

satellite imagery. R-squared was used to compute relationship 

between vegetation indices and rice N status. Moreover, Tan et 

al. (2020) proposed partial least square and remote sensing 

imagery to predict protein content.  

 

Random forest (RF) regression is one of the common machine 

learning methods which have been used in estimation of foliar 

nitrogen levels (Abdel-Rahman et al., 2012; Soltanikazemi et al., 

2022). RF is an ensemble method which uses a decision tree as a 

base estimator. It allows for easy measurement of the relative 

importance of each feature with respect to the prediction, hence 

achieving a good performance. In this study, we attempted to use 

RF regression model to estimate foliar nitrogen concentrations 

for cotton crops in Brazil. We want to validate the performance 
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of applying RF regression model on selected indices based on 

Sentinel 2 and determine the limitations of the model. 

 

2. STUDY AREA AND DATA COLLECTION 

In this paper, field experiments were conducted from February to 

April 2022 over a cotton plantation in the state of Mato Grosso, 

Brazil with about 50 square km area, as shown in Figure 1. Leaf 

samples were collected during the vegetative and flowering stage 

of the cotton plants, between 70 to 120 days after emergence. The 

sampling process involve by first identifying a sampling 

coordinate (latitude, longitude) within the plantation. Leaf 

samples are then collected randomly within a 10m radius from 

the sampling coordinate. This process was iterated across 

different sampling coordinates and dates. Afterwards, the 

samples were handled by a professional vendor to measure the 

nitrogen content using chemical laboratory equipment, carried 

out with standardized procedure. The measured leaf nitrogen 

concentration of the leaf samples was then provided as g/kg. In 

this study, 180 samples were collected and used to generate and 

validate our model. The statistics of the sampled nitrogen 

concentration is as shown in Table 1 below.   

 

 
Figure 1. Cotton Plantation Area 

 
Mean Standard 

Deviation 

Min Max 

38.3 5.15 23.5 52.6 

Table 1. Statistics of Nitrogen samples in g/kg 

 

We collected cloud-free Sentinel-2 L2A data that fall within 15 

days from the sample date for each sampling coordinate. L2A 

products were used for our processing as the atmospheric effects 

were removed. We then up-sampled all bands to 10m spatial 

resolution, before extracting the 3x3 context pixels centred on the 

sampling coordinates. Vegetation indices (VIs) were computed 

to obtain the percentage of vegetation cover, amount of 

chlorophyll content, leaf area, and so on (As-Syakur et al. 2012; 

Brecht 2018; Broge and Leblanc 2001; Chen 1996; Duong et al. 

2017; El-Shikha et al. 2008; Frampton et al. 2013; Gitelson et al. 

2002; Hiphen-plant 2022; Huang et al. 2012; Main et al. 2011; 

Metternicht 2003; NDRE index 2023; Pro.arcgis; Rasul et al. 

2018; Sentinel Hub; Vincini et al. 2008; Waqar et al. 2012; Xu 

2006; Zhao and Chen, 2005). A total of 52 VIs were computed to 

get handcrafted features, as described in the Appendix. After 

which, 52 VIs and 12 bands were deployed as the feature inputs 

to the RF model.  

 

 

3. METHOD 

Figure 2 shows the overall flowchart of the proposed method, 

including pixel extraction, feature extraction, and RF regression 

model. Firstly, Sentinel-2 images and sample coordinates were 

used to retrieve sampled foliar nitrogen values and their 

respective pixels. The 52 VIs were then computed. Next, the 

training dataset was generated from the 12 bands and 52 VIs. The 

best hyperparameters of the RF model were chosen with 

reference to the training dataset, with the aid of Random Search 

CV optimization algorithm. Table 2 shows the hyperparameters 

that were fed into the optimization algorithm. The dataset was 

then incorporated into the model for training. 

 

 
Figure 2. Overall Flowchart 
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Parameters Hyperparameters values 

Max depth  
[10, 20, 30, 40, 50, 60, 70, 80, 90, 

100]  

Max features  [‘auto’, ‘’sqrt]  

Min sample leaf  [1, 2, 4]  

Min sample split  [2, 5, 10]  

N estimators  
[200, 400, 600, 800, 1000, 1200, 

1400, 1600, 1800, 2000]  

Table 2. Settings for Hyperparameter Values as Input to the 

Random Search CV Algorithm 

 

 

4. PERFORMANCE EVALUATION 

Figure 3 shows the histogram of the dataset where we observe 

most N values ranged between 33 and 47 g/kg, therefore we 

assumed that values beyond this range were extreme values. In 

the experiment, we split the dataset randomly into 80% training 

and 20% testing with respect to the observed value.  

 

 
Figure 3. Histogram of Dataset 

 
The optimized RF model was trained using the training dataset, 

generating the feature importance scores as shown in Figure 4 

below. It was shown that the top 15 features were the 

most important on the N prediction, namely Band 11, Band 1, 

IRECI, Band 5, MNDWI, BRBA, CCCI_ALT, Band 12, Band 9, 

NDVI3, MCARI_ALT, BUI, Band 2, Band 3, and NPCI.   

 

 
 Figure 4. Random Forest Feature Importance 

 
The model was further evaluated using the mean absolute error 

(MAE) and mean absolute percentage error (MAPE). MAE is a 

common metric used to evaluate the performance of prediction 

model by measuring the average absolute difference between the 

observed and predicted values. MAPE is similar to MAE, except 

the average absolute difference is being divided by the observed 

value before summation. The formulas of MAE and MAPE are 

as shown below: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑛

𝑖=1
 

( 1) 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑛

𝑖=1
 

( 2) 

  

where 𝑛 = number of samples 

 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 = observed value 

 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = predicted value 

 

Figure 5 below depicts the prediction plot using training and 

testing data that gives a fit prediction for training data. According 

to our experiment, this study presents MAE of 3.418 g/kg, which 

is MAPE of 9.29% for the testing dataset. 

 

We observe that the model is able to achieve a better performance 

for N prediction where the values fall within the middle range 

highlighted above. Poorer performance for the extreme values 

could be attributed to lack of training data in that range, and that 

training with an imbalanced dataset resulted in higher errors. In 

addition, it is believed that the model loses sensitivity at the 

extreme ends of the distribution and the dataset is still lacking 

features with high correlation to N. Increase in variance of N 

distribution and the size of the dataset can be an alternative 

solution in the future to overcome the overfitting issue. 

Moreover, hyperspectral (HS) images can be an option to 

increase the number of features available for training since they 

are more sensitive than S2A images, which are multispectral 

images.  
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a).  Prediction Plot using Training Data 

 
b). Prediction Plot using Testing Data 

Figure 5. Prediction Plot a). using Training Data, b). using Testing Data 

 

 

 

5. CONCLUSION 

This study proposed the use of Sentinel-2 imagery and machine 

learning method, specifically RF model, to predict the amount of 

N present in the canopy of the cotton crops, in hopes of replacing 

the traditional method, with the end goal to save cost and time. 

RF model was chosen since it could calculate which feature was 

important to the prediction to achieve a high accuracy, with the 

top 15 features being the most important on the N prediction to 

be Band 11, CSI, Band 1, IRECI, Band 5, MNDWI, BRBA, 

CCCI_ALT, Band 12, Band 9, NDVI3, MCARI_ALT, BUI, 

Band 2, Band 3. The validation metric used was MAE which 

resulted to be 3.418 g/kg, which was MAPE of 9.29% for the 

testing dataset. While MAE is considerably low, more could be 

done since MAE was mostly contributed by the inaccurate 

prediction of extreme N values. Improvements such as using 

hyperspectral imagery instead of Sentinel-2 imagery and using 

different VIs of different feature importance based on different 

methods could be done. Even though VIs among different 

methods could be of different feature importance, stacking them 

with the consideration of different methods could prevent 

overfitting and should be used to monitor agricultural fields to 

improve classification accuracy. In addition, boosting the dataset 

with more data, especially in the extreme range, would help to 

resolve the imbalanced dataset issue. 
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APPENDIX  

Sentinel-2 

L2A bands 

Description Notations 

Band 1 Coastal or Aerosol Co 

Band 2 Blue B 

Band 3 Green G 

Band 4 Red R 

Band 5 Vegetation red edge RE1 

Band 6 Vegetation red edge RE2 

Band 7 Vegetation red edge RE3 

Band 8 Near Infrared NIR 

Band 9 Narrow NIR NNIR 

Band 10 Water vapour WV 

Band 11 SWIR S1 

Band 12 SWIR S2 

Table 3. Sentinel-2 L2A bands description 
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No Indices Full name 
Formula Based on S2 

bands 

1 NDVI 

Normalised 

Difference 

Vegetation 

Index 

𝑁𝑁𝐼𝑅 − 𝑅

𝑁𝑁𝐼𝑅 + 𝑅
 

2 
MSAVI

2 

Modified Soil 

Adjusted 

Vegetation 

Index 

2×𝑁𝑁𝐼𝑅+1−√(2×𝑁𝑁𝐼𝑅+1)2+8(𝑁𝑁𝐼𝑅−𝑅)

2
 

3 VARI 

Visible 

Atmospherica

lly Resistant 

Index 

𝐺 − 𝑅

𝐺 + 𝑅 − 𝐵
 

4 
MNDW

I 

Modified 

Normalized 

Difference 

Water Index 

𝐺 − 𝑆1

𝐺 + 𝑆1
 

5 NDMI 
Normalized 

Difference  

𝑁𝑁𝐼𝑅 − 𝑆1

𝑁𝑁𝐼𝑅 + 𝑆1
 

6 BAI 
Burn Area 

Index 

1

(0.1−𝑅)2+(0.06−𝑁𝑁𝐼𝑅)2 
 

7 NDBI 

Normalized 

Difference 

Built-up 

Index 

𝑆1 − 𝑁𝑁𝐼𝑅

𝑆1 + 𝑁𝑁𝐼𝑅
 

8 EVI 

Enhanced 

Vegetation 

Index 

2.5 ×
𝑁𝑁𝐼𝑅−𝑅

𝑁𝑁𝐼𝑅+(6×𝑅−7.2×𝐵)+1
 

9 EVI2 

Enhanced 

Vegetation 

Index 
2.5 ×

𝑁𝑁𝐼𝑅 − 𝑅

𝑁𝑁𝐼𝑅 + 2.4 × 𝑅 + 1
 

10 OSAVI 

Optimised 

Soil Adjusted 

Vegetation 

Index 

𝑁𝑁𝐼𝑅 − 𝑅

𝑁𝑁𝐼𝑅 + 𝑅 + 0.16
 

11 SATVI 

Soil Adjusted 

Total 

Vegetation 

Index 

𝑆1 − 𝑅

𝑆1 + 𝑅 + 𝐿
× (1 + 𝐿) +

𝑆2

2
 

12 BSI 
Bare Soil 

Index 

𝑅 + 𝐵 − 𝐺

𝑅 + 𝐵 + 𝐺
 

13 NDWI 

Normalized 

Difference 

Water Index 

𝑁𝑁𝐼𝑅 − 𝑆1

𝑁𝑁𝐼𝑅 + 𝑆1
 

14 SIPI 

Structure 

Insensitive 

Pigment 

Index 

𝑁𝑁𝐼𝑅 − 𝐶𝑂

𝑁𝑁𝐼𝑅 + 𝑅
 

15 MSI 
Moisture 

Stress Index 

𝑆1

𝑁𝑁𝐼𝑅
 

16 GNDVI 

Green 

Normalized 

Difference 

Vegetation 

Index 

𝑁𝑁𝐼𝑅 − 𝐺

𝑁𝑁𝐼𝑅 + 𝐺
 

17 BI 
Bare Soil 

Index 

(𝑆1 + 𝑅) − (𝑁𝑁𝐼𝑅 + 𝐵)

(𝑆1 + 𝑅) + (𝑁𝑁𝐼𝑅 + 𝐵)
 

18 DBSI 
Dry Bare Soil 

Index 

𝑆1 − 𝐺

𝑆1 + 𝐺
− 𝑁𝐷𝑉𝐼 

19 NBAI 

Normalised 

Built-Up 

Area Index 

𝑆2 − 𝑆1 𝐺⁄

𝑆2 + 𝑆1 𝐺⁄
 

20 BRBA 

Band Ratio 

for Built-Up 

Area 

𝑅

𝑆1
 

No Indices Full name 
Formula Based on S2 

bands 

21 GI 
Greenness 

Index 

𝐺

𝑅
 

22 MSR 
Modified 

Simple Ratio 

𝑆𝑅 − 1

√𝑆𝑅 − 1
 

23 SR Simple Ratio   𝑁𝑁𝐼𝑅/𝑅 

24 RDVI 

Renormalised 

Difference 

Vegetation 

Index 

𝑁𝑁𝐼𝑅 − 𝑅

√𝑁𝑁𝐼𝑅 + 𝑅
 

25 NRI 

Nitrogen 

Reflectance 

Index 

𝐺 − 𝑅

𝐺 + 𝑅
 

26 TCARI 

Transformed 

Chlorophyll 

Absorption 

and 

Reflectance 

Index 

3 [(𝑅𝐸1 − 𝑅) − 0.2(𝑅𝐸1 − 𝐺) (
𝑅𝐸1

𝑅
)] 

27 PSRI 

Plant 

Senescence 

Reflectance  

𝑅 − 𝐵

𝑅𝐸2
 

28 NPCI 

Normalised 

Pigment 

Chlorophyll 

ratio Index 

𝑅 − 𝐶𝑜

𝑅 + 𝐶𝑜
 

29 
MCARI

_alt 

Modified 

Chlorophyll 

Absorption in 

Reflectance 

Index 

(alternate) 

((𝑅𝐸1 − 𝑅) − 0.2 × (𝑅𝐸1 − 𝐺) ∗ (
𝑅𝐸1

𝑅
)) 

30 MTCI 

Merris 

Terrestrial 

Chlorophyll 

Index 

(𝑁𝑁𝐼𝑅 − 𝑅𝐸2)

(𝑅𝐸2 + 𝑅)
 

31 MCARI 

Modified 

Chlorophyll 

Absorption in 

Reflectance 

Index 

[(𝑁𝑁𝐼𝑅 − 𝑅𝐸1) − 0.2(𝑁𝑁𝐼𝑅 − 𝐺)]

𝑅𝐸1
 

32 
CCCI_a

lt 

Canopy 

Chlorophyll 

Content 

(alternate) 

(
𝑁𝑁𝐼𝑅 − 𝑅𝐸2
𝑁𝑁𝐼𝑅 + 𝑅𝐸2

)

(
𝑁𝑁𝐼𝑅 − 𝑅
𝑁𝑁𝐼𝑅 + 𝑅

)
 

33 CVI 

Chlorophyll 

Vegetation 

Index 
𝑁𝑁𝐼𝑅 ×

𝑅

𝐺2 

34 AVI 

Advanced 

Vegetation 

Index 

√(𝑁𝑁𝐼𝑅 × (1 − 𝑅)) × (𝑁𝑁𝐼𝑅 − 𝑅)
3

 

35 PVR 

Photosyntheti

c Vigour 

Ratio 

𝐺 − 𝑅

𝐺 + 𝑅
 

36 IRECI 

Inverted Red 

Edge 

Chlorophyll 

Index 

𝜌 × 𝑁𝑁𝐼𝑅 − 𝜌 × 𝑅
𝜌×𝑅𝐸2
𝜌×𝑅𝐸1

 

37 ARVI2 

Atmospherica

lly Resistant 

Vegetation 

Index 2 

−0.18 + 0.17 (
𝑁𝑁𝐼𝑅 − 𝑅

𝑁𝑁𝐼𝑅 + 𝑅
) 

38 mNDVI 
Modified 

NDVI 

(𝑁𝑁𝐼𝑅 − 𝑅)

𝑁𝑁𝐼𝑅 − 𝑅 + 2 × 𝐶𝑂
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No Indices Full name 
Formula Based on S2 

bands 

39 
MNDR

E 

Modified 

Normalised 

Difference 

Red-edge 

(𝑅𝐸2 − 𝑅𝐸1)

𝑅𝐸2 − 𝑅𝐸1 + 2 × 𝐶𝑂
 

40 MACC Maccioni 
(𝑅𝐸3 − 𝑅𝐸1)

𝑅𝐸3 + 𝑅
 

41 Datt Datt 
(𝑁𝑁𝐼𝑅 − 𝑅𝐸1)

(𝑁𝑁𝐼𝑅 + 𝑅)
 

42 NDVI2 NDVI2 
(𝑅𝐸2 − 𝑅𝐸1)

(𝑅𝐸2 + 𝑅𝐸1)
 

43 NDVI3 NDVI3 
(𝑅 − 𝐺)

(𝑅 + 𝐺)
 

44 
MTCI_

at 

Meris 

Terrestrial 

Chlorophyll 

Index 

(𝑅𝐸2 − 𝑅𝐸1)

𝑅𝐸1 − 𝑅
 

45 BUI 
Built-up 

Index 
(

𝑆1 − 𝑁𝑁𝐼𝑅

𝑆1 + 𝑁𝑁𝐼𝑅
) − (

𝑁𝑁𝐼𝑅 − 𝑅

𝑁𝑁𝐼𝑅 + 𝑅
) 

46 
NDWI_

G_N 

Normalised 

Difference 

Water Index 

(using G and 

N bands) 

𝐺 − 𝑁𝑁𝐼𝑅

𝐺 + 𝑁𝑁𝐼𝑅
 

47 NMDI 

Normalised 

Multiband 

Drought 

Index 

(𝑁𝑁𝐼𝑅 − (𝑆1 − 𝑆2))

(𝑁𝑁𝐼𝑅 + (𝑆1 − 𝑆2))
 

48 NDRE 

Normalised 

Difference 

Red Edge 

𝑁𝑁𝐼𝑅 − 𝑅𝐸1

𝑁𝑁𝐼𝑅 + 𝑅𝐸1
 

49 CCCI 

Canopy 

Content 

Chlorophyll 

Index 

(𝑁𝑁𝐼𝑅 − 𝑅𝐸2) (𝑁𝑁𝐼𝑅 + 𝑅𝐸2)⁄

(𝑁𝑁𝐼𝑅 − 𝑅) (𝑁𝑁𝐼𝑅 + 𝑅)⁄
 

50 SELI 

Sentinel 

Estimated 

Leaf-Area 

Index 

𝑁𝑁𝐼𝑅 − 𝑅𝐸1

𝑁𝑁𝐼𝑅 + 𝑅𝐸1
 

51 LAI_alt 

Leaf-Area 

Index 

(alternate) 

SELI*5.405-0.114 

52 
DM_N

DVI 

Dry Mass 

using NDVI 
NDVI*12.3245-5.70 

Table 4. Index description 
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