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ABSTRACT:

One sector that feels the effects of global warming and climate change on all levels is agriculture. In order to prepare for pos-
sible yield loss, as well as market, storage, and import planning challenges brought on by climate change, businesses can utilise
agricultural decision support applications. Within the scope of this study, a crop yield prediction module has been developed that
can provide in and end of season estimation of crop yields to be obtained from the determined regions. The Python programming
language was used in the creation of the module as a QGIS plugin. The area for which crop yield predictions are to be made is
covered by retrieving MODIS SR, MODIS LST, and Daymet data from the Google Earth Engine data catalogue. Histograms ob-
tained from remotely sensed images are used as input data to two deep learning methods (CNN-LSTM and HistCNN). As a result,
the HistCNN model outperformed CNN-LSTM for in season soybean yield prediction, with an R2 of 0.72, while the CNN-LSTM
model outperformed it for in end of season soybean yield prediction, with an R2 of 0.67.

1. INTRODUCTION

The Earth’s surface temperature is gradually rising as green-
house gas emissions from the usage of fossil fuels expand, res-
ulting in long-term local, regional, and global climate change.
The effects of climate change include the melting of ice, the
change of precipitation patterns, and the migration of wildlife
to different regions. In particular, agricultural production is the
activity most affected by climate change, and due to unexpected
climate conditions, agricultural yields can be reduced. There-
fore, it must be carefully monitored and managed.

Apparently, the quantity of yield is particularly vital for devel-
oping countries and any decrease has also the impact on farm-
ers, government agencies, and agricultural insurance compan-
ies (Basso et al., 2013). In addition, governments require yield
estimates prior to harvest for purposes such as arranging for
imports and exports, estimating market prices, and determining
storage requirements (Cunha and Silva, 2020). Furthermore,
post-harvest yield estimates are required to determine the agri-
cultural insurance and governmental support.

Predictions of crop yield can be used to generate pre- and post-
harvest forecasts. With the help of remote sensing data, we can
extract the factors affecting agricultural yield and then use deep
learning techniques to analyse the link between these features
and the crop yield. As a first step, the data sources that provide
the attributes that have the potential to affect crop yield should
be identified. For crop yield analysis, it is essential to analyse
the crop’s growth status indicators and the environmental con-
ditions where the crop is located.

With the advancement of technology, the availability of remote
sensing data and the volume of data that may be utilised have
considerably grown (Weiss et al., 2020). Besides, the charac-
teristics that determine crop yield can be obtained from various
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public sources. Nonetheless, the temporal and spatial integrity
of the obtained information is critical. On top of all, a substan-
tial quantity of data is required for the development of effective
training models in deep learning approaches. All of these point
to the necessity of collecting long-term data for remote sens-
ing from a reliable data source. Besides, such a vast quantity
of collected data must be stored and efficiently processed. Be-
cause the decision support module to be built is an end-user
package, it must be capable of responding without storing and
processing data on local computers, allowing the application to
operate on as few hardware resources as possible. Therefore,
Google Earth Engine (GEE) was chosen as the base platform
for this study since it met all of the above-given criteria.

GEE is a cloud computing platform for scientific geospatial
data analysis and visualisation (Kennedy et al., 2018). In addi-
tion, this Google cloud platform service enables the processing
of massive amounts of data with high-performance resources.
GEE is therefore one of the most popular platforms for pro-
cessing the largest geodata sets available. It is highly beneficial
for mapping and monitoring crops, phenology-based classific-
ation, agricultural yield estimation, and other studies (Kennedy
et al., 2018). In this study, GEE’s services were used both to
access remote sensing data and to analyse the acquired inform-
ation.

Deep learning algorithms, a subfield of machine learning, accel-
erate analytical learning by simulating human neural networks
with artificial neural networks. In crop yield prediction stud-
ies, the Convolutional Neural Network (CNN), the Long Short-
Term Memory (LSTM), and the Deep Neural Network (DNN)
are the most often adopted deep learning algorithms. Hybrid
techniques that combine the two algorithms are also popular
(van Klompenburg et al., 2020). CNN-LSTM has been util-
ised in studies on crop yield estimation and forecasting to ex-
tract important characteristics from historical information. It is
appropriate to use LSTM networks to make a scalar estimate
of crop yield from n temporal images of a year (Khaki et al.,
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2020). It has been also reported that the CNN-LSTM model is
more accurate than CNN-only and LSTM-only models (Sun et
al., 2019). Besides, in histogram-based CNN (HistCNN), by
using a multi-layer CNN, a hierarchical learning model can be
created in which close associations with the input occur in the
lower layer and distant relations occur in the downstream CNN
layers (Gehring et al., 2017).

As is well known, it’s possible to browse, edit, print, and ana-
lyse geospatial data with Quantum GIS (QGIS), a free and
open-source cross-platform desktop GIS application. There-
fore, in this work, a QGIS plugin is developed using Python
for crop yield prediction. Besides, the GEE Python API is util-
ised to access and process the remotely sensed data. Mean-
while, CNN-LSTM and HistCNN deep learning models are
tested from the utilised data, which is then used to predict the
crop yield. We preferred the 15 states in the United States’ CO-
NUS region where soybeans are the most widely produced crop
for our study.

This paper is organised as follows: We discussed the study area
and the datasets utilised in Section 2. Section 3 goes over the
methodology and QGIS plugin that were developed. Section 4
discusses the evaluation strategies for the proposed methodo-
logies as well as the achieved accuracy. Section 5 provides a
conclusion with some final remarks.

2. STUDY AREA AND DATASET

This study is conducted in the 15 U.S. CONUS states where
soybeans are cultivated the most (Figure 1). Ground truth in-
formation of soybean yield was obtained from United States
Department of Agriculture (USDA) National Agricultural Stat-
istics Service (NASS) ((dataset) USDA National Agricultural
Statistics Service (2017)”, n.d.a). As is public knowledge, the
USDA’s National Agricultural Statistics Service (NASS) con-
ducts hundreds of surveys annually and produces reports cover-
ing practically every aspect of U.S. agriculture, and this service
provides county-level soybean yield information for the years
2006–2021. As required by deep learning models, ground-truth
yield data serves as the necessary labelled information.

Figure 1. Density map of soybean of the U.S. CONUS region.

In this study, the shapefile vector file can be used to gather
information about the borders of the study area. The county
boundaries of the United States are collected from the GEE
DataCatalog TIGER/2018/Counties dataset. It is used to gather
the related geometric information for the region being pro-
cessed. Moreover, it is used to filter both the input data and
the crop data based on the region shape that was derived from
the collected information.

Cropland Data Layers (CDL) is a land-cover data layer tailored
to crops. Using satellite and agricultural ground truth data, it is

produced annually for the United States ((dataset) USDA Na-
tional Agricultural Statistics Service (2017)”, n.d.b). This in-
formation is also freely accessible through GEE’s USDA/NAS-
S/CDL data catalogue. A crop mask is applied to remotely
sensed images to remove areas where the crop is not grown.
The code block provided in Appendix 1 demonstrates the gen-
eration of a CDL soybean mask using region and year data. Us-
ing the produced mask, non-soybean pixels in remote sensing
data are filtered out.

The seven band values in the MODIS surface reflectance (SR)
data can provide information such as crop growth status indicat-
ors. MODIS land surface temperature (LST) data provide daily
and nightly ground surface temperature information, whereas
Daymet weather data include information on vapour and pre-
cipitation (Table 1). These data are analysed to determine the
crop’s environmental conditions. All of this input data can be
accessed using the GEE data catalogue by providing the neces-
sary study area information (Table 2).

Data Name Catalog Name Resolution
MODIS SR MOD09A1 500 m - 8 days

MODIS LST MOD11A2 1 km - 8 days
DAYMET V4 DAYMET/ V4 1 km -1 day

Table 1. Image dataset utilized in this study.

Data Catalog Name Bands
MODIS/006/MOD09A1 sur refl 01- sur refl 07
MODIS/006/MOD11A2 LST Day, LST Night

NASA/ORNL/DAYMET V4 prcp, vp

Table 2. Data catalog names and the bands utilized.

3. METHODOLOGY

In this section, we detail our strategy in four sub-sections: (i)
preparation of the input dataset, (ii) tensor generation, (iii) pre-
diction strategy, and (iv) QGIS plugin development.

3.1 Preparation of the Input Dataset

In the first step, the data from MODIS SR, MODIS LST, and
Daymet are required to be put together to generate a total of
eleven bands. Note that the theoretical upper and lower bounds
for these bands are too large; therefore, in this study, we used
the min-max pixel values within the study area as our upper
and lower bounds, respectively. In Table 3, the Old Min-Max
column shows the real band limits, whereas the New Min-Max
column displays the values valid for our study region. During
implementation, the related remote sensing data are collected
using county geometry and year information. Note that, unlike
other data, the cloud removal process is applied to MODIS SR
data.

Feature Old Min-Max New Min-Max
MOD09A1 -100 - 16000 1 - 5000
MOD11A2 7500 - 65535 12400 - 15600

Precipitation (mm) 0 - 544 0 - 35
Vapor pressure (Pa) 0 - 8230 0 - 3200

Table 3. Theoretical and calculated ranges for input features.
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It is necessary to collect historical data features and crop yield
information in order to obtain the training data necessary for
the deep learning model. In this study, a histogram-based ap-
proach is used to collect information on the yield of all band
values and to gain more information with fewer data. This ap-
proach assumes that meaningful information may be derived
from the number of different pixels in images acquired for the
study area, disregarding the region’s geographical features (You
et al., 2017).

3.2 Tensor Generation

Using the histogram method, it is possible to determine the
characteristics of annual yield data by combining histograms
sequentially. Obtaining histograms of standard sizes and asso-
ciating them with the annual yield delivers a tensor. Figure 2
illustrates the generation steps for tensors. While creating the
tensors, the extent of the study area and the starting and ending
dates of the training data are given.

Figure 2. General workflow of tensor generation.

This study follows the soybean plant growth period from April
to December. During this period, 34 different remote sens-
ing images are obtained at 8-day intervals. With the help of
GEE, we are capable of collecting MODIS SR, MODIS LST,
and Daymet weather data for our study area and applying crop
masking. To ensure that Daymet weather data has the same
periodicity as MODIS data, 8-day average values are calcu-
lated. The 34 images that result, each with 11 bands, are saved
as a GEE ImageCollection. In this case, filtering, masking, and
band merging are all accomplished with the assistance of GEE’s
capabilities, and the GEE functions. GEE functions used for
filtering and masking MODIS LST data are provided in Ap-
pendix 2. Notice that all image data is analysed directly on
Google Cloud servers, without the datasets being downloaded
to the local computer. Tensors are created for each county in the
study region for the years 2006–2019. If there is no information
regarding soybean production during a year, the tensor for that
year is ignored.

In this study, CNN layers are used to extract the properties
affecting crop yield using surface reflection values, day-night
temperature values and weather data. The 3D sequential histo-
grams obtained in time×bin×bands format are used in the 2D

CNN to extract important features that affect the crop yield. As
mentioned before, the created ImageCollection has 34 images,
each with 11 bands. Each image band is divided into 32 bins
during the histogram generation step. Hence, an npz-formatted
tensor is formed utilising the 34×32×11 ImageCollection and
the yield information.

The CNN-LSTM and HistCNN models are selected as predic-
tion models in this study. In addition, 5-fold cross validation
is carried out to achieve an appropriate deep learning model
configuration. During implementation, the tensors for the years
2006–2019 are used as training data, while the tensor data for
the year 2020 is reserved for testing purposes.

3.3 Prediction Strategy

Crop yield prediction is important both for in season and end of
season. In season prediction is important and preferred to sup-
ply support for agricultural decisions. Farmers, decision makers
and other users can take related precautions and build plans. Be-
sides, end of season prediction is important for assessing farmer
statements for agricultural insurance and government agency
support payments.

In this study, we performed crop yield prediction for both in
season and end of season types. Only data from April through
the period determined in the season are used in this work for in
season predictions. When predicting the end of season out, all
relevant information from April to December is considered.

3.4 Development of QGIS Plugin

QGIS Crop Yield Prediction module has three different actors;
user, GEE and QGIS. Figure 3 depicts “The Prepare Training
Dataset,” the first activity diagram for which a user interface
was also developed. This interface requires the user to se-
lect the application working directory, study region, crop type,
and training years. The application’s workspace is called the
“Working Directory.” It stores study area, trained models, pre-
diction feature, trained features, yield label data, crop data lay-
ers. All of the information is kept in different subfolders con-
sisting of StudyAreas, TrainedModels, TrainingData, YieldLa-
belData and Auxiliary-Data. It should be selected by the user at
the start of the application. Additionally, the “Prepare Training
Dataset” UI receives input data from GEE. After that when with
“Create Training Data” action tensor creation process is started.
When training data is ready to use, it saves under the working
directory to use when training phase.

“Train Prediction Model” is another UI tab inside the developed
plugin. In this step, the plugin expects the user to select the
prediction type and training model. The activity diagram of this
UI tab is displayed in Figure 4. ”Predict Yield” is the final tab
in the plugin’s interface (Figure 5). Both user and GEE inputs
are received. The prediction process begins with the selection
of a region and a model. When the prediction is completed,
results is shown as temporary shape file on the map. In Figure 6,
predictions that in the prepared temporary shape file is shown.
Predictions are given in kilogrammes per hectare.

4. RESULTS AND DISCUSSION

This section presents the study’s findings and addresses the is-
sues experienced during the data analysis. In total, six different
models were created for HistCNN and seven different models
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Figure 3. Prepare Training Dataset

Figure 4. Train model.

were created for CNN-LSTM. Different model combinations

Figure 5. Predict yield.

Figure 6. Preparing training dataset is completed interface.

were created by differentiating the number of convolution lay-
ers, the number of filters, and the number of dense layer neurons
compared to the base model. Each model was separately evalu-
ated for in season and end of season predictions. For in season
yield predictions, the 18th time is selected.

The effects of different parameters and their combinations on
the accuracy of the crop yield prediction are investigated. The
training and test data are split randomly to compare all model
configurations. Thus, a 5-fold cross validation is used to com-
pare each model objectively. Finally, model selection is per-
formed using training data. Table 4 and Table 5 show the cre-
ated model configurations.

Table 6 presents the 5-fold cross validation results of the Hist-
CNN models. The 2th and 4th models provide the worst results
for in season and end of season predictions. This result proves
that the convolution layer and the filters are important for the
performance of the HistCNN model. Table 7 presents the model
comparisons of the CNN-LSTM models after the cross valida-
tion. Amongst the models, 3th model configuration is the most
successful model for both prediction types. 7th model configur-
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HistCNN
Models

Conv
Filter Sizes

Conv
Count

Dense
Count

Dense
Neuron Count

1.Model 128, 256, 512 3 1 64
2.Model 32, 64, 128 3 1 64
3.Model 64, 128, 256, 512 4 1 64
4.Model 128, 256 2 1 64
5.Model 128, 256, 512 3 2 64,32
6.Model 128, 256, 512 3 1 32

Table 4. HistCNN model configuration matrix.

CNN-LSTM
Models

Conv.
Filters

Conv.
Count

LSTM
Neurons

Dense
Count

Dense
Neurons

1.Model 32,64 2 256 1 64
2.Model 64,128 2 256 1 64
3.Model 128,256 2 256 1 64
4.Model 32,64,128 3 256 1 64
5.Model 32,64 2 256 2 64,32
6.Model 32,64 2 256 1 128
7.Model 32,64 2 512 1 64

Table 5. CNN-LSTM model configuration matrix.

ation has the worst error rate among the in season predictions.
Therefore, it can be said that the increase in the number of dense
layer neurons negatively affected the deep learning output in
our case.

Model Name In Season (18th) End of Season
RMSE R2 RMSE R2

1.Model 330.807 0.77 309.950 0.80
2.Model 353.455 0.74 331.638 0.77
3.Model 308.418 0.80 317.138 0.79
4.Model 331.427 0.77 336.802 0.76
5.Model 323.097 0.79 333.207 0.77
6.Model 334.020 0.77 324.690 0.78

Table 6. 5-fold cross validation results of HistCNN model.

CNN-LSTM and HistCNN model were tested with test data
consisting of 128 tensors that were not included in the training
data. According to CNN-LSTM test results, the best end-season
yield estimates were obtained with the 2nd model configuration
with R2 of 0.67. The best in season yield estimation results
were obtained with the base model with R2 of 0.56.

In the HistCNN test results, while the 3rd model is the most
successful model in predicting soybean yield in season with R2

of 0.72, the 2nd model is the most successful model in end of
season predictions with R2 of 0.62. Besides, the lowest predic-
tion results were obtained with 4th model configuration for both
prediction types with R2 of 0.3.

The R2 values derived from the prediction data are lower than
those derived from the 5-fold cross validation data. This could
be due to the fact that the only data used for testing is for the
year 2020. Using 128 tensors from 15 randomly selected states
was also incapable of producing reasonable R2 results. In ad-
dition, the prediction results indicate that HistCNN models per-
form better than CNN-LSTM models for both in season and end
of season predictions.

Model Name In Season (18th) End of Season
RMSE R2 RMSE R2

1.Model 364.152 0.73 333.333 0.77
2.Model 350.693 0.75 338.191 0.76
3.Model 337.279 0.77 314.482 0.79
4.Model 363.638 0.73 320.531 0.79
5.Model 347.959 0.75 315.476 0.79
6.Model 363.347 0.73 331.090 0.77
7.Model 409.001 0.66 325.191 0.78

Table 7. 5-fold cross validation results of CNN-LSTM model.

The module for predicting crop yields that has been developed
relies on surface reflectance data for determining the current
state of the crop and on analyses of environmental factors such
as temperature, precipitation, and vapour to better better predict
crop yields. However, in reality, the prediction module needs to
account for farmers’ spraying, irrigation, and fertilisation prac-
tises. Examining how the soil’s properties have changed over
time is also crucial for estimating yield.

5. CONCLUSION

This study focuses on developing a QGIS plugin for crop yield
prediction. It delivers in season and end of season crop yield
predictions by using remote sensing data and deep learning
methods. A key component is the use of GEE, a cloud comput-
ing platform for the collection and processing of remote sensing
data.

During the methodology, images were standardised using a
histogram-based strategy so that deep learning models could
learn more information with less input. HistCNN and CNN-
LSTM models were constructed using the Tensorflow library.
Several model configurations were tested, and RMSE, MSE,
and R2 metrics were used to evaluate the results. 5-fold cross
validation was applied to determine the optimum deep learn-
ing model configuration. As a result, the HistCNN model out-
performed CNN-LSTM for in season soybean yield prediction,
with an R2 of 0.72, while the CNN-LSTM model outperformed
it for in end of season soybean yield prediction, with an R2 of
0.67.

In future studies, in addition to remote sensing data, farmers’
agricultural practises and soil characteristics can be used to
obtain more reliable and accurate yield predictions. In addi-
tion, it is thought that the GEE “Batch Environment” method
can decrease the training data duration. Moreover, the plugin
user interface can be effective when using the batch processing
method. However, in future studies, the performance of the plu-
gin developed in this study on different crop types, such as corn
and cotton, can be addressed.
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A. APPENDIX

Appendix 1- The function of generating soybean mask using
CDL data.

def c r e a t e s o y b e a n m a s k ( s e l f ) :
# E l i m i n a t i n g non soybean p i x e l s

c d l = ee . I m a g e C o l l e c t i o n ( ’USDA/ NASS /CDL ’ )
. f i l t e r ( ee . F i l t e r . d a t e
( s e l f . h i s t o r i c s t a r t d a t e ,
s e l f . h i s t o r i c e n d d a t e ) )
. f i l t e r B o u n d s ( s e l f . r e g i o n )

def c r e a t e M a s k ( c d l ) :
# Soybean mask f o r s e l e c t e d year
imageCdl = ee . Image ( c d l . t o L i s t ( 1 )
. g e t ( 0 ) )
soybeanMask = c r e a t e M a s k ( imageCdl )
re turn soybeanMask

Appendix 2- Function to retrieve MODIS LST data for the se-
lected year and region.

def getMODLST ( s e l f ) :
MOD lst = s e l f . c r e a t e i m a g e c o l l e c t i o n
( ’MODIS/ 0 0 6 /MOD11A2 ’ ,
s e l f . s t a r t d a t e ,
s e l f . e n d d a t e , s e l f . r e g i o n )
MOD lst = MOD lst . s e l e c t ( s e l f . LST bands )

def upda teMask ing ( image ) :
re turn image . updateMask ( s e l f . soybeanMask )

MOD lst = MOD lst . map ( upda teMask ing )
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